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Boosting'Overview

! Like bagging, going to draw a sample of the 
observations from our data with replacement

! Unlike bagging, the observations not sampled 
randomly

! Boosting assigns a weight to each training 
observation and uses that weight as a sampling 
distribution
! Higher weight observations more likely to be chosen.

! May adaptively change that weight in each round
! The weight is higher for examples that are harder to 

classify



Boosting'Example

! Same dataset used to illustrate bagging
! Boosting typically requires fewer rounds of sampling 

and classifier training.
! Start with equal weights for each observation
! Update weights each round based on the 

classification errors

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y 1 1 1 I1 I1 I1 I1 1 1 1

input'variable

target



Boosting'Example



Boosting:

Weighted'Ensemble

! Unlike Bagging, Boosted Ensembles usually weight 
the votes of each classifier by a function of their 
accuracy.

! If a classifier gets the higher weight observations 
wrong, it has a higher error rate.

! More accurate classifiers get higher weight in the 
prediction.



Errors(made:(First(3(observations

Errors(made:(Middle(4(observations

Errors(made:(Last(3(observations

Boosting:'

Classifier'weights



Errors(made:(First(3(observations

Errors(made:(Middle(4(observations

Errors(made:(Last(3(observations

Boosting:'

Classifier'weights

Lowest'weighted'error.

Highest'weighted'model.



Boosting:'

Weighted'Ensemble

Classifier'Decision'Rules'and'Classifier'Weights

Weight

Individual'Classifier'Predictions'and'Weighted'Ensemble'Predictions



Boosting:'

Weighted'Ensemble

Classifier'Decision'Rules'and'Classifier'Weights

Weight

Individual'Classifier'Predictions'and'Weighted'Ensemble'Predictions

5.16 =(61.738+2.7784+4.1195



(Major)'Boosting'

Algorithms

AdaBoost (This is sooo 2007)

Gradient Boosting [xgboost] 
(Welcome to the New Age of learning)



(SelfIStudy)

AdaBoost Details:'The'Classifier'Weights

! Let )* be the weight of observation j entering into 
present round.

! Let !* = 1,if observation j is misclassified, 0 otherwise
! The error of the classifier this round is 

-. = ,
1
/
0)*

1

*23

!*

! The voting weight for the classifier this round is then
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(SelfIStudy)'

AdaBoost Details:'Updating'observation'Weights

To update the observation weights from the current 
round (round 9) to the next round (round 9 + 1):

)*
(.<3) = )*

.>?@A if observation j was correctly classified

)*
(.<3) = )*

.>@A if observation j was misclassified

The new weights are then normalized to sum to 1 so 
they form a probability distribution.



Gradient'Boosting

The latest and greatest
(Jerome H. Friedman 1999)



! Build a simple model B3(C) trying to predict a target $
! It has error, right?

$ = B3 C + -3

! Now, let’s try to predict that error with another 
simple model, BD C . Unfortunately, it still has some 
error:

$ = B3 C + BD C + -D

Gradient'Boosting'

Overview

actual'value

modeled'value

error

original'

modeled

value

predicting'

the'residual,'

-3

error



Gradient'Boosting'

Overview

! We could just continue to add model after model, 
trying to predict the residuals from the previous set 
of models.

$ = B3 C + BD C + BE C +⋯+ BG C +,-G

original'

modeled

value

predicting'

the'residual,'

-3

predicting'

the'residual,'

-D

presumably'

very'small'

error



Gradient'Boosting'

Overview

! To address the obvious problem of overfitting, we’ll 
dampen the effect of the additional models by only 
taking a “step” toward the solution in that direction.

! We’ll also start (in continuous problems) with a 
constant function (intercept)

! The step-sizes are automatically determined at 
each round inside the method

$ = H3 + HDBD C + HEBE C +⋯+ HGBG C + ,-G



Gradient'Boosted'Trees

! Gradient boosting yields a additive ensemble model

! The key to gradient boosting is using “weak learners”
! Typically simple, shallow decision/regression trees
! Computationally fast and efficient  
! Alone, make poor predictions but ensembled in this additive fashion 

provide superior results



Gradient'Boosting'and'

Overfitting

! In general, the ”step-size” is not enough to prevent 
us from overfitting the training data

! To further aid in this mission, we must use some form 
of regularization to prevent overfitting:

1. Control the number of trees/classifiers used in the prediction
• Larger number of trees => More prone to overfitting
• Choose a number of trees by observing out-of-sample error

2. Use a shrinkage parameter (“learning rate”) to effectively lessen 
the step-size taken at each step. Often called eta, I
• $ = H3 + I HDBD C + I HEBE C +⋯+ I HGBG C + ,-G
• Smaller values of eta => Less prone to overfitting
• eta = 1 => no regularization



Gradient'Boosting'

Summary

! Advantages
! Exceptional model – one of most accurate available, generally 

superior to Random Forests when well trained
! Can provide information on variable importance for the purposes 

of variable selection

! Disadvantages
! Model lacks interpretability in the classical sense aside from 

variable importance
! The trees must be trained sequentially so computationally this 

method is slower than Random Forest
! Extra tuning parameter over Random Forests, the regularization or 

shrinkage parameter, eta.







Notes'about'EM

! EM has node for Random Forest (HP tab=> HP Forest)
! Uses CHAID unlike other implementations
! Does not perform bootstrap sampling
! Does not appear to work as well as the randomForest package in R

! EM has node for gradient boosting
! Personally I recommend the ”extreme gradient boosting” implementation 

of this method, which is called xgboost both in R and python.
! This implementation appears to be stronger and faster than the one in SAS



XGBOOST: A SCALABLE 
TREE BOOSTING SYSTEM

(T. CHEN, C. GUESTRIN, 2016)

NATALLIE BAIKEVICH

HARDWARE ACCELERATION FOR 
DATA PROCESSING SEMINAR
ETH ZÜRICH



MOTIVATION

9 Effective
statistical 
models

9 Scalable system

9 Successful
real-world 
applications

XGBoost

eXtreme
Gradient 
Boosting



A BIT OF HISTORY

AdaBoost, 1996

Random Forests, 1999

Gradient Boosting Machine, 2001



AdaBoost, 1996

Random Forests, 1999

Gradient Boosting Machine, 2001

Various improvements in tree
boosting

XGBoost package

A BIT OF HISTORY



AdaBoost, 1996
Random Forests, 1999
Gradient Boosting Machine, 2001

Various improvements in tree
boosting
XGBoost package

1st Kaggle success: Higgs Boson 
Challenge
17/29 winning solutions in 2015

A BIT OF HISTORY



WHY DOES XGBOOST WIN "EVERY" MACHINE 
LEARNING COMPETITION? 

- (MASTER THESIS, D. NIELSEN, 2016)

Source: https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions

https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions


SYSTEM DESIGN: 
BLOCK STRUCTURE

O(Kd x
0
logn) O(Kd x

0
+ x

0
logB)

Blocks can be
9 Distributed across machines
9 Stored on disk in out-of-core setting

Sorted structure –> linear scan

# trees

Max depth

# non-missing entries



SYSTEM DESIGN:
CACHE-AWARE ACCESS

Improved split finding 

9 Allocate internal buffer
9 Prefetch gradient statistics

Non-continuous memory access

Datasets:
Larger vs Smaller



SYSTEM DESIGN: 
BLOCK STRUCTURE

Compression by 
columns (CSC):

Decompression 
vs

Disk Reading

Block sharding:
Use multiple disks

Too large blocks, cache misses

Too small, inefficient 
parallelization

Prefetch
in independent thread



EVALUATION

AWS c3.8xlarge machine:
32 virtual cores, 2x320GB SSD, 
60 GB RAM

32 m3.2xlarge machines, each:
8 virtual cores, 2x80GB SSD, 
30GB RAM



DATASETS
Dataset n m Task
Allstate 10M 4227 Insurance claim classification
Higgs Boson 10M 28 Event classification
Yahoo LTRC 473K 700 Learning to rank
Criteo 1.7B 67 Click through rate prediction



WHAT’S NEXT?

Model Extensions
DART (+ Dropouts)
LinXGBoost

Parallel Processing
GPU
FPGA

Tuning
Hyperparameter
optimization

More Applications

XGBoost

Scalability
Weighted quantiles
Sparsity-awareness
Cache-awarereness
Data compression


