Boosting



Boosting Overview

> Like bagging, going to draw a sample of the
observations from our data with replacement

» Unlike bagging, the observations not sampled
randomly

» Boosting assigns a weight to each training
observation and uses that weight as a sampling
distribution

» Higher weight observations more likely to be chosen.

» May adaptively change that weight in each round

» The weight is higher for examples that are harder to
classify



Boosting Example

input variable

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
1 1 1 -1 -1 -1 -1 1 1 1

target

» Same dataset used to illustrate bagging

» Boosting typically requires fewer rounds of sampling
and classifier training.

»> Start with equal weights for each observation

» Update weights eachround based on the
classification errors



Boosting Example

Boosting Round 1:

X 0.1 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.8 1

y 1 -1 -1 -1 -1 -1 -1 -1 1 1
Boostirlg Round 2:

X 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3

y 1 1 1 1 1 1 1 1 1 1
Boosting Round 3:

X 0.2 0.2 0.4 04 04 0.4 0.5 0.6 0.6 0.7

y 1 1 -1 -1 -1 -1 -1 -1 -1 -1

(ia) Training records chosen during boosting
Round |[x=0.1 [x=0.2 |x=0.3 [x=0.4 [x=0.5 [x=0.6 |x=0.7 |x=0.8 |[x=0.9 | x=1.0

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 0.311 [0.311 [0.311 | 0.01 0.01 | 0.01 0.01 0.01 0.01 0.01
3 0.029 |0.029 (0.029 |0.228 [0.228 |[0.228 |0.228 | 0.009 [0.009 | 0.009

(b) Weights of training records




Boosting:
Weighted Ensemble

» Unlike Bagging, Boosted Ensembles usually weight
the votes of each classifier by a function of their
accuracy.

> If a classifier gets the higher weight observations
wrong, it has a higher error rate.

» More accurate classifiers get higher weight in the
prediction.



Boosting:

Errors made: First 3 observations

Classifier weights

X 0.1 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.8 1
y 1 -1 -1 -1 -1 -1 -1 1 1
Errors made: Middle 4 observations
0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3
1 1 1 1 1 1 1 1 1
Errors made: Last 3 observations
X 0.2 0.2 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.7
y 1 1 -1 -1 -1 -1 -1 -1 -1
) Training records chosen during boosting
Round x=0.1 x=0.2 [x=0.3 |x=0.4 |[x=0.5 [x=0.6 | x=0.7 [x=0.8 | x=0.9 | x=1.0
1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 0.311 [0.311 [0.311 | 0.01 0.01 0.01 0.01 0.01 0.01 0.01
3 0.029 [0.029 (0.029 |0.228 [0.228 |0.228 |0.228 | 0.009 |0.009 |0.009

(b) Weights of training records




Boosting:
Classifier weights

Errors made: First 3 observations
X 0.1 0.4 0.5 06 0.6 0.7 0.7 0.7 0.8 1
y 1 A a4 4] 4] a1 1
Errors made: Middle 4 observations
X 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3
y 1 1 1 1 1 1 1 1 1

Errors made: Last 3 observations

— Lowest weighted error.
X 02 1 02 104 | 04 | 04 ' Highest wei gh’ced model
y 1 1 -1 -1 -1 -1 % : & : | '
éa) Training records chosen during boosting
Round x=0.1 |x=0.2 | x=0.3 |[x=0.4 |x=0.5 |x=0.6 |x=0.7 |x=0.8 ‘%X:O.g x=1.0
1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 0.311 [0.311 {0.311 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 .01 | 0.01
3 0.029 [0.029 [0.029 |0.228 (0.228 |0.228 |[0.228 |0.009 |0.009 | 0.009

(b) Weights of training records




Boosting:
Weighted Ensemble

Round |Split Point | Left Class |Right Class Weight
1 0.75 -1 1 1738 |
2 0.05 1 1 2.7784
3 0.3 1 -1 4.1195

Classifier Decision Rules and Classifier Weights

Round |[x=0.1 |x=0.2 |x=0.3 | x=0.4 | x=0.5 | x=0.6 | x=0.7 | x=0.8 | x=0.9 | x=1.0

Individual Classifier Predictions and Weighted Ensemble Predictions




Boosting:
Weighted Ensemble

Round |Split Point | Left Class |Right Class Weight

1 0.75 -1 1 4 1738
2 0.05 1 1/} 27784
3 0.3 1 v /141195

Classifier Decision Rules W% Weights

Round |x=0.1|x=0.2 |x=0.3 |x=0.4 | %<0.5 | ¥£0.6 |k=0.7 | x=0.8 | x=0.9 |x=1.0

4

1 -1 -1 -1 -1 -1 -1 -1 1 1 1
X /

4

Sum C:S 6 D5.16 | 5.16 | -3.08 | -3.08 | -3.08 | -3.08 |0.397 [0.397 | 0.397

B

2 1 1 1 1 1 1
5 1</({ 5.16 = -1.738+2.7784+4.1195 [ -——————
1
1

1 1 -1 -1 -1 -1 1 1 1

Individual Classifier Predictions and Weighted Ensemble Predictions




(Major) Boosting
Algorithms

AdaBoost (This is sooo 2007)

Gradient Boosting [xglboost]
(Welcome to the New Age of learning)



(Self-Study)

AdaBoost Details: The Classifier Weights

> Let w; be the weight of observation | entering into
present round.

> Let m; = 1if observation jis misclassified, O otherwise
> The error of the classifier this round is

" N
€; = Nz W] m]
j=1

» The voting weight for the classifier this round is then

1 1_Ei
@ = z“‘( . )
l




(Self-Study)

AdaBoost Details: Updating observation Weights

To update the observation weights from the current
round (round i) to the nextround (roundi + 1):

+1 . . . . »
wj(‘ ) = wj‘e % if observation j was correctly classified
+1 - . . . . Ce
wj(‘ ) = wje if olbbservation j was misclassified

The new weights are then normalized to sum to 1 so
they form a probability distribution.



Gradient Boosting

The latest and greatest
(Jerome H. Friedman 1999)



Gradient Boosting

Overview
» Build a simple model f; (x) trying to predict a target y

> It has error, righte

/)’ = f1(\x) + 61\

actual value error
modeled value

» Now, let’s fry o predict that error with another
simple model, £, (x). Unfortunately, it still has some
error:

y =)+ fo(x) + e
e / N
original predicting SO
modeled the residual,

value €1



Gradient Boosting
Overview

» We could just continue to add model after model,
trying to predict the residuals from the previous set
of models.

y =/f1(x) + f?(x) + fs(x,\) + ot fre () + Ek\

original predicting predicting presumably
modeled e residual, the residual, very small
value € €, error



Gradient Boosting
Overview

» To address the obvious problem of overfitting, we'll
dampen the effect of the additional models by only
taking a “step” toward the solution in that direction.

» We'll also start (in confinuous problems) with a
constant function (intercept)

> The step-sizes are automatically determined at
each round inside the method

y =v1 tVafo(x) +v3fz(x) + - +ypfi(x) + €



Gradient Boosted Trees

» Gradient boosting yields a additive ensemble model

» The key to gradient boosting is using “weak learners”

> Typically simple, shallow decision/regression trees
» Computationally fast and efficient

» Alone, make poor predictions but ensembled in this additive fashion
provide superior results



Gradient Boosting and
Overfitting

» In general, the "step-size” is not enough to prevent
us from overfitting the fraining data

> To further aid in this mission, we must use some form
of regularization to prevent overfitting:

1. Control the number of trees/classifiers used in the prediction
* Larger number of tfrees => More prone to overfitting
« Choose a number of trees by observing out-of-sample error

2. Use ashrinkage parameter (Ylearning rate”) to effectively lessen
the step-size taken at each step. Often called eta, n

* y=EntnrnLfG+nriG) oty fi) + g
« Smaller values of eta => Less prone to overfitting
« eta=1=>noregularization



Gradient Boosting
Summary

» Advantages

> Exceptionalmodel — one of most accurate available, generally
superior to Random Forests when well frained

» Can provide information on variable importance for the purposes
of variable selection

» Disadvantages

» Model lacks interpretability in the classical sense aside from
variable importance

» The trees must be frained sequentially so computationally this
method is slower than Random Forest

> Extra tuning parameter over Random Forests, the regularization or
shrinkage parameter, eta.



The RGF algorithm is a variation of GBDT in which the
structure search and the optimization are decoupled. More
specifically, the main differences are given as follows:

e RGF introduces an explicit regularization term that
takes advantage of individual tree structures.

h = argminnenlf(h(x);y) + R(R)]  (4)

e RGF employs a fully-corrective greedy algorithm which
iteratively modifies the weights of all the leaf nodes
(decision rules) currently obtained while new rules are
added into the forest by greedy search. Here, an ex-
plicit regularization is also included to avoid overfitting
and very large models.

e RGF utilizes the concept of structured sparsity to per-
form greedy search directly over the forest nodes based
on the forest structure.



Algorithm 2 Regularized Greedy Forest framework

F <« {}
while stopping criterion not met do

Fix weights and adjust forest structure s:

§ < argminscsrQ(s(F)) (the optimum s that
minimizes Q(F') among all the structures that can be
obtained by applying one structure-changing operation
to F').

if some criterion is met then

Fix the structure and change the weights in F' s.t.
the loss is minimized in Q(F') (it can be optimized using
a standard procedure (such as coordinate descent) if the
regularization penalty is standard e.g., L2-loss

end if
end while
Optimize leaf weights in F' to minimize loss in Q(F)
return hp(x)




Notes about EM

» EM has node for Random Forest (HP talb=> HP Forest)

> Uses CHAID unlike other implementations
> Does not perform booftstrap sampling
> Does not appear to work as well as the randomForest package in R

» EM has node for gradient boosting

> Personally | recommend the "extreme gradient boosting” implementation
of this method, which is called xgboost both in R and python.

> This implementation appears to be stronger and faster than the one in SAS



XGBOOST: A SCALABLE
TREE BOOSTING SYSTEM

(T. CHEN, C. GUESTRIN, 2016)

NATALLIE BAIKEVICH

HARDWARE ACCELERATION FOR
DATA PROCESSING SEMINAR

ETH ZURICH




MOTIVATION

v Effective
statistical XGBoost
models eXtreme
v Scalable system - Gradient
v Successful Boosting
real-world
applications




A BIT OF HISTORY

AdaBoost, 1996
Random Forests, 1999
Gradient Boosting Machine, 2001




A BIT OF HISTORY

AdaBoost, 1996
Random Forests, 1999
Gradient Boosting Machine, 2001

Various improvements in tree
boosting

XGBoost package




A BIT OF HISTORY

AdaBoost, 1996
Random Forests, 1999
Gradient Boosting Machine, 2001

Various improvements in tree
boosting

XGBoost package

1st Kaggle success: Higgs Boson
Challenge

17129 winning solutions in 2015




WHY DOES XGBOOST WIN "EVERY" MACHINE
LEARNING COMPETITION?
- (MASTER THESIS, D. NIELSEN, 2016)

e Maksims Volkovs, Guangwei Yu and Tomi Poutanen, 1st place of the 2017 ACM RecSys challenge. Link to paper.
e Vlad Sandulescu, Mihai Chiru, 1st place of the KDD Cup 2016 competition. Link to the arxiv paper.

e Marios Michailidis, Mathias Miiller and HJ van Veen, 1st place of the Dato Truely Native? competition. Link to the
Kaggle interview.

e Viad Mironov, Alexander Guschin, 1st place of the CERN LHCb experiment Flavour of Physics competition. Link to
the Kaggle interview.

e Josef Slavicek, 3rd place of the CERN LHCb experiment Flavour of Physics competition. Link to the Kaggle
interview.

e Mario Filho, Josef Feigl, Lucas, Gilberto, 1st place of the Caterpillar Tube Pricing competition. Link to the Kaggle
interview.

e Qingchen Wang, 1st place of the Liberty Mutual Property Inspection. Link to the Kaggle interview.
e Chenglong Chen, 1st place of the Crowdflower Search Results Relevance. Link to the winning solution.

e Alexandre Barachant (“Cat”) and Rafat Cycon (“Dog"), 1st place of the Grasp-and-Lift EEG Detection. Link to the
Kaggle interview.

e Halla Yang, 2nd place of the Recruit Coupon Purchase Prediction Challenge. Link to the Kaggle interview.
e Owen Zhang, 1st place of the Avito Context Ad Clicks competition. Link to the Kaggle interview.
o Keiichi Kuroyanagi, 2nd place of the Airbnb New User Bookings. Link to the Kaggle interview.

e Marios Michailidis, Mathias Miller and Ning Situ, 1st place Homesite Quote Conversion. Link to the Kaggle
interview.

Source: https://qgithub.com/dmic/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions



https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions

SYSTEM DESIGN:
BLOCK STRUCTURE

Layout Transformation of one Feature (Column) The Input Layout of Linear scan over presorted columns
Three Feature Columns to find best spiit
S _ sorted }
s o M- @mm of 6 2
- P N |
'8 o — - . e
(3 ' - % (3 4 V' Gr=m+m Ca=g:+m+9
> v . —

: | '8 @ '8 6

) Gradent statistics of each exampie Missing values are not stored

[ | Feature values » Stomd pointer from feature vaiue 10 Instanc e Incex

Max depth Sorted structure —> linear scan

O(KdeH()logn) - O([fd“x‘o+“yf‘ologB)

# trees # non-missing entries

Blocks can be
v" Distributed across machines
v Stored on disk in out-of-core setting




SYSTEM DESIGN:
CACHE-AWARE ACCESS

Improved split finding Block Structure  Instructions
_ ¥ @0 G=G+glpuf]
Non-continuous memory access g; 27 9. RERTIoNN
8 < calculate score
v" Allocate internal buffer 556+ GoNl
v’ Prefetch gradient statistics H=H + hiptrfi]
= >e—x Sasit': algorith'm 2l T >~—~< Basic-:agoriﬂ'rr'n
128- )‘H Cache-aware algorithm |. N &8 Cache-aware algorithm
g N Datasets: i
2 SN Larger vs Smaller  :
1er - 1 05

Z 4
Number of Threads Number of Threads

(b) Higgs 10M (d) Higgs 1M




SYSTEM DESIGN:
BLOCK STRUCTURE

Prefetch Too large blocks, cache misses
in independent thread

128
bt

B B plock size=2M12
&8 Dpiock size=2M6G
¥V block size=2%20 |
" | *—¥ block size=2424

Compression by
columns (CSC):

Decompression } ‘ N !
VS B \:\\“\. v
Disk Reading ; T s

Numbar of Thenacs

. a) Allstate 10M
Block sharding: @)

Use multiple disks Too small, inefficient

parallelization




EVALUATION

4096 . ' , 4096
Block compression X 20487 X
20481 " 1024+
) Basic algorithm | § | S/
2 1024} g 2 2561 '\’(
8 ' 8 -~ TSpark MLLib °
= - - 128 x g
5 : Compression+shard § a
2 512 ! | H20
= \—Out of system file cache a
¢ start from this point 327 T —
: 5] i XGBoost
256} ; 16} /
: P28 256 512 1024 2048
! Number of Training Examples (million)
1288 256 512 1024 2048 . _ _
Number of Training Examples (milion) (b) Per iteration cost exclude data loading
AWS c3.8xlarge machine: 32 m3.2xlarge machines, each:
32 virtual cores, 2x320GB SSD, 8 virtual cores, 2x80GB SSD,

60 GB RAM 30GB RAM




DATASETS
Dataset __n__m _Task

Allstate 10M 4227 Insurance claim classification
Higgs Boson 10M 28 Event classification

Yahoo LTRC 473K 700 Learning to rank
Criteo 1.7B 67 Click through rate prediction




WHAT’S NEXT?

XGBoost

Scalability
Weighted quantiles
Sparsity-awareness
Cache-awarereness
Data compression

Tuning
Hyperparameter
optimization

Parallel Processing
GPU
FPGA

Model Extensions
DART (+ Dropouts)
LinXGBoost

More Applications




