
NoDoze:Combating Threat Alert Fatigue
with Automated Provenance Triage

Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee,
Zhichun Li, Adam Bates

26th Annual Network and Distributed System Security Symposium (NDSS) 2019

The Modern Cyber Threat Pandemic
3,930 Breaches

in 2015

953
Breaches in

2010

Se
le

ct
ed

 D
at

a
Br

ea
ch

es

Source: World’s Biggest
Data Breaches,
Information is Beautiful

321
Breaches in

2006

Every company wants to keep their name off this chart

 2

• Threat Detection Software (TDS) is the standard approach to
security monitoring in large organizations.

Threat Detection

 3

• Even the most advanced tools are prone to high false alert rates

State of Threat Detection
Fireeye’s “How Many Alerts is Too Many to Handle?” report:

 Organizations receive 17,000 alerts per week on average

 51% false alarms

 Only 4% of alerts are properly investigated.

 Waste an average of $1.27 million every year

https://www2.fireeye.com/CMPG-IDC-Numbers-Game-Special-Report.html

Threat Alert Fatigue
A phenomenon when cyber analysts do not respond to threat alerts

because they receive so many each day.

Example rule: ALERT if process reads/writes many
files in a short span of time

Program2.exeProgram1.exe Compression UtilityMalware!!

Threat Alert Fatigue

�5

outlook.exe update.exe

Where are we going wrong?
• Support for alert context is limited or non-existent

•Alerts fire based on single-event rules
•Rules are heuristic, curated by domain experts

Combatting Alert Fatigue

�6

Program1.exe

Outlook.exe
Malware.exe

Program2.exe

SoftInstaller.exe
Zip.exe

Key Idea: The suspiciousness of an
individual event is informed by the
suspiciousness of its historical context.

Threat Alert Investigation

�7

/Downloads/
Mal.exe

Chrome

malware.com

Dependency Graph

malserver.com

Mal.exe

● Life cycle of data object
○ Represented as graph
○ Vertex: File, Socket and Process
○ Edge: Causal dependency event

■ where each event E is a tuple of
(SRC,DST,REL)

● Helpful in alert investigation
○ Querying root cause of the alert
○ Gives you context of the alert

�8

OS-Level Logs

System
Log DB

Threat
 Detector

On-Demand
Dep. Graph

Construction

NoDoze
 Event Freq. DB

Score Assignment
& Propagation

Graph Reduction

NoDoze Workflow

Alert
Rankings

1.Anomaly Score Calculation
2.Anomaly Score Propagation
3.Graph Reduction

1.Use historic event data to build an Event
Frequency Database

● Encodes typical behavior within the organization

Anomaly Score Calculation

 9

1.Use historic event data to build an Event
Frequency Database

● Encodes typical behavior within the organization

2.Generates provenance graph for each alert
event.

Anomaly Score Calculation

 10

 Chrome.exe

x.x.x.xa.a.a.a

/Downloads/
ftp.exe

 /Downloads/
Java.exe

Malware Process
Ftp

Process

1.Use historic event data to build an Event
Frequency Database

● Encodes typical behavior within the organization

2.Generates provenance graph for each alert event.
3.Assign transition probability to each event (edge)

• how often information flows from SRC to DST for
particular REL

Anomaly Score Calculation

 11

TransProbabilt y(E) = Frequency(E)
FrequencyonlySRC(E)

 Chrome.exe

x.x.x.xa.a.a.a

/Downloads/
ftp.exe

 /Downloads/
Java.exe

Malware Process
Ftp

Process

1.Use historic event data to build an Event
Frequency Database

● Encodes typical behavior within the organization

2.Generates provenance graph for each alert event.
3.Assign transition probability to each event (edge)

• how often information flows from SRC to DST for
particular REL

Anomaly Score Calculation

 12

TransProbabilt y(E) = Frequency(E)
FrequencyonlySRC(E)

How often does data flow from SRC to DST?

How often does data flow from SRC to anywhere?

 Chrome.exe

x.x.x.xa.a.a.a

/Downloads/
ftp.exe

 /Downloads/
Java.exe

Malware Process
Ftp

Process

1.Use historic event data to build an Event
Frequency Database

● Encodes typical behavior within the organization

2.Generates provenance graph for each alert event.
3.Assign transition probability to each event (edge)

• how often information flows from SRC to DST for
particular REL

Anomaly Score Calculation

 13

TransProbabilt y(E) = Frequency(E)
FrequencyonlySRC(E)

High Transition Prob. 0.8

Low Transition Prob. 0.2

 Chrome.exe

x.x.x.xa.a.a.a

/Downloads/
ftp.exe

 /Downloads/
Java.exe

Malware Process
Ftp

Process

Anomaly Score Propagation
4. For Path of length N in graph

we calculate anomaly score as follows:
P = (E1, E2, . . . , En)

 Chrome.exe

x.x.x.xa.a.a.a

/Downloads/
ftp.exe

 /Downloads/
Java.exe

Malware Process
Ftp

Process

High Transition Prob. 0.8

Low Transition Prob. 0.2

 14

Anomaly Score Propagation

 15

4. For Path of length N in graph
we calculate anomaly score as follows:

P = (E1, E2, . . . , En)

a.a.a.a

ftp.exe

Ftp

x.x.x.x

ftp.exe

Ftp

a.a.a.a

java.exe

Malware

x.x.x.x

java.exe

Malware

High Transition Prob. 0.8

Low Transition Prob. 0.2

Anomaly Score Propagation

 16

4. For Path of length N in graph
we calculate anomaly score as follows:

P = (E1, E2, . . . , En)

IN/OUT scores account for total amount of data
flowing in/out of the SRC and DST

a.a.a.a

ftp.exe

Ftp

x.x.x.x

ftp.exe

Ftp

a.a.a.a

java.exe

Malware

x.x.x.x

java.exe

Malware

High Transition Prob. 0.8

Low Transition Prob. 0.2

Regularit yScore(P) =
N

∏
i=1

IN(SRCi) × TransProb(Ei) × OUT(DSTi)

Anomaly Score Propagation

 17

4. For Path of length N in graph
we calculate anomaly score as follows:

P = (E1, E2, . . . , En)

For instance, IN and OUT score is 1.0 then:

a.a.a.a

ftp.exe

Ftp

x.x.x.x

ftp.exe

Ftp

a.a.a.a

java.exe

Malware

x.x.x.x

java.exe

Malware

High Transition Prob. 0.8

Low Transition Prob. 0.2

0.512 0.128 0.032 0.008Regularity Scores =

Regularit yScore(P) =
N

∏
i=1

IN(SRCi) × TransProb(Ei) × OUT(DSTi)

Anomaly Score Propagation

 18

4. For Path of length N in graph
we calculate anomaly score as follows:

P = (E1, E2, . . . , En)

AnomalyScore(P) = 1 − Regularit yScore(P)

For instance, IN and OUT score is 1.0 then:

a.a.a.a

ftp.exe

Ftp

x.x.x.x

ftp.exe

Ftp

a.a.a.a

java.exe

Malware

x.x.x.x

java.exe

Malware

High Transition Prob. 0.8

Low Transition Prob. 0.2

Anomaly Scores = 0.488 0.872 0.968 0.992

Regularit yScore(P) =
N

∏
i=1

IN(SRCi) × TransProb(Ei) × OUT(DSTi)

0.512 0.128 0.032 0.008Regularity Scores =

Anomaly Score Propagation

 19

4. For Path of length N in graph
we calculate anomaly score as follows:

P = (E1, E2, . . . , En)

For instance, IN and OUT score is 1.0 then:

a.a.a.a

ftp.exe

Ftp

x.x.x.x

ftp.exe

Ftp

a.a.a.a

java.exe

Malware

x.x.x.x

java.exe

Malware

High Transition Prob. 0.8

Low Transition Prob. 0.2

Regularit yScore(P) =
N

∏
i=1

IN(SRCi) × TransProb(Ei) × OUT(DSTi)

Top 2 Anomalous Paths

AnomalyScore(P) = 1 − Regularit yScore(P)

Anomaly Scores = 0.488 0.872 0.968 0.992

0.512 0.128 0.032 0.008Regularity Scores =

Anomaly Score Propagation

 20

4. For Path of length N in graph
we calculate anomaly score as follows:

P = (E1, E2, . . . , En)

For instance, IN and OUT score is 1.0 then:

a.a.a.a

ftp.exe

Ftp

x.x.x.x

ftp.exe

Ftp

a.a.a.a

java.exe

Malware

x.x.x.x

java.exe

Malware

High Transition Prob. 0.8

Low Transition Prob. 0.2

Regularit yScore(P) =
N

∏
i=1

IN(SRCi) × TransProb(Ei) × OUT(DSTi)

Top 2 Anomalous Paths

AnomalyScore(P) = 1 − Regularit yScore(P)

Anomaly Scores = 0.488 0.872 0.968 0.992

0.512 0.128 0.032 0.008Regularity Scores =

Use Aggregate Anomaly Scores
to Triage threat alerts

• A major issue in provenance analysis is dependency explosion
• One output event depends on all input events that happen before it (the same

process).

Graph Reduction

 21

 Chrome.exe

/Downloads/
ftp.exe

 /Downloads/
Java.exe

Malware
Process

Ftp
Process

• A major issue in provenance analysis is dependency explosion
• One output event depends on all input events that happen before it (the same

process).

Graph Reduction

 22

 Chrome.exe

 /Downloads/
Java.exe

Malware
Process

• A major issue in provenance analysis is dependency explosion
• One output event depends on all input events that happen before it (the same

process).

Graph Reduction

 23

 Chrome.exe

 /Downloads/
Java.exe

Malware
Process

False/Irrelevant Dependencies

• A major issue in provenance analysis is dependency explosion
• One output event depends on all input events that happen before it (the same

process).

Graph Reduction

 24

 Chrome.exe

 /Downloads/
Java.exe

Malware
Process

• Existing solutions require developer intervention

False/Irrelevant Dependencies

Graph Reduction

 25

 Chrome.exe

/Downloads/
ftp.exe

 /Downloads/
Java.exe

Malware
Process

Ftp
Process

• NoDoze introduces behavioral execution partitioning
• partition a program’s execution between normal and anomalous

behavior, prune normal paths.

Graph Reduction

 26

 Chrome.exe

/Downloads/
ftp.exe

 /Downloads/
Java.exe

Malware
Process

Ftp
Process

• NoDoze introduces behavioral execution partitioning
• partition a program’s execution between normal and anomalous

behavior, prune normal paths.

Most Anomalous
Path

Graph Reduction

 27

 Chrome.exe

 /Downloads/
Java.exe

Malware
Process

• NoDoze introduces behavioral execution partitioning
• partition a program’s execution between normal and anomalous

behavior, prune normal paths.

Most Anomalous
Path

• Experimentally validated at NEC Labs using their commercially-available threat
detection software (NEC ASI System).

• Provenance data from 190 hosts (heterogenous network)

• Event Frequency Database populated with 1 month data

• Evaluation engagement took place over 5 days

• Underlying Threat Detection Software generated 364 alerts

• 50 True Alerts (we injected these)

• 314 False Alerts (validated by analysts)

NoDoze Evaluation

 28

WannaCry
Phishing Email

Data Theft
Shellshock

netcat backdoor
pass the hash

wget->gcc

�29

Summary of Results

84%
reduction in
false alarms

>90
employee-

hours saved

2
orders

smaller graph

• To prioritize alerts, just sort by anomaly score!

• Can we go further? Yes

• If there is major separation between scores of True Alerts and False
Alerts, we can set a separation threshold for alerts that fall beneath a
certain score.

Threat Alert Triage

 30

• Threshold can be set
experimentally by analysts
based on past investigations.

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250
C
D
F

Ranking

True Alerts
False Alerts
Threshold

84%
reduction

Time Saved

● Studies have shown that it takes 20+ mins on average to
investigate each alert

● In our dataset we have total 314 false alerts collected from
underlying threat detection software
○ Take 104 hours to investigate

● NoDoze reduces 84% of 314 false alerts
○ Saved more than 90 hours

�31

>90
employee-

hours saved

Graph Reduction

�32

Svchost

IExplorer.exe springs.7zip

Svchost.exe

Explorer.exe

dropper.exe

7zip.exe

 Skype.exeIExplorere.exe

 IExplorere.exe

 dropper.exe

y.y.y.y:445

Spoolsv.exe

 encrypt.exe

Svchost.exe

encryptor.exe

Attack
Other hosts

smbd

z.z.z.z:445

sys-
report.txt

Low
Anomaly Score
Progeny of E2

High
Anomaly Score
Progeny of E1

Powershell

sys-report.txt

WBEM/WMIC REG NETSTAT TASKLIST ROUTE IPCONFIG

 Other file
nodes

Other file
nodes

vim

diff

check-file
bash

sys-report.txt

cat ls grep cut

Low Anomaly Score
Ancestry of E2

High
Anomaly Score
Ancestry of E1

 collect-info.ps1

Powershell

Svchost.exe

Userinit

E1
E2

IExplorer.exe

 springs.7zip

Svchost.exe

Explorer.exe

dropper.exe

7zip.exe

a.a.a.a

 dropper.exe

Svchost.exe

Spoolsv.exe

 encrypt.exe
Svchost.exe

encryptor.exe

All file
nodes

b.b.b.b

y.y.y.y:445

All file
nodes

E1

2 orders
smaller graph

Conclusion

● We develop NoDoze — a threat alert
triage and investigation system

● It leverages historical information and
contextual alerting to improve state-
of-the-art threat detection softwares

● Evaluation results show that our
system substantially reduces the slog
of investigating false alarms

�33

Conclusion

● We develop NoDoze — a threat alert
triage and investigation system

● It leverages historical information and
contextual alerting to improve state-
of-the-art threat detection softwares

● Evaluation results show that our
system substantially reduces the slog
of investigating false alarms

�34

Thanks & Questions
whassan3@illinois.edu

Backup slides

!35

• Using NoDoze as a TDS is prohibitively costly

• Graph analysis on every event happening in enterprise

• Lot of research to curate these rules

• Efficiently generate threat alerts

• Use these alerts as a starting point

Why we need TDS?

 36

• Two reasons to miss attacks:

• Underlying TDS miss attacks

• NoDoze separation threshold is two low

• Goal of NoDoze is to triage

• Separation Threshold is configurable

• Based on organization setup such as num. of hosts and workload

What about False negative

 37

Anomaly Score Normalization

 38

AnomalyScore(P) = 1 −
N

∏
i=1

IN(SRCi) × TransProb(Ei) × OUT(DSTi)

Normalize the path scores
• Longer paths tends to have higher score in above equation
• Remove scoring bias by calculating decay factor using random sampling

approach

Data Provenance aka Audit log
●Lineage of system activities
●Represented as Graph

○ Vertex: File, Socket and Process
○ Edge: Causal dependency event

 39

1. Bash, Spawns NGINX
2. NGINX, Receives from abc.com
3. NGINX, Reads File index.html
4. ….......

index.html

NGINX

abc.com

Audit log

Bash

Provenance Graph

Bash:
exec(“./NGINX”);

NGINX:
recv(…,“abc.com”);
fread(“index.html”);

Code Execution

Linux Auditd Architecture

 40

User-space

Kernel

kauditd

auditd Logs

netlink

 Application

syscall

audit filter

Syscall
processing

syscall
return

