
Lightweight and Adaptive Service API Performance Monitoring

in Highly Dynamic Cloud Environment

Jingmin Xu ∗†, Yuan Wang †, Pengfei Chen †, Ping Wang ∗
∗ School of Software and Microelectronics, Peking University,

† IBM Research China

{xujingm, crlwangy, cpfchen}@cn.ibm.com, pwang@pku.edu.cn

Abstract—Cloud platforms and services usually provide an API
layer as decoupled, language agnostic interface for both front-end
client integration and back-end data and/or function access. The
availability and performance of the APIs have significant impact on
the quality of end user or client experiences due to its nature of
interaction endpoints. However, the extreme dynamics, complexity
and scale of the current cloud platforms challenge the applicability
of the existing performance monitoring and anomaly detection ap-
proaches from timeliness, accuracy, and scalability perspectives. This
paper presents a novel approach to API performance monitoring,
which recognizes performance problems by response time deviation
from a baseline response time / throughput model that are created
and continuously updated through online learning. In the post-
detection phase, an MIC (Maximal Information Criteria) based
correlation algorithm is used to group alerts into a higher level
and more informative hyper-alerts for end user notification. We
prototyped our solution for a large-scale commercial cloud platform,
evaluated it using three months’ API performance metrics data,
and compared with a couple of existing representative algorithms
and tools. The results show our approach is able to detect API
performance anomalies with a high F1-score. Compared to existing
Granger based approach, our approach has achieved nearly one
time increase in F1-score. Moreover, the alert reduction ratio of our
approach outperforms several state-of-the-art approaches.

Index Terms—Service; API; Anomaly detection; Alert reduction;

I. INTRODUCTION

The popular cloud platforms and services from Amazon[1],
IBM[2], Salesforces[3], etc. provide an API layer as decoupled,
language agnostic interface for both front-end client integration
and back-end function access. The availability and performance
of the APIs have significant impact on the quality of end user
or client experience due to its interaction endpoint nature. The
API gateway that manages API lifecycle is usually designed to
provide the lowest possible latency for API requests/responses
at large scale as well as monitor and throttle traffics that may
overwhelm the back-end services at rush hours. One of the
challenges for API gateway is to detect API performance anomaly
timely and accurately so as to proactively manage traffic in a
just-in-time fashion for the best user or client experience and
satisfaction. There have already been many studies in the area,
but the applicability of the existing algorithms and tools [4]
to API monitoring in highly dynamic, complex and large-scale
cloud environments faces challenges from timeliness, accuracy
and scalability perspectives.

The anomaly detection approaches most deployed in today’s
data center apply a threshold on the metrics being monitored.
Often these thresholds are applied to each individual measurement
separately, e.g. response time is more than 10 seconds or CPU
utilization is over 80%. Variants such as Multivariate Adaptive
Statistical Filtering (MASF)[5] additionally maintain a separate
threshold for data segmented and aggregated by time (e.g., hour

of day, day of week), thus cater for seasonal variation in workload,
e.g., heavier load during the week and lighter load over the
weekend by using different thresholds for different seasons.
However, there are some serious issues with these approaches.
First, selecting an optimal threshold is a pretty difficult task,
especially for people who don’t have much knowledge about the
system being monitored. They usually set it too high or too low
and have to keep adjusting it to the level they are comfortable
with. Second, static or periodic based dynamic thresholds cannot
adapt to loads that may change over time or intermittent bursts,
nor can they react to anomalous behavior that may not show up
as extremal large or small values in the data[6]. The last is about
one more fundamental issue that abnormal states are difficult to
describe with simple metrics and associated thresholds. Detecting
performance anomalies by predefined rules with combined use of
multiple metrics does not always work as expected. One system
that exhibits very good responsiveness to user requests as being
with more than 80% of server CPU utilization may instead have
a seriously high latency when server CPU utilization goes down
to 20%. Apdex[7] converts many measurements into one number
on a uniform scale of 0-to-1 (0 = no users satisfied, 1 = all users
satisfied). The resulting Apdex score is a numerical measure of
user satisfaction with the performance of enterprise applications.
However, Apdex is more suitable for being a high level reporting
mechanism that shows overall application trends via an index,
instead of being used as a performance indicator for real time
anomaly detection [8]. All of these issues lead to increased false
alarms and reduced accuracy with these approaches.

A number of prior anomaly detection algorithms, which take
either reactive approaches or a proactive approaches, use various
modeling techniques that mandate a certain level of understanding
of the system structure or behavior to build a model, or learning
from a potentially large amount of historical data to discover a
model. It can be a system performance model used to recognize
performance deviation[9-12], a metric correlation model used to
identify performance problems that break the correlation[13-17],
or a prediction model used to predict when the problem will
happen and on which machine[23-26]. However, the extreme
dynamics of today’s cloud platforms constantly break the estab-
lished models due to the following operations: (1) continuous
update or upgrade of infrastructure components; (2) dynamic
resource allocation and consolidation for workload optimization;
(3) horizontal or vertical resource scaling for elastic computing;
(4) continuous deployment or update of applications or services
with diverse workload characteristics; (5) co-existence of multiple
versions of applications or services for A/B testing. Keeping the
models current by manual updates or offline re-training incurs
potentially significant overhead especially when the monitoring
granularity is eventually refined to the individual API level as it

2017 IEEE 14th International Conference on Services Computing

2474-2473/17 $31.00 © 2017 IEEE

DOI 10.1109/SCC.2017.80

35

is usually tens of thousands of APIs to monitor and manage in a
large-scale cloud platform.

Based on the above discussions, an API performance mon-
itoring approach should have the following characteristics in
order to be applied to high dynamic and large-scale cloud en-
vironments: (1) threshold-less: no need to specify any threshold;
(2) adaptive: be able to continuously adapt itself to constantly
changing backend environments; (3) lightweight / efficient: both
in terms of the number of metrics required to run (the volume of
monitoring data continuously captured and used), and in terms of
their runtime complexity for executing the detection methods; (4)
independent: no needs to deploy sensors on the backend system
or infrastructure, and even no need to integrate with the existing
backend monitoring system; (5) high true positive rates and low
false positive rates.

In [27], the authors present a target-less and model-free ap-
proach for a self-optimizing application workload manager, which
takes application as a black box and use admission control to keep
the system running at the best operating point where the measure
Power, which is average throughput divided by average response
time, is maximum in a control cycle. It assumes that the best
performance can be described by the maximum value of Power
for any given throughput, and any meaningful deviations, e.g.
more than 10%, from the best can be regarded as congestions.
However, this is a very strong assumption given the complex and
dynamic relationship between the two metrics, which leads to
increased false alarms and reduced accuracy with the approach.

The approach we propose in the paper also takes the backend
platform and services as a black box because it brings two
benefits: (1) lightweight due to significantly reduced numbers
of metrics with a focus on response time and throughput; (2)
independent without having to integrate with back-end monitoring
system. But it takes a different way of detecting performance
anomalies based a couple of assumptions that are intuitive to
understand and being validated by many of our observations: (1)
in an stable environment, the response time distribution under
any specified throughput is Gaussian distribution which has been
verified with our real production data, where the values for both
mean and standard deviation are different from throughput to
throughput; (2) performance stability for a time can be measured
by the standard deviation of the response times over the time; (3)
performance anomalies can be detected on data points (response
time) falling outside of the normal range under the same through-
put while the performance stability keeps going down for some
time. As for (1), instead of mining an immense amount of histori-
cal data, we employ an online machine learning based approach to
create and incrementally update baseline models about response
time against throughput, which makes this approach much more
adaptive to the backend platform and services changes.

Getting to API level monitoring usually brings the benefits of
alerting accuracy because exact models and thresholds can be set
up for different APIs. On the other hand, it may exacerbate the
problem of alert storm because the same performance anomalies
may be alerted repeatedly by multiple related or dependent
APIs. In order to mitigate this issue, we employ an MIC based
correlation algorithm to automatically group raw alerts into higher
level, more informative hyper-alerts for end user notification.

We prototyped our solution for a large scale commercial cloud
platform and evaluated it using three months’ API performance
metrics data and labelled anomalies against a couple of existing
representative algorithms and tools. The results shows our so-

Fig. 1. The overview of our system

lution is able to detect API performance anomalies with lower
false positive/negative rates and longer lead time in such a highly
dynamic cloud environment.

The remaining of the paper is organized as follows. Section
II presents an overview of our approach. We will introduces
the design details and related algorithms in Section III. Section
IV presents the evaluation results of our prototype against a
real-world cloud platform. Section V presents the related works.
Section VI concludes the paper and presents the future work.

II. OVERVIEW

This section presents the high level components and process of
our solution. As you can see in the Figure 1, there are basically
five components involved in the process.

• Offline Training: it is used to train the baseline response
time / throughput models against historical data sets if any.
The trained models can be used as input to warm start the
Anomaly Detection component. However, this component is
optional because Anomaly Detection component can be cold
started without any models as input.

• Metric Streaming: it is used to capture and collect per-
formance metrics, i.e. API response time for each request,
and create a metric stream so that data can be processed
sequentially and incrementally.

• Anomaly Detection: it is used to detect performance
anomaly against the baseline models. The component can be
either warm or cold started. It directly passes on the metric
stream to the Online Training component for online model
training if the baseline models are not available. Once an
anomaly is detected, an alert will be fired with the anomaly
information.

• Online Training: it is used to train the baseline models if
they are not available, or tune the models with the latest
received metrics if no performance anomaly is detected.

• Alert Reduction: it is used to group the raw alerts into
reduced number of higher level, more informative hyper
alerts for end user notification.

III. API PERFORMANCE ANOMALY DETECTION

In this section, we present the design and algorithms of our
performance anomaly detection approach in details.

A. Assumption
As described in Section I, the approach takes the backend

platform and services as a pure black box and doesn’t assume
any knowledge about the dynamic resource consumption of the
backend. It continuously captures the only performance metric -
response times of APIs and uses it together with other derived
metrics in the anomaly detection algorithm. Instead of simply

36

deriving baselines and thresholds based on an assumed metric
distribution model [5][29], the approach takes into account the
two observations that have being validated by many of our
practices: (1) the response time distribution at a time is ma-
jorly determined by the throughput of the time. The Gaussian
distribution is the assumed underlying probability model, but the
mean and standard deviation for the distribution are different from
throughput to throughput. The models that reflect the relationship
between response time (for both mean and standard deviation)
and throughput are created and continuously updated by on-line
machine learning for being adaptive to backend dynamics. (2) the
data points falling outside the normal range of the distribution are
recognized as anomalies only if the performance stability keeps
going down for some time. The performance stability for a time
is measured by the standard deviation of response times over the
time. The smaller the value is, the more stable the performance
is. When the performance stability goes up, the execution of the
API is entering into a more steady state, and vice versa. Firing
anomalies only if the execution of APIs is leaving further away
from the steady states is able to ameliorate false alerting against
the bursts of response times.

B. Metrics and Baseline Models
Table 1 shows all the metrics used in the anomaly detection

algorithm.
BLResTθ1(Thr) and BLσθ2(Thr) are the models between

response time (for both AvgResT and ResTσ) and throughput,
which are used as the baseline for identifying response time
deviations as potential anomalies. The baseline is created and
continuously updated with the latest metric data through on-line
machine learning. The features chosen for polynomial regression
can be expressed as X = (Thr1, Thr2, Thr3, · · ·)T .

Our experiment shows Thr7 is the upper bound of the
maximum order feature in order to balance the high bias and
overfitting of the machine learning algorithm. BLResTθ1(Thr)
and BLσθ2(Thr) can be computed by the following hypothesis
functions:

BLResTθ1(Thr) = θ1TX,BLσθ2(Thr) = θ2TX

In order to bootstrap the learning, the initial hypothesis func-
tions are prepared for two different scenarios: (1) if sufficient
amount of historic data is available, they can be used to run a
regression as the initial hypothesis functions; (2) if no historic
data is available, θ1 and θ2 can be set to:

θ1T = (θ10, 0, 0, · · · , 0), θ2T = (θ20, 0, 0, · · · , 0)
θ10 is the estimated response time and θ20 is the estimated

standard deviation of the response time. The estimation accuracy
doesn’t matter because θ1 and θ2 will be eventually converged
through online learning with streaming metric data.

C. Anomaly Detection Algorithm
The algorithm to detect API performance anomaly is shown in

Algorithm 1. The algorithm recognizes the potential anomalies
by response time deviation from the baseline models:

AvgResT ≥ BLResTθ1(Thr) + 3 ∗BLσθ2(Thr).

Once the potential anomalies are identified, the algorithm
decides whether any alert needs to be fired by examining
ResTσ(n)recent to see if the performance stability keeps going

down for some time. If no alerts is eventually fired and the
performance stability keeps going up, the baseline model needs to
be updated with the latest metrics by an on line learning algorithm
which has O(n) time complexity, and n is the number of the
APIs. In this algorithm, there are some pre-set parameters such as
learning rate and stable factor. These parameters are set by trying
and comparing among some experiment values on the historic
data to maximum the performance of the algorithm.

Algorithm 1 API Anomaly Detection

Input: All request’s ResT in current time window, TWCount,
ResTσ(n)recent, BLResTθ1(Thr), BLσθ2(Thr), and

learning rate α.

Output: raw alert, updated ResTσ(n)recent, updated

BLResTθ1(Thr), BLσθ2(Thr).
1: Let AvgResT = 0, Thr = 0, sum = 0, stable factor =

0.8
2: for all request in TW do
3: compute AvgResT
4: count Thr
5: compute ResTσ
6: end for
7: raw alert = false, unstable count = 0
8: if AvgResT −BLResTθ1(Thr) > 3 ∗BLσθ2(Thr) then
9: for i = 1 until (TWCount− 1) do

10: if ResTσ(i+ 1) > ResTσ(i) then
11: unstable count← unstable count+ 1
12: end if
13: i← i+ 1
14: end for
15: unstable percentile = unstable count/(TWCount −

1)
16: if unstable percentile ≥ stable factor then
17: raw alert = true
18: end if
19: else if (raw alert = false) and (1 −

unstable percentile) ≥ stable factor then
20: online learning by a new sample point (Thr,AvgResT)

and (Thr,ResTσ), update the regression parameters θ1 in

BLResTθ1(Thr), and θ2 in BLσθ2(Thr) in the following

way:

21: θ1j ← θ1j − α ∗ (BLResTθ1(Thr)−AvgResT) ∗ Thr
22: θ2j ← θ2j − α ∗ (BLσθ2(Thr)−RestTσ) ∗ Thr
23: end if
24: remove ResTσ(1)recent value

25: change ResTσ(n − 1)recent with ResTσ(n)recent, where

n = 2, 3, 4, · · · , TWCount+ 1
26: ResTσ(TWCount)recent ← ResTσ

IV. ALERT REDUCTION

In the above section, we have demonstrated the details of
anomaly detection procedure on API metrics. However, in real-
world large-scale commercial production systems, there can be
tens of thousands of APIs. Hundreds of alerts are generated by
the monitor system simultaneously especially when some back-
end services (e.g, Database services) are broken. In this section,
we will demonstrate a post-mortem approach to correlate and
reduce alerts.

37

TABLE I
METRICS NOTATION

Notation Definition

TW Time window length for collecting and computing the latest performance metrics
TWCount Number of the time windows TW for accumulating and computing the recent metrics

ResT Response time of a specific API request
AvgResT Average response time of a specific API request within a time window TW

Thr Throughput of a specific API request with in a time window TW
ResTσ(n) The standard deviation of response time of an API in a time window, which reflects the performance stability of the API

ResTσ(n)recent The list of the standard deviation of response time in the past n time windows, the maximum value of n is TWCount
BLResTθ1(Thr) The model for the relationship between AvgResT and Thr, which is a polynomial regression function with parameter vector θ1
BLσθ2(Thr) The model for the relationship between ResTσ and Thr, which is a polynomial regression function with parameter vector θ2

Fig. 2. The framework of alert reduction

The rationale behind the alert reduction is that some alerts are
highly correlated as there are logically dependent relationships
amongst these services. For example, a front-end presentation API
depends on the business logic processing API hosted in the middle
tier. The correlated alerts can be combined as a single alert which
is called “Hyper alert” in this paper. However, solely from the API
level, we cannot directly know the logical dependencies amongst
these APIs. A common practice is to discover these dependencies
by correlating the response time or throughput of APIs. The merit
of this approach is that the dependent relationships amongst APIs
can be inferred in a black-box way. Based on this rationale, we
propose our alert reduction approach shown in Figure 2. Our
approach mainly contains two parts, namely an offline processing
part and an online processing part. In the offline part, we correlate
different APIs by checking the correlation relationship of response
times of these APIs. The output is an association graph composed
by APIs. The online part mainly consists of two modules, namely
alert batching and alert reduction. The alert batching module is in
charge of separating the arriving alerts into batches. Each batch
contains a bunch of alerts. The batch of alerts are then fed into
alert reduction module to group these alerts into “Hyper alerts”.
The association graph generated in the offline part is an input
in the alert grouping procedure. With the “Hyper alerts”, system
operators only need to investigate very few alerts to find the root
causes. Moreover, it can help the operators understand the alert
propagation path.

A. Alert batching

When conducting alert reduction, we should know in advance
which alerts should be reduced. Alert batching aims to resolve
this problem. Commonly, if two API alerts have direct “cause-
effect” relationship, the delay between these two alerts should
stay in a short-time window which is denoted as ω and set as
2 minutes in this paper 1. If no new alerts arrive during such
a time, the previous alerts are packed in a batch and fed into

1ω may need to be adjusted in different systems.

the alert reduction module. For example, APIa1 (t1), APIa2 (t2),
APIa3 (t3), APIa1 (t4), and APIa4 (t5) represent a series of alerts
on different APIs and sequentially arrive at t1, t2, t3, t4, and t5
respectively. We have t2− t1 < ω, t3− t2 < ω, t4− t3 < ω, and
t5 − t4 > ω. Hence, APIa1 , APIa2 , APIa3 , APIa1 form a batch.
It is worth noting that there may be multiple API alerts in the
same time slot.

B. Alert correlation

As for alert correlation, there are multiple approaches pro-
posed from different perspectives. One intuitive approach is to
correlate different alerts via scope. A scope denotes the location
or component that a alert comes from. The scope information
is always one part of the alert. For instance, from the alert
name “node1.alert.cpu high”, we know this alert is generated in
node1. Thus, the alerts with the same scope can be correlated
together. The scope-based approach is commonly used in alert
management tools (e.g., IBM Netcool). However, this approach
cannot correlate alerts across scopes. Besides, statistical corre-
lation based approaches are also commonly adopted. In prior
arts [30], Pearson correlation coefficient is the first solution.
While this statistical approach cannot discover the non-linear
or non-functional relationships amongst these alerts. From the
temporal perspective, Granger causality [31] is an efficient way to
discover the causality between any two alerts. However, Granger
causality assumes the lag between two alerts are stable [32]. This
assumption does not always hold in real-world API ecosystems
due to high dynamics.

To capture the correlation between a pair of API metrics,
a state-of-the-art method named Maximal Information Criteria
(MIC) [33] is introduced. MIC has a great power to capture
the complex correlation relationships. To keep the paper self-
contained, we give several definitions and preliminaries about
MIC first.

Definition 1. Resolution Grid: Given a finite set D of ordered
pairs, the x-values of D is partitioned into x bins and the y-values
of D is partitioned into y bins, allowing empty bins. Such a pair
of partitions an x− by − y resolution grid.

Given a grid G, let D|G be the distribution induced by the
points in D on the cells of G. For a fixed D, different grids G
result in different distributions D|G.

Definition 2. Mutual Information: The mutual information be-
tween two random variables X and Y is defined as:

I(X;Y) =
∑

y∈Y

∑

x∈X
p(x, y)log(

p(x, y)

p(x)p(y)
)

38

where p(x, y) is the joint probability distribution function, p(x)
and p(y) are the marginal probability distribution function.

Definition 3. Highest Mutual Information: For a finite set D ⊂
R2 and positive integers x, y, define

I∗(D,x, y) = maxI(D|G)
where the maximum is over all grids G with x columns and y
rows, and I(D|G) denotes the mutual information of D|G.

Definition 4. Characteristic Matrix: The characteristic matrix
M(D) of a set D of two-variable data is an infinite matrix with
entries:

M(D)x,y =
I∗(D,x, y)

log min{x, y}
Definition 5. Maximal information coefficient (MIC):The Max-
imal Information Coefficient (MIC) of a set D of two-variable
data with sample size n and grid size less than B(n) is given by:

MIC(D) = maxxy<B(n){M(D)x,y}
where ω(1) < B(n) ≤ O(n1−ε) for some 0 < ε < 1

Just as pointed in [33], we also use B(n) = n0.6. The detailed
description of the definitions and the boundary of some variables
could be found in the supporting online material of [33]. The
procedure to calculate MIC includes the following steps:

• step 1: Find the approximative highest mutual information
for data D, namely I∗(D,x, y). The goal of this step is to
find a optimal x−axis partition given fixed y−axis partition
using dynamic programming. Refer to the supporting online
material of [33] for details.

• step 2: Construct the characteristic matrix using the obtained
I∗(D,x, y) according to the definition.

• step 3: Calculate the MIC for D by looking for the maximum
value in the characteristic matrix.

It is always hard to give the complexity of MIC algorithm
precisely. According to the supporting online material of [33], the
time complexity of MIC could be roughly defined as O(k̂2xy),
where is a preset parameter (i.e., a constant) and x and y are
the partition on data set D mentioned in the description of MIC.
Therefore, even for a large data set, it is still affordable for MIC.

For each API pair (X,Y), their association coefficient is
represented by the MIC(X,Y) score which falls in the region
[0, 1]. In this paper, a simple but exhaustive pair-wise method
is adopted to calculate all the associations. Suppose M metrics
are collected, M(M − 1)/2 association pairs should be obtained.
However, some association scores are not significant enough to
determine the existence of associative relationship. In this paper,
we provide a threshold ε = 0.05 to filter the associative pairs.
Once MIC(X,Y) > ε, the associative relationship exists. In
previous work [30], Pearson correlation coefficient is commonly
used to judge the correlation between two metrics. To compare
the effectiveness of Pearson correlation coefficient and MIC
in discovering the associative relationships, we select 50 APIs
and determine the associative relationships amongst the response
times of these APIs with these two methods. The results are
shown in Figure 3 and Figure 4 respectively. The number on
X-axis and Y-axis denotes the ID of each API and the yellow dot
points represent associative relationships between any two APIs.
From these two figures, we can observe clearly that the our MIC-
based approach can discover more associative relationships than

0 10 20 30 40 50

0

10

20

30

40

50 0

0.2

0.4

0.6

0.8

1

Fig. 3. Result obtained by MIC

0 10 20 30 40 50

0

10

20

30

40

50 0

0.2

0.4

0.6

0.8

1

Fig. 4. Result obtained by Pearson

Pearson correlation coefficients-based approach. After investigat-
ing the associative relationships which are missed by Pearson
correlation coefficients, we find that these relationships do not
show direct linear functional relations. But in reality, these APIs
indeed have dependent relations. The excellence of MIC-based
approach can help increase the effectiveness of alert reduction
which will be seen in the experimental section.

C. Alert reduction

When a new batch of alerts arrive, the art reduction mod-
ule will separate these alerts into different groups. Every alert
in each group is correlated with one or multiple other al-
ters. In the other words, the alerts in each group are con-
nected in the alert association graph. Moreover, these grouped
alerts which are named as “hyper alert” can provide contex-
tual information to help operators understand why and how
these alerts are generated. To group the given alerts to-
gether, we need to traverse the alert association graph to find
out the connected subgraph. Given a batch of alerts, A =
(APIa1 (t1), APIa2 (t1), APIa2 (t2), APIa3 (t3), · · · , APIak (ti)), we
first combine the same kind of alerts which are generated at
different times into one alert. After the combination, we get a new
batch of alerts, namely Ā = (APIa1 , APIa2 , · · · , APIak). Then we
randomly select one kind of alert from the given alters such as
APIa1 . From the alert association graph, we find out the maximal
subgraph that contains the selected alert with a Depth-First-Search
(DFS) traversal approach. Meantime, every alert in this subgraph
should be contained in Ā. This subgraph is recognized as a hyper
alert. Then we exclude the alerts in the subgraph from Ā. From
the remaining alerts, we randomly select another alert and repeat
the above steps until there are no remaining alerts. Finally, we
obtain all the hyper alerts for this batch of alerts. To clarify
the procedure of alert reduction, the pseudocode is shown in
Algorithm 2. The time complexity of this algorithm is dominated
by the DFS traversal procedure. It can be calculated as O(n2)
where n denotes the number of edges in the association graph.

V. EXPERIMENT

In this section, we perform comprehensive experimental evalu-
ations for the proposed anomaly detection and reduction methods.
We evaluate the effectiveness and performance of our algorithm
on real commercial cloud platform with metrics, Precision, Recall,
F1-score, and alert reduction ratio. The alert reduction ratio
denotes the ratio of grouped hyper alerts in the raw alerts. F1-
score is defined as:

F1− score =
2 ∗Recall ∗ Precision

Recall + Precision

39

Algorithm 2 Alert reduction algorithm

Input: A = (APIa1 (t1), APIa2 (t1), · · · , APIak (ti)) is a batch of

alerts.

Output: A set of hyper alerts, hyper alert
1: Ā ← Combine(A) // Combine the the same kind of alerts

at different times.

2: While Ā != NULL

3: r alert ← RandomSelect(Ā); // Randomly select one

alert.

4: hyper alert[i] ← FindSubgraph(r alert) // Find the

maximal connected subgraph containing r alert.
5: Ā = Ā \ hyper alert[i]

A. Experimental setting

We use a real large-scale commercial public cloud as our
testbed. This cloud provides both of Infrastructure as a service
(IaaS) and platform as a service (PaaS) through a single set of
backend APIs. It is deployed and runs across multiple data centers
all over the world. In each data center, it runs on thousands of
machines. There are hundreds of micro-services cooperating with
each other to provide services to end users. To keep this huge
platform running continuously and reliably, there are a dedicated
SRE (Site Reliability Engineer) team intensively watching and
fixing anomalies. There are two types of APIs in this cloud,
namely platform APIs and user application APIs, which are the
APIs to control and manage the platform itself and the APIs
provided by the application running on this cloud respectively.
In a single data center, the number of the first type of APIs is
about 3000+ and number of the second type of APIs is about
8000+. Due to resource share and the frequent version updates,
bug fix, auto-scale, auto-recovery operations, these APIs are all
running in a highly dynamic environment. Actually, to monitor
these APIs, there are about 30 million metric points collected
each hour, so with this metrics ocean, how to help SRE effectively
monitor 11000+ APIs’ performance in the same time and generate
meaningful alters is a big challenge.

In our experiment, we collect metric data for three months,
and prove the scalability of our method by handling all 11000+
APIs’ monitoring and performance anomaly detection using a
small Spark streaming cluster with 64 CPU cores and 128GB
memory as our computing resources and a Kafka cluster with 16
CPU cores and 32GB memory as the metric pipeline cache. To
validate the effectiveness of algorithm, we need known anomalies
for these APIs, since it is not practical for cloud SRE to label all
11000+ APIs’ performance anomalies manually. Therefore, we
choose several APIs which SREs are most familiar with and are
most important to cloud end user, namely APIs of platform Web
Console and Command Line Tool. To validate the API anomaly
grouping method, we considering all the 3000+ platform related
APIs since the grouping result is easy for SRE to validate.

B. Anomaly detection result

Anomaly detection. Figure 5 to Figure 8 show an example of
detected anomaly and baseline update, these figures are plotted
based on a selected segment of real data for a specific API. Figure
5 shows the variation of BLResTθ1(Thr) which is a polynomial
regression function to describe the baseline of response time under
a throughput. This curve may change over time by an on line
learning algorithm. The red curve is the baseline at time ti and

the blue curve is the updated baseline at time tk. Figure 6 shows
the BLσθ2(Thr) which describes the standard deviation of the
baseline of response time under a throughput. The red curve is
the baseline at time ti and the blue curve is the updated baseline
at time tk. Figure 8 shows the ResTσ(n)recent, which is the
standard deviation of response time in each time window. The
red curves in Figure 5, Figure 6 and Figure 7 together show an
anomaly detection scenario, namely the red start point in Figure
5 denotes the response time is above the region of the response
time baseline under the same throughput. Here the value of σ is
determined by the point under the same throughput in the red line
of Figure 6. But this is not a sufficient condition, we still need to
examine the ResTσ(n)recent. In Figure 7, we can see before ti,
there are more than 30 time windows within which the response
time’s standard deviation keeps going up meaning that the API’s
performance becomes more and more unstable. Later, an alert is
fired.

Baseline update. As described in Section III, the baseline
needs to be updated if the API runs into a new stable status. The
Blue curves in Figure 5, Figure 6 and Figure 8 together show a
baseline update scenario, namely the blue start point in Figure 5
denotes that at current time tk, the response time is smaller than
the response time baseline under the same throughput. We need
to examine the ResTσ(n)recent to see if the baseline needs to be
updated. In Figure 8, we can see that before tk, there are more
than 30 time windows within which the response time’s standard
deviation keep going down, this means the API’s performance
becomes more and more stable, so the baseline in Figure 5 and
Figure 6 will be updated. Now the blue star point in Figure 6 will
be used to do online learning to update the regression parameters,
and the new baseline is shown as blue cure in Figure 6. Actually,
after talking with SRE, we confirmed these updates were caused
by the two instances that were added into the back-end cluster
for addressing a throughput related issue.

Evaluation for anomaly detection. The proposed anomaly
detection method is compared with other three state-of-the-art
methods, namely static threshold, dynamic threshold with periodic
workload, and Granger causality based prediction methods. The
number of the known performance anomalies is 261 in total
in three months. All these anomalies are significant anomalies
which impact end users. In the public cloud monitoring system
which is used in this validation, the anomaly reported by our
method discussed in this paper is defined as “raw alert”. Based
on these raw alert, SRE will define some so called “situations”
o report real anomalies. The situation is usually defined as a
complex event evaluation expression, such as “there are more
than 30 raw alerts are fired again an API within 10 minutes
and the reported recovery number is smaller than 15% out of
the raw alerts”. So in order to be fair in comparing among
different methods, we use the same situation definition for all
the above methods. For the static threshold based method, we
set 30 seconds which is the real threshold in production as the
threshold for these APIs. For the dynamic threshold with periodic
workload, we assume the workload period is weekly and the
time range to compute the average value of response time is half
an hour. For the granger causality based prediction, we use 2
weeks’ data before the evaluation to train the model. For the
method proposed in this paper, we set the TWCount to 60
which can reflect the API performance during recent 10 minutes.
And we set on line learning rate α = 0.01. The validation
result is shown in Table 2 and Figure 9. Table 2 shows the

40

0 100 200 300 400 500
Throughput No. /second

0

1

2

3

4

B
L

R
e
s
T
θ

1

 s

e
c
o

n
d

3ResTσ region

Abnormal point

Update point

t = t
1 t = t

k

Fig. 5. The fitting curve between API throughput and response time

number of true positive, false positive, false negative and the
detection lead time of different methods. From the results, we
can see that our method can detect most (249) of the labelled
anomalies (261), and report the second small number of false alert
(35). Dynamic threshold report the 182 anomalies out of 261 in
total, but sends out huge number (1210) of false alerts. This is
caused by two reasons. One is the periodic workload assumption
may not hold under this dynamic environment. The other one is
the API itself and its running environment may change during
three months. The Granger causality based method reports the
majority of the labelled anomalies but fires many false alerts.
This could be caused by the statistic model changes during three
months. Actually, there are 2 major version updates of this API
during this three months. Therefore, each time after the updates,
this method’s performance goes down significantly. The static
threshold method achieves a very small number of false alerts
(17) because 30 seconds is a very conservative value for our
target APIs. But this conservative value can also cause it missing
some anomalies(58). Another reason that the static threshold has
the second best result is that the SREs are very familiar with
this API’s characteristics and set a good threshold based on their
experience. But for all 11000+ APIs, it is impossible for SREs to
set proper threshold one by one. For the lead time comparison,
we use the time which static threshold report the anomaly as
the base which is also the time when the real production system
receives the anomaly. We can see that our method is 11.6 minutes
ahead, the static threshold method is 0 minute, the Granger
causality method is 5.9 minutes ahead, and dynamic threshold
is 2.2 minutes ahead. This could be explained by the following
reasons. Our method detects “trends” of the performance and
ires anomaly before the response time exceeds 20 seconds. The
Granger causality detects the changes of the causality relationship
between response time and throughput. Therefore, it could find
anomalies before the API’s performance goes too bad. For the
dynamic threshold based method, the long response time value
needs to be accumulated to bigger than the historical average
value of the same time slot. However, it also does not need to
wait to exceed 30 seconds. Overall, our method has the best lead
time and this will give SREs important chances to take more
proactive actions to prevent more serious incidents.

The Figure 9 shows the precision, recall and F1-score for each
compared method. The result shows that the proposed method
holds the second place in precision, the first place in recall and
F1-score. We can conclude that our methods achieves the best
results. The static threshold based approach is not as good as
ours, but it is a feasible option because it can be elaborately
adjusted by experienced SREs. The other two approaches have

0 100 200 300 400 500

Throughput

0.1

0.2

0.3

0.4

0.5

B
Lσ

θ
2

Update point

t=t
i

t=t
k

Fig. 6. The fitting curve between API throughput and σ of response time

n
1

n
11

n
21

n
31

n
41

n
51

n
61

n
71

n
81

n
91

n
101

ID of time window

0

0.2

0.4

0.6

0.8

Re
sT

σ

t
i

Fig. 7. The increasing scenario of σ along with time

TABLE II
TP, FP, FN AND LEAD TIME COMPARISON OF DIFFERENT APPROACHES

Measurement Proposed method Static Dynamic Granger

TP 249 203 182 231
FP 35 17 1210 526
FN 12 58 89 30

LeadT ime -11.6m 0m -2.2m -5.9m

an obvious gap and still need a lot of tuning and customization
for achieving the same level of results.

C. Alert reduction
The above session has shown that our anomaly detection

method can detect system anomaly accurately. However, some
of alerts can be grouped together due to high correlations. This
section shows the effectiveness of our alert reduction approach.
In the evaluation experiments of anomaly detection, we adopt
261 confirmed significant anomalies to validate the effectiveness.
However, for alert reduction, these alerts are not enough. There-
fore, we tune the threshold of our anomaly detection approach
to generate more alerts. In this experiment, we generate more
than 3600 alerts with one month’s API metric data. Moreover,
these alerts are put in 39 consecutive batches. Figure 10 shows
the numbers of raw alerts and the grouped hyper alerts. From this
figure, we can observe that the raw alerts are reduced significantly.
In batch 25, the number of raw alerts is reduced from 110 to 19.
For the system operators, it is not necessary to analyze the raw
alerts one by one. They only need to focus on the grouped hyper

m
1

m
11

m
21

m
31

m
41

m
51

m
61

m
71

m
81

m
91

m
101

ID of time window

0

0.2

0.4

0.6

0.8

Re
sT

σ

t
k

Fig. 8. The decreasing scenario of σ along with time

41

Precision Recall F1-score
0

0.2

0.4

0.6

0.8

1
Our method Fixed threshold Dynamic threshold Granger

Fig. 9. The anomaly detection results of different approaches.

0 5 10 15 20 25 30 35 40

Batch ID

0

20

40

60

80

100

120

N
o

. o
f

A
le

rt
s

Raw alert Hyper alert

Fig. 10. The result of alert reduction

alerts in order to investigate system problems. To further validate
the effectiveness of our alert reduction approach, we compare the
alert reduction result of our approach with Pearson correlation
coefficient and the Granger causality based approaches. Figure
11 shows the max, min, and average alert reduction ratios of
different approaches. This figure demonstrates that our approach
outperforms the other two approaches no matter in max, min,
or average reduction ratio. The advantage of our approach is
attributed to the powerful association discovery capability of MIC.
MIC can discover more associative relations than the other two
approaches. Therefore, the alert reduction ratio is high.

VI. RELATED WORK

As discussed in the introduction part, the most relevant work
is [27]. We were inspired by its black box, target-less and model-
free based approach, but its assumption of having the single, best
operating point manifested by the maximum value of the measure
Power is too strong. Keeping the system running at the best
operating point by request admission seems feasible for workload
management, but deviations from the best may not necessarily
indicate any performance anomalies. Instead of purely basing
on heuristic algorithms, our approach recognizes performance
anomaly by deviations from a baseline model that is online learnt
and continually updated so as to be more adaptive to workload
and infrastructure changes.

Max Min Average
0

2

4

6

8

10

12

R
ed

u
ct

io
n

 r
at

io

MIC Pearson Granger10.6

5.3

6.6

2.7

1.4
2.3

6.4

3.5

4.5

Fig. 11. The comparison of different alert reduction pproaches.

There are model based approaches represented by [25] and
[26] that are designed to inherently accommodate to changes.
ALERT[25] is an adaptive runtime anomaly prediction system
that can raise advance alert before an anomaly happens. During
runtime, ALERT is able to dynamically switch between different
prediction models based on context evolving patterns to achieve
high quality anomaly prediction for dynamic systems. The explicit
mapping from prediction models to different execution contexts
makes the models context aware and avoids repetitive model
training. However, it depends on an anomaly detection system
to provide normal and anomaly state labels for different mea-
surement samples. Cherkasova et al. [26] proposes an integrated
framework of measurement and system modeling techniques
to detect application performance changes and differentiating
performance anomalies and workload changes. Therefore, it is
able to avoid false alarms raised by the algorithm due to workload
changes. Both of them claims to be black-box based approach,
but they need to deploy monitoring sensors on all nodes in
the hosting infrastructure, which continuously monitor a set of
resource consumption or performance metrics for each running
node and application components. This makes them less inde-
pendent, adaptive and efficient for large-scale, highly dynamic
cloud platforms and services.

Instead of detecting violations on metric values, there are
some existing work [18-22] that use information and probability
theories to detect anomalies in metric distribution. Among others,
EbAT[18-20] aims to address the scalability needs of Utility
Clouds characterized by exa-scale and dynamism, providing an
online lightweight technique based on entropy analysis that can
operate in a black-box manner across multiple horizontal and
vertical metrics. Instead of aggregating multiple metrics into a
random variable and tracking their distribution pattern at runtime,
our approach establishes response time VS throughput model and
continuously update it through online learning. The approach is
as lightweight, adaptive and efficient as EbAT for large scale,
highly dynamic cloud platforms and services.

New APM product or service vendors such as New Relic [28]
and AppDynamics[29] deliver capabilities beyond the traditional
fixed threshold based monitoring such as Apdex and dynamic
baseline for seasonal workload. The capability offered by our
approach can be integrated into these products for improved
detection accuracy and longer lead time.

VII. CONCLUSION AND FUTURE WORK

This paper presents a threshold-less approach for API perfor-
mance monitoring, which recognizes performance problems by
response time deviation from baseline response time - throughput
models that are created and continuously updated through online
learning. It is designed to be threshold-less, adaptive, lightweight,
and independent in order to cate for the requirements of a
large-scale, highly dynamic cloud environment. The experiment
results preliminarily validate the efficiency and effectiveness of
the approach with significantly lowered false positive and false
negative. Moreover, with the effective alert reduction algorithm,
we can reduce the number of raw alerts significantly, which
reduces the SRE’s time to resolve problems. Although the results
also show longer lead time, it still needs to be compared with
prediction model based approaches and the rationale behind also
needs to be elaborated. In addition, how to provide more accurate
information in anomaly alerts for facilitating further root cause
investigation is also an issue to address in the future.

42

VIII. ACKNOWLEDGMENT

The authors would like to thank all the anonymous reviewers
and the people who have given comments on this paper. Ping
Wang is the corresponding author.

REFERENCES

[1] Amazon Web Service, https://aws.amazon.com/ [Accessed on Jan 12, 2017].
[2] IBM Bluemix Platform, https://www.ibm.com/cloud-computing/bluemix/ [Ac-

cessed on Jan 12, 2017].
[3] Salesforce, https://www.salesforce.com/ [Accessed on Jan 12, 2017].
[4] C. Wang, S. P. Kavulya, J. Tan, L. Hu and et al, “Performance Troubleshooting

in Data Centers: An Annotated Bibliography”, ACM SIGOPS Operating
Systems Review, vol. 47, no. 3, 2013, pp. 50-62.

[5] J. P. Buzen and A. W. Shum, “MASF?Multivariate Adaptive Statistical
Filtering”, Computer Measurement Group (CMG), 1995, pp. 1-10.

[6] C. Wang, K. Viswanathan, L. Choudur, V. Tal-war and et al, “Statistical
Techniques for Online Anomaly Detection in Data Centers”, Proceedings
of IFIP/IEEE International Symposium on Integrated Network Management
(IM), pp. 385-392, 2011.

[7] Apdex, http://www.apdex.org/ [Accessed on Jan 12, 2017].
[8] Jim Hirschauer, Apdex is Fatally Flawed,

https://blog.appdynamics.com/product/apdex-is-fatally-flawed/ [Accessed
on Jan 12, 2017].

[9] E. Kiciman and A. Fox, “Detecting Application-Level Failures in Component-
based Internet Services”, IEEE Trans. on Neural Networks: Special Issue
on Adaptive Learning Systems in Communication Networks, 16(5):1027-41,
2005.

[10] W. Xu, L. Huang, A. Fox, D. Patterson and M. I. Jordan, “Detecting
Large-Scale System Problems by Mining Console Logs” Proceedings of
International Conference on Machine Learning, 2010, pp. 37-46.

[11] P. Hoogenboom and J. Lepreau, “Computer System Performance Problem
Detection Using Time Series Models”, Proceedings of USENIX Annual
Technical Conference (ATC),1993, pp. 15-32.

[12] C. Stewart and K. Shen, “Performance Modeling and System Management
for Multi-component Online Services”, Proceedings of USENIX Symposium
on Networked Systems Design and Implementation(NSDI), 2005, pp.71-84.

[13] G. Jiang, H. Chen and K. Yoshihira, “Discovering Likely Invariants of Dis-
tributed Transaction Systems for Autonomic System Management”, Cluster
Computing (Springer), 9(4):385-399, 2006.

[14] H. Kang, H. Chen and G. Jiang, “Peer-Watch: a Fault Detection and
Diagnosis Tool for Virtualized Consolidation Systems”, Proceedings of
ACM International Conference on Automatic Computing (ICAC), 2010, pp.
119-128.

[15] K. Shen, C. Stewart, C. Li and X. Li, “Reference-Driven Performance
Anomaly Identification”, Proceedings of ACM Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), 2009, pp. 85-96.

[16] M. Jiang, M A. Munawar, T. Reidemeister and P. A. Ward, “System
Monitoring with Metric-Correlation Models: Problems and Solutions”, Pro-
ceedings of ACM International Conference on Automatic Computing (ICAC),
2009, pp. 13-22.

[17] J. Lou, Q. Fu, S. Yang, Y. Xu and J. Li, “Mining Invariants from Console
Logs for System Problem Detection”, Proceedings of USENIX Annual
Technical Conference (ATC), 2010, pp. 231-244.

[18] C. Wang, V. Talwar, K. Schwan and P. Ranganathan, “Online Detection
of Utility Cloud Anomalies Using Metric Distributions”, Proceedings of
IEEE/IFIP Network Operations and Management Symposium (NOMS), 2010,
pp. 96-103.

[19] C. Wang, K. Viswanathan, L. Choudur, V. Tal-war and et al, “Statistical
Techniques for Online Anomaly Detection in Data Centers”, Proceedings
of IFIP/IEEE International Symposium on Integrated Network Management
(IM), 2011, pp. 385-392.

[20] C. Wang, “EbAT: online methods for detecting utility cloud anomalies”,
Proceedings of the 6th Middleware Doctoral Symposium (MDS 2009) in
conjunction with Middleware, vol.4., 2009.

[21] M. Jiang, M. A. Munawar, T. Reidemeis-ter and P. A. Ward, “Automatic
Fault Detection and Diagnosis in Complex Software Systems by Information-
Theoretic Monitoring”, Proceedings of IEEE Conference on Dependable
Systems and Networks(DSN), 2009, pp. 285-294.

[22] K. Ozonat, “An Information-Theoretic Approach to Detecting Performance
Anomalies and Changes for Large-Scale Distributed Web Services”, Pro-
ceedings of IEEE Conference on Dependable Systems and Networks (DSN),
2008, pp. 522-531.

[23] Y. Tan and X. Gu, “On Predictability of System Anomalies in Real World”,
Proceedings of IEEE International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS), 2010,
pp. 133-140.

[24] X. Gu and H. Wang, “Online Anomaly Prediction for Robust Cluster Sys-
tems”, Proceedings of IEEE International Conference on Data Engineering
(ICDE), 2009, pp. 1000-1011.

[25] Y. Tan, X. Gu and H. Wang, “Adaptive System Anomaly Prediction for
Large-Scale Hosting Infrastructures”, Proceedings of ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing(PODC), 2010, pp. 173-
182.

[26] L. Cherkasova, K. M. Ozonat, N. Mi, J. Symons and E. Smirni, “Anomaly?
Application Change? or Workload Change? Towards Automated Detection
of Application Performance Anomaly and Change”, Proceedings of IEEE
Conference on Dependable Systems and Networks (DSN), 2008, pp. 452-461.

[27] H. Wu, A. N. Tantawi and T. Yu, “A Self-Optimizing Workload Management
Solution for Cloud Applications”, Proceedings of IEEE 20th International
Conference on Web Services, 2013, pp. 483-490.

[28] New Relic, https://newrelic.com/ [Accessed on Jan 12, 2017].
[29] AppDynamics, https://www.appdynamics.com/ [Accessed on Jan 12, 2017].
[30] A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, et al, “Towards automated

performance diagnosis in a large IPTV network”, ACM SIGCOMM 2009
Conference on Data Communication, Vol.39, pp.231-242, 2009.

[31] L. Sommerlade, M. Thiel, B. Platt, et al, “Inference of Granger causal
time-dependent influences in noisy multivariate time series”, Journal of
Neuroscience Methods, 203(1):173-185, 2012.

[32] Y. Yu, D. Yao, “Causal Inference Based on the Analysis of Events of
Relations for Non-stationary Variables”, Scientific Reports, 6:29192, 2016.

[33] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean,
et al , “Detecting novel associations in large data sets”, Science, vol. 334,
no. 6062, pp. 1518 -1524, 2011.

43

