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The Modern Cyber Threat Pandemic
3,930 Breaches 

in 2015
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Source: World’s Biggest 
Data Breaches, 
Information is Beautiful

321 
Breaches in 

2006

Every company wants to keep their name off this chart
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• Threat Detection Software (TDS) is the standard approach to 
security monitoring in large organizations. 

Threat Detection
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• Even the most advanced tools are prone to high false alert rates



State of Threat Detection
Fireeye’s “How Many Alerts is Too Many to Handle?” report: 

   Organizations receive 17,000 alerts per week on average 

   51% false alarms 

   Only 4% of alerts are properly investigated. 

    Waste an average of $1.27 million every year

https://www2.fireeye.com/CMPG-IDC-Numbers-Game-Special-Report.html

Threat Alert Fatigue 
A phenomenon when cyber analysts do not respond to threat alerts 

because they receive so many each day.  



Example rule: ALERT if process reads/writes many 
files in a short span of time

Program2.exeProgram1.exe Compression  UtilityMalware!!

Threat Alert Fatigue
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outlook.exe update.exe

Where are we going wrong?
• Support for alert context is limited or non-existent 

•Alerts fire based on single-event rules 
•Rules are heuristic, curated by domain experts



Combatting Alert Fatigue
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Program1.exe

Outlook.exe
Malware.exe

Program2.exe

SoftInstaller.exe
Zip.exe

Key Idea: The suspiciousness of an 
individual event is informed by the 
suspiciousness of its historical context.



Threat Alert Investigation
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/Downloads/
Mal.exe

Chrome

malware.com

Dependency Graph

malserver.com

Mal.exe

● Life cycle of data object 
○ Represented as graph 
○ Vertex: File, Socket and Process 
○ Edge: Causal dependency event 

■ where each event E is a tuple of 
(SRC,DST,REL) 

● Helpful in alert investigation 
○ Querying root cause of the alert 
○ Gives you context of the alert
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OS-Level Logs

System 
Log DB

Threat
 Detector

On-Demand 
Dep. Graph 

Construction

NoDoze
 Event Freq. DB

Score Assignment 
& Propagation

Graph Reduction 

NoDoze Workflow

Alert 
Rankings

1.Anomaly Score Calculation 
2.Anomaly Score Propagation 
3.Graph Reduction



1.Use historic event data to build an Event 
Frequency Database 

● Encodes typical behavior within the organization 

Anomaly Score Calculation
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1.Use historic event data to build an Event 
Frequency Database 

● Encodes typical behavior within the organization 

2.Generates provenance graph for each alert 
event. 

Anomaly Score Calculation

 10

        Chrome.exe

x.x.x.xa.a.a.a

/Downloads/
ftp.exe

 /Downloads/
Java.exe

Malware Process
Ftp 

Process



1.Use historic event data to build an Event 
Frequency Database 

● Encodes typical behavior within the organization 

2.Generates provenance graph for each alert event. 
3.Assign transition probability to each event (edge) 

• how often information flows from SRC to DST for 
particular REL 

Anomaly Score Calculation
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TransProbabilt y(E ) = Frequency(E)
FrequencyonlySRC(E)
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1.Use historic event data to build an Event 
Frequency Database 

● Encodes typical behavior within the organization 

2.Generates provenance graph for each alert event. 
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• how often information flows from SRC to DST for 
particular REL 

Anomaly Score Calculation
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TransProbabilt y(E ) = Frequency(E)
FrequencyonlySRC(E)

How often does data flow from SRC to DST?

How often does data flow from SRC to anywhere?

        Chrome.exe

x.x.x.xa.a.a.a

/Downloads/
ftp.exe

 /Downloads/
Java.exe

Malware Process
Ftp 

Process



1.Use historic event data to build an Event 
Frequency Database 

● Encodes typical behavior within the organization 

2.Generates provenance graph for each alert event. 
3.Assign transition probability to each event (edge) 

• how often information flows from SRC to DST for 
particular REL 

Anomaly Score Calculation
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TransProbabilt y(E ) = Frequency(E)
FrequencyonlySRC(E)

High Transition Prob. 0.8

Low Transition Prob. 0.2

        Chrome.exe

x.x.x.xa.a.a.a

/Downloads/
ftp.exe

 /Downloads/
Java.exe

Malware Process
Ftp 

Process



Anomaly Score Propagation
4. For Path                                    of length N in graph 

we calculate anomaly score as follows:
P = (E1, E2, . . . , En)

        Chrome.exe

x.x.x.xa.a.a.a

/Downloads/
ftp.exe

 /Downloads/
Java.exe

Malware Process
Ftp 

Process

High Transition Prob. 0.8

Low Transition Prob. 0.2
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Anomaly Score Propagation
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4. For Path                                    of length N in graph 
we calculate anomaly score as follows:

P = (E1, E2, . . . , En)

a.a.a.a

ftp.exe

Ftp

x.x.x.x

ftp.exe

Ftp

a.a.a.a

java.exe

Malware

x.x.x.x

java.exe

Malware

High Transition Prob. 0.8

Low Transition Prob. 0.2



Anomaly Score Propagation
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4. For Path                                    of length N in graph 
we calculate anomaly score as follows:

P = (E1, E2, . . . , En)

IN/OUT scores account for total amount of data 
flowing in/out of the SRC and DST

a.a.a.a

ftp.exe

Ftp

x.x.x.x

ftp.exe

Ftp

a.a.a.a

java.exe

Malware

x.x.x.x

java.exe

Malware

High Transition Prob. 0.8

Low Transition Prob. 0.2

Regularit yScore(P) =
N

∏
i=1

IN(SRCi) × TransProb(Ei) × OUT(DSTi)



Anomaly Score Propagation
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4. For Path                                    of length N in graph 
we calculate anomaly score as follows:

P = (E1, E2, . . . , En)

For instance, IN and OUT score is 1.0 then:

a.a.a.a

ftp.exe

Ftp

x.x.x.x

ftp.exe

Ftp

a.a.a.a

java.exe

Malware

x.x.x.x

java.exe

Malware

High Transition Prob. 0.8

Low Transition Prob. 0.2

0.512 0.128 0.032 0.008Regularity Scores =

Regularit yScore(P) =
N

∏
i=1

IN(SRCi) × TransProb(Ei) × OUT(DSTi)



Anomaly Score Propagation
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4. For Path                                    of length N in graph 
we calculate anomaly score as follows:

P = (E1, E2, . . . , En)

AnomalyScore(P) = 1 − Regularit yScore(P)

For instance, IN and OUT score is 1.0 then:

a.a.a.a

ftp.exe

Ftp

x.x.x.x

ftp.exe

Ftp

a.a.a.a

java.exe

Malware

x.x.x.x

java.exe

Malware

High Transition Prob. 0.8

Low Transition Prob. 0.2

Anomaly Scores   = 0.488 0.872 0.968 0.992

Regularit yScore(P) =
N

∏
i=1

IN(SRCi) × TransProb(Ei) × OUT(DSTi)

0.512 0.128 0.032 0.008Regularity Scores =



Anomaly Score Propagation
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4. For Path                                    of length N in graph 
we calculate anomaly score as follows:

P = (E1, E2, . . . , En)

For instance, IN and OUT score is 1.0 then:

a.a.a.a

ftp.exe

Ftp

x.x.x.x

ftp.exe

Ftp

a.a.a.a

java.exe

Malware

x.x.x.x

java.exe

Malware

High Transition Prob. 0.8

Low Transition Prob. 0.2

Regularit yScore(P) =
N

∏
i=1

IN(SRCi) × TransProb(Ei) × OUT(DSTi)

Top 2 Anomalous Paths

AnomalyScore(P) = 1 − Regularit yScore(P)

Anomaly Scores   = 0.488 0.872 0.968 0.992

0.512 0.128 0.032 0.008Regularity Scores =



Anomaly Score Propagation
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4. For Path                                    of length N in graph 
we calculate anomaly score as follows:

P = (E1, E2, . . . , En)

For instance, IN and OUT score is 1.0 then:

a.a.a.a

ftp.exe

Ftp

x.x.x.x

ftp.exe

Ftp

a.a.a.a

java.exe

Malware

x.x.x.x

java.exe

Malware

High Transition Prob. 0.8

Low Transition Prob. 0.2

Regularit yScore(P) =
N

∏
i=1

IN(SRCi) × TransProb(Ei) × OUT(DSTi)

Top 2 Anomalous Paths

AnomalyScore(P) = 1 − Regularit yScore(P)

Anomaly Scores   = 0.488 0.872 0.968 0.992

0.512 0.128 0.032 0.008Regularity Scores =

Use Aggregate Anomaly Scores 
to Triage threat alerts 



• A major issue in provenance analysis is dependency explosion
• One output event depends on all input events that happen before it (the same 

process). 

Graph Reduction
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• A major issue in provenance analysis is dependency explosion
• One output event depends on all input events that happen before it (the same 

process). 

Graph Reduction
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• A major issue in provenance analysis is dependency explosion
• One output event depends on all input events that happen before it (the same 

process). 

Graph Reduction
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        Chrome.exe

 /Downloads/
Java.exe

Malware 
Process

False/Irrelevant Dependencies



• A major issue in provenance analysis is dependency explosion
• One output event depends on all input events that happen before it (the same 

process). 

Graph Reduction
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        Chrome.exe

 /Downloads/
Java.exe

Malware 
Process

• Existing solutions require developer intervention

False/Irrelevant Dependencies



Graph Reduction
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        Chrome.exe

/Downloads/
ftp.exe

 /Downloads/
Java.exe

Malware 
Process

Ftp 
Process

• NoDoze introduces behavioral execution partitioning
• partition a program’s execution between normal and anomalous 

behavior, prune normal paths.



Graph Reduction

 26

        Chrome.exe

/Downloads/
ftp.exe

 /Downloads/
Java.exe

Malware 
Process

Ftp 
Process

• NoDoze introduces behavioral execution partitioning
• partition a program’s execution between normal and anomalous 

behavior, prune normal paths.

Most Anomalous 
Path



Graph Reduction
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        Chrome.exe

 /Downloads/
Java.exe

Malware 
Process

• NoDoze introduces behavioral execution partitioning
• partition a program’s execution between normal and anomalous 

behavior, prune normal paths.

Most Anomalous 
Path



• Experimentally validated at NEC Labs using their commercially-available threat 
detection software (NEC ASI System).

• Provenance data from 190 hosts (heterogenous network)

• Event Frequency Database populated with 1 month data

• Evaluation engagement took place over 5 days

• Underlying Threat Detection Software generated 364 alerts

• 50 True Alerts (we injected these)

• 314 False Alerts (validated by analysts)

NoDoze Evaluation
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WannaCry
Phishing Email

Data Theft
Shellshock

netcat backdoor
pass the hash

wget->gcc
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Summary of Results 

84% 
reduction in 
false alarms 

>90 
employee-

hours saved 

2  
orders 

smaller graph



• To prioritize alerts, just sort by anomaly score! 

• Can we go further? Yes 

• If there is major separation between scores of True Alerts and False 
Alerts, we can set a separation threshold for alerts that fall beneath a 
certain score.

Threat Alert Triage
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• Threshold can be set 
experimentally by analysts 
based on past investigations. 

0
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Ranking

True Alerts
False Alerts
Threshold

84% 
reduction 



Time Saved

● Studies have shown that it takes 20+ mins on average to 
investigate each alert 

● In our dataset we have total 314 false alerts collected from 
underlying threat detection software 
○ Take 104 hours to investigate 

● NoDoze reduces 84% of 314 false alerts  
○ Saved more than 90 hours
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>90 
employee-

hours saved 



Graph Reduction
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Svchost
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Powershell
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vim
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7zip.exe
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Conclusion

● We develop NoDoze — a threat alert 
triage and investigation system  

● It leverages historical information and 
contextual alerting to improve state-
of-the-art threat detection softwares  

● Evaluation results show that our 
system substantially reduces the slog 
of investigating false alarms 
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Thanks & Questions
whassan3@illinois.edu



Backup slides
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• Using NoDoze as a TDS is prohibitively costly

• Graph analysis on every event happening in enterprise 

• Lot of research to curate these rules

• Efficiently generate threat alerts

• Use these alerts as a starting point

Why we need TDS?
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• Two reasons to miss attacks:

• Underlying TDS miss attacks

• NoDoze separation threshold is two low

• Goal of NoDoze is to triage

• Separation Threshold is configurable

• Based on organization setup such as num. of hosts and workload

What about False negative
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Anomaly Score Normalization
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AnomalyScore(P) = 1 −
N

∏
i=1

IN(SRCi) × TransProb(Ei) × OUT(DSTi)

Normalize the path scores 
• Longer paths tends to have higher score in above equation 
• Remove scoring bias by calculating decay factor using random sampling 

approach 



Data Provenance aka Audit log 
●Lineage of system activities
●Represented as Graph

○ Vertex: File, Socket and Process 
○ Edge: Causal dependency event
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1. Bash, Spawns NGINX 
2. NGINX, Receives from abc.com 
3. NGINX, Reads File index.html 
4. …....... 

index.html

NGINX

abc.com

Audit log

Bash

Provenance Graph

Bash: 
exec(“./NGINX”);

NGINX: 
recv(…,“abc.com”);
fread(“index.html”);

Code Execution



Linux Auditd Architecture
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User-space

Kernel

kauditd

auditd Logs

netlink

       Application

syscall

audit filter

Syscall 
processing

syscall
return


