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Root Cause Analysis of Anomalies of Multitier
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Abstract— Anomalies of multitier services of one tenant
running in cloud platform can be caused by the tenant’s own com-
ponents or performance interference from other tenants. If the
performance of a multitier service degrades, we need to find out
the root causes precisely to recover the service as soon as possible.
In this paper, we argue that the cloud providers are in a better
position than the tenants to solve this problem, and the solution
should be non-intrusive to tenants’ services or applications. Based
on these two considerations, we propose a solution for cloud
providers to help tenants to localize root causes of any anomaly.
With the help of our solution, cloud operators can find out root
causes of any anomaly no matter the root causes are in the
same tenant as the anomaly or from other tenants. Particularly,
we elaborate a non-intrusive method to capture the dependency
relationships of components, which improves the feasibility. Dur-
ing localization, we exploit measurement data of both application
layer and underlay infrastructure, and our two-step localization
algorithm also includes a random walk procedure to model
anomaly propagation probability. These techniques improve the
accuracy of our root causes localization. Our small-scale real-
world experiments and large-scale simulation experiments show
a 15%–71% improvement in mean average precision compared
with the current methods in different scenarios.

Index Terms— Root cause analysis, multitier services, public
cloud, performance interference, anomaly propagation graph.

I. INTRODUCTION

NOWADAYS, more and more multitier services or cloud
applications are adopting IaaS clouds to manage their ser-

vice infrastructures. These services often consist of hundreds
of software components spread across multiple machines.
For a specific request, software components need to com-
municate with each other and work coordinately to serve it.
Ideally, virtualization technology gives tenants the illusion
of dedicated hardware access and providing strong isolation
between VMs, so they cannot interfere with one another.
Unfortunately, IaaS clouds allow multiple tenants to share a
common physical computing infrastructure in a cost-effective
way and guest VMs will contend for the shared resources,
which can result in performance interference [1]–[3] between
tenants. So, multitier services running inside an IaaS cloud
are prone to performance anomalies due to not only software
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bugs of multitier services components but also performance
interference between tenants. If the performance of a multitier
service degrades, it is difficult and time-consuming to find out
the actual root causes.

In recent years, researchers have proposed many solutions
to solve this problem. Some researchers try to find out root
causes of anomalies in a dedicated environment [4]–[8]. These
solutions assume there is no outside influence that can inter-
fere with resource utilization of services. Specifically, [4]–[7]
only consider software bugs of multitier services compo-
nents and [8] only considers performance interference between
components of tenant’s own service. So they cannot work
well in public cloud environment. Reference [9] tries to
take performance interference between different tenants into
consideration. However, it only uses resource utilization of
infrastructure, which may not be anomalous during some
anomalies of multitier service. Therefore, root causes of some
anomalies can not be localized. What’s more, the authors rank
possible root causes based on anomaly propagation distance,
and ignore the influence of anomaly propagation probability.
It decreases the accuracy of their analysis results.

Obviously, performance interference is caused by underlay
resource contention, and only cloud providers can have the
information about underlay resource contention among dif-
ferent tenants. So cloud providers are in a better position
to diagnose anomalies caused by performance interference
among different tenants. In previous works [4]–[8], cloud
providers need to modify the application code or know depen-
dency relationships of tenants’ service components. This is not
easy or even infeasible, because the dependency relationships
among multitier services components are very complicated,
and tenants would not like to disclose details of their services.
So cloud providers need to find a way to infer these informa-
tion from their own monitoring.

In this paper, we propose a solution for a public cloud
provider to help its tenants to localize the root causes of
anomalies of multitier services. Our solution can find out root
causes no matter they are in the same tenant as the anom-
aly or from other tenants, and the solution is non-intrusive to
tenants’ services. Our solution consists of two parts: a data
collection subsystem and a root cause localization subsystem.
The data collection subsystem is non-intrusive to tenants and
it runs continuously to capture the dependency relationships of
components of multitier service and collect necessary metrics
data of services. The root cause localization subsystem works
when an anomaly occurs, and it is responsible to find out a list
of possible root causes of the anomaly and the corresponding
probability of each possible root cause. To determine the root
causes, we define a metrics called similarity score, which
is calculated based on both the metrics data of services
and resource utilization of underlay infrastructure. We also
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implement a random walk algorithm, which simulates the
influence of anomaly propagations in multitier services to
improve the accuracy of our solution.

We implement and deploy the system in our real-world
small-scale cloud platform and conduct experiments using
a three-tier web application and a Storm [34] application
to demonstrate that our method can localize root causes at
both VM and process level. We also conduct simulation
experiments for anomalies that arise from multiple causes.
We also show the rationality and necessity of two steps in
our localization algorithm: similarity score and random walk
propagation. Experimental results show a 15%-71% improve-
ment in mean average precision compared to current methods
in different scenarios.

Summarily, we make the following contributions in this
paper:

• We propose a solution to help cloud operators accurately
localize root causes for any anomaly no matter the root
causes are in the same tenant as the anomaly or from
other tenants.

• We propose a non-intrusive method to capture the com-
plex dependency relationships of multitier components,
which improves the feasibility of our root cause localiza-
tion system.

• Our solution is able to localize root causes at both
VM and process level, and can find out root causes even
when the anomaly is resulting from multiple causes.

• We design a two-step localization algorithm based
on monitoring of both application layer and underlay
infrastructure and a random walk procedure. Experiments
demonstrate the algorithm outperforms previous works.

The remaining part of the paper is organized as follows.
Section II presents an overview of previous related work.
Section III introduces two types of anomaly propagation in
public cloud by examples and shows our proposed system
architecture. Section IV illustrates how to find out all possible
root causes. Section V shows the details of our two-step
localization algorithm to determine the corresponding prob-
ability of each possible root cause. Section VI introduces
our real-world experiments and simulation experiments and
evaluation results. Section VII shows an experiment to do
root cause analysis on Storm applications at the process level.
Section VIII concludes our work.

II. RELATED WORK

In recent years, many solutions have been proposed to
solve this problem from the aspect of tenants [4]–[7]. These
works need to modify the application code or need to know
dependency relationships of service components. For example,
Pivot Tracing [7] needs dynamic instrumentation with a novel
“happened-before join” operator to identify the root causes of
distributed system anomalies.

In addition, these solutions work well only when there is
no outside influence that can interfere with resource utiliza-
tion of services. However, more and more multitier services
are deployed in public clouds, where different tenants may
interfere with each other due to resource contention. The
phenomenon of performance interference has been studied
in [1]–[3], but they focus on designing resource allocation
algorithm to avoid the effect as well as possible.

In 2013, Kim et al. [8] introduces a pseudo-anomaly cluster-
ing algorithm on historical data to capture the external factors

such as performance interferences between components of
tenant’s own service, but performance interferences between
tenants have not been considered. Therefore, it still cannot
work well in public clouds with many tenants.

In 2016, Lin et al. [9] proposes a solution that captures
anomaly propagation among different tenants. As far as we
know, it is the first paper that tries to solve this problem.
But the work by Lin only collects resource utilization of
infrastructure and simply uses anomaly propagation distance
to rank the possible root causes and do not consider the
probability of anomaly propagation between components of
multitier service, so the result is not accurate.

In our previous work [27], we have proposed a solution to
calculate the similarity using metrics data of different levels
and run random walk algorithm to determine the root causes.
This paper extends our previous work by describing how
to collect metrics data of different levels non-intrusively in
detail and applying our method to localize root causes at
process level. We also conduct large-scale experiments on
more complicated scenarios, and demonstrate the ability to
deal with anomalies resulting from multiple causes.

As anomalies propagate among system components along
the path of the service call, request tracing of multitier
services is necessary for root cause analysis of anomalies.
Currently there are three ways to do request tracing. The first
way is to leverage application-specific knowledge or explic-
itly declare causal relationships among events of different
components [11]–[13]. Its drawback is that users must obtain
and modify source code of target applications or middleware.
Thus, this approach cannot be used for services of black boxes.
For example, it cannot be used by cloud providers since tenants
would not like to disclose details of their services. The second
way is vPath [26] which can do request tracing out-of-vm.
However, vPath is designed in XEN based virtualization
environment and is not a portable request tracing tool in
KVM based virtualization environment. The third way is to
infer the causal paths through kernel instrumentation or traffic
monitoring inside the VM without the knowledge of source
code [14]–[16]. In this paper, our request traces are inferred
from causal path graphs produced by PreciseTracer [16],
which falls into the third category. We do not require tenants
to disclose any information of their service components, which
makes our solution more feasible to be deployed.

Rumor source detection in social networks also aims to
find out root causes of abnormal phenomenons from net-
works [17]–[20]. In these seminal works, the authors design
algorithms to solve various issues to detect single or multiple
rumor sources in networks of different shapes, e.g., regular
trees and general graphs. However, the edge connections in
social networks are deterministic and time is an important
dimension in their Rumor Spreading Model. While in our
scenario, the edge connections between VMs are hard to
determine and our model of anomaly propagation between
VMs does not take time as one dimension, since the anomaly
propagation is almost real-time. Whether an anomaly propa-
gates from one node to the other node is affected by other
factors, such as whether there is severe resource contention
between them. So the methods proposed in these works cannot
be used to solve our problem directly.

In recent years, as clouds are widely used for various
services, performance anomaly diagnosis of applications in
cloud environment has drawn attentions of many researchers.
Dean et al. [21], [22] propose PerfCompass, a non-intrusive
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Fig. 1. Two tenants’ multitier services in a cloud.

performance anomaly fault localization tool using system call
trace techniques. They also consider two types of anomaly
propagations, i.e., external and internal. The external fac-
tor is resource contention among co-located VMs, and the
internal factor is software bugs. However, PerfCompass is
designed for single-node applications. Goel et al. [23] and
Sharma et al. [24] diagnose faults in OpenStack by monitor-
ing network communication and analyzing event sequences.
Mi et al. [25] use a statistical technique and a fast matrix
recovery algorithm to diagnose faults of Aliyun Mail. How-
ever, these works are intrusive and tightly coupled with the
specific applications they studied. So these works cannot
complete root cause analysis for multitier services running on
multiple nodes connected via network.

III. TYPES OF ANOMALY PROPAGATION

AND SYSTEM ARCHITECTURE

Intuitively, there are two types of factors that can cause per-
formance degradations of a multitier service, namely internal
factor and external factor. Internally, anomaly may propagate
among components within the multitier service along the
path of service call. Externally, anomaly may propagate to
one VM of the service from VMs of other tenants because
they compete for resources of a same physical server. In this
section, we would conduct experiments to demonstrate how
these factors interfere with the service performance. Then we
summarize the types of anomaly propagation and based on
our understanding, we design the architecture of our system
to localize root causes of anomalies in multitier services.

A. Two Types of Anomaly Propagation in Public Cloud

We conduct experiments in a small-scale cloud shown
in Figure 1. The cloud consists of 5 physical machines. Let
us assume two tenants, e.g. TA and TB, apply to the cloud
provider for cloud services. TA requests for 5 VMs, and
TB requests for 3 VMs. After receiving requests, the cloud
provider creates VMs for these two tenants. Obviously, some
virtual machines would be allocated in a same physical
machine.

In our experiments, we assume the allocation result is that
(vm1, vm6), (vm4, vm7), and (vm5, vm8) are VM pairs
that are co-located in a same physical machine. We bind all
VMs on a physical machine to a same physical CPU core,
in order to make sure these VMs are competing for resources
of the physical machine. We further assume both tenants are
using their virtual machines to run the 3-tiered web application
RUBiS [10]. RUBiS is an e-Commerce benchmark developed
for academic research. It implements an online auction site
loosely modeled after eBay, and adopts a 3-tiered architecture

Fig. 2. Response time of tenant A’s website.

which consists of a frontend tier (a LVS service), a middle
tier (apache services) and a data tier (mysql services).

As a software toolset for academic research, RUBiS can
create automatically users and commodity items to initialize
the simulation of an online shopping website according to
researchers’ parameter settings. In our experiments, we gener-
ate 100,000 users and 100,000 commodity items. RUBiS also
provides a client that can emulate user behavior of sending
requests. In addition, the client is able to collect statistical
results of the response time of users’ requests.
TA’s LVS (vm1) receives users’ requests (emulated by

the RUBiS client), and further directs requests to one of
the two apaches (vm2 and vm4) according to the content
of requests. In other words, vm1 implements a task-based
load balance. We set the load balance policy as follows:
requests with SearchItemsByRegion function and ViewUserInfo
function (denoted by R1) are served by vm2, and requests
with SearchItemsByCategory function and ViewItem function
(denoted by R2) are served by vm4. Then vm2 depends on
vm3, and vm4 depends on vm5, to get necessary information
from mysql database to join and decorate results for users’
requests. In summary, we can see in our experiments TA
have two call paths, i.e., P1 (vm1 → vm2 → vm3) and P2

(vm1 → vm4 → vm5) as labeled in Figure 1, to handle users’
requests.

At the beginning of our experiment, every virtual machine of
both tenants works well. Then we try to increase the utilization
rate of vm8 (of TB) gradually and measure if this increase
can degrade the quality of service of TA. We control CPU
load by using a tool called cpu-load-generator [33], which is
implemented based on the well-known tool lookbusy [31].

As we increase vm8’s CPU utilization rate, we keep track
of TA’s performance. We evaluate TA’s performance by its
response time to users’ requests of those four functions.
We plot the average response time of requests of each func-
tion under different vm8’s CPU utilization rate in Figure 2.
Obviously, we can see that after vm8’s CPU utilization rate is
greater than a certain threshold, i.e. 45%, the average response
time of R2’s requests keeps increasing as vm8 is more and
more heavy-loaded while the average response time of R1’s
requests does not.

The reason is that vm5 and vm8 share the CPU resource of
the same physical server. Therefore, when vm8 has a heavier
load, it would affect the performance of vm5. Furthermore,
since TA depends on vm1, vm1 depends on vm4, and vm4

depends on vm5 to complement users’ requests, vm5’s per-
formance degradation further results in the longer response
time of TA’s R2 requests. We can observe that there are two
different types of anomaly propagation, i.e., (vm8 → vm5)
due to collocation relationship between different VMs and
(vm5 → vm4 → vm1) due to service call.
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Fig. 3. System overall architecture.

Observation: In public clouds, there are two types of anom-
aly propagation paths: 1) between co-located VMs because of
resource contentions, 2) among multitier service components
along the path of service call.

In the public cloud, what TA can learn is only its own
overlay network assigned by the cloud provider. TA can-
not detect or measure collocation relationships among VMs
in the public cloud. Therefore, TA cannot find the root
causes of anomalies that propagate due to collocated VMs,
e.g., the longer response time to users’ requests caused by
vm8’s heavy load in Figure 2. Then we have the following
proposition.

Proposition 1: It is necessary for cloud providers to provide
service to help tenant to determine root causes of anomalies.

B. System Overall Architecture

Figure 3 is the architecture of our system that tries to help
cloud providers find out root causes of anomalies experienced
by tenants. Assume one tenant observes the request r from one
of its users experiences a very long time to be responded. The
tenant then goes to the cloud provider for help and submits it
as an anomaly a. Taking anomaly a as an example, our system
is using a two-step procedure to diagnose as follows.

1) First, find out all possible causes of the anomaly a and
construct the anomaly propagation graph (APG) GAPGa .
In other words, GAPGa includes both types of anomaly
propagation paths into consideration, i.e., collocation
propagation and service call propagation.

2) Second, determine the probability of each element in
GAPGa as a root cause of the anomaly a and point out
the most likely root causes.

The components to complete the first step are shown in the
solid-line box in the left of Figure 3. We need to trace online
requests, collect and save data for future use (Section IV-A).
From the data, we can construct a VM Communication
Graph (VCG) of request r, wherein each edge reflects a service
call relationship between two VMs (Section IV-B). We further
consider anomaly propagations due to resource contention
among co-located VMs, and construct the APG which includes
two types of edges, i.e., collocation dependency edges and
service call edges (Section IV-C).

Now we can go to the second step, i.e., finding the
most likely root causes in the APG. As shown in the right
box in Figure 3, there are three modules. The challenge
here is how to evaluate the likelihood of one node to be a
root cause. We propose a metrics, similarity, to solve this
problem. In order to derive the similarity, we need to compute

the service time of each component within the multitier
service and monitor the resource utilization of each VM. This
job is completed in the module of Metrics data collection
(Section V-A). Then we calculate the similarity of each VM in
the APG using these metrics data (Section V-B). We further
incorporate the probability of VMs propagating their anom-
alies through the APG in our system by running the random
walk algorithm, and finally determine a list of possible root
causes for the anomaly a (Section V-C).

Among all modules in the system, two modules, Online
request tracing and Metrics data collection, should be always
running while the multitier service is serving. They contin-
uously monitor the service and save data in the database.
We refer to this subsystem as Data collection subsystem,
shown in upper part of the figure.

The other four modules are activated in response to anom-
alies submitted by tenants. We refer to the subsystem including
these four modules as Root cause localization subsystem.
It accepts appeals from tenants, and returns a list of ranked
root causes.

IV. ANOMALY PROPAGATION GRAPH

In this section, we would introduce how we accomplish the
first task proposed in Section III-B. The nodes in GAPGa are
in fact VMs which are possible root causes that can result
in the anomaly a. An edge vmi → vmj in GAPGa means
vmi depends on vmj during handling a request. There are
two types of edges, i.e. service call dependency edge and
collocation dependency edge. A service call dependency edge
vmi→vmj means vmi calls vmj during handling a request.
A collocation dependency edge vmi→vmj means vmi and
vmj are co-located in a same physical server, and vmi is a
service component of the multitier service under study. In fact,
these dependency edges are the reverse directions of anomaly
propagation.

Obviously, to construct the graph GAPGa , we need to find
out all possible propagation paths, i.e., collocation dependency
edges and service call dependency edges. As a cloud provider,
it is easy for him to retrieve information about collocated
VM pairs, i.e., collocation edges. For example, in OpenStack,
a cloud provider can get VM distributions in the physical
machines through APIs implemented in the project nova.

In terms of service call edges, as we know, for a request r,
it would trigger a series of service calls, i.e., communications,
among a set of VMs. All these service call edges would form
a directed acyclic graph. Let us call this graph as VM Com-
munication Graph (VCG). In terms of graph topology, VCG
is in fact a subgraph of the corresponding APG.

However, cloud providers do not have the information
directly about call relationships of services run by their
tenants. They have to collect and analyze data to infer these
service call dependency edges. Considering tenants’ privacy
concerns and the complexity of multitier services, we argue
that cloud providers should construct VCG based on request
tracing technique without intrusiveness to multitier services.

A. Request Tracing of Multitier Services

In this paper, we exploit PreciseTracer proposed by
Sang et al. [16] because it can not only do request tracing
without the knowledge of source code but also get more
accurate results through kernel instrumentation. In multitier
service, a request triggers a series of interaction activities in



1650 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, AUGUST 2018

Fig. 4. Activities with causal relations in the kernel [16].

the OS kernel or shared libraries, e.g. sending or receiving
messages. PreciseTracer uses Systemtap [28] to capture those
activities.

When an individual request is serviced, a series of activities
that have causal or happened-before relationship constitute
a causal path graph. PreciseTracer provides us the causal
path graph which is a directed acyclic graph, wherein ver-
tices are activities of components and edges represent causal
relations between two activities. There are four types of
activities: BEGIN, END, SEND, and RECEIVE. The SEND
and RECEIVE activities are those of sending and receiving
messages. A BEGIN activity marks the start of servicing a new
request, while an END activity marks the end of servicing a
request. PreciseTracer records an activity of sending a message
as Sii,j , which indicates a process i sends a message to a
process j and records an activity of receiving a message as
Rji,j , which indicates a process j receives a message from a
process i.

Figure 4 shows a simple causal path graph which includes
only one activity sequence {R1

c,1, S
1
1,2, R

2
1,2, S

2
2,3, R

3
2,3, S

3
3,x}.

According to the graph, we can calculate the service time of
each component i.e. VM in servicing an individual request.
For example, for the request in Figure 4, the service time of
Machine B is

(
t(S2

2,3)− t(R2
1,2)

)
, where t(·) is timestamp of

the corresponding activity. We also define h(·) as the hostname
of VM where the corresponding activity run.

B. VCG Construction

Now we need to transform the causal graph into VCG for
our further root cause analysis. In a causal path graph, because
of the complexity of multitier service function, a service,
i.e. a process, on one VM might be called many times by one
other VM, and the causal path graph records each individual
time of the communication between these two VMs, i.e., there
are multiple edges between two VMs. Figure 5 gives an
example of such causal path graph produced by PreciseTracer
in the scenario shown in Figure 1. In this graph, service 1 in
vm1 calls service 2 in vm4 for two times. The first call is
represented by S1

1,2 and R2
1,2 (vm1 requests service on vm4);

and S2
2,1 and R1

2,1 (vm4 responds vm1’s request). The second
call is described by S1′

1,2 and R2′
1,2; S2′

2,1 and R1′
2,1. Different

from the first call, this time service 2 needs to call service 3
in vm5 for two times to get necessary data and then return
results to service 1.

We do not concern the details of these communications
among services. To solve the problem in this paper, what
we need to know is dependency relations among related
VMs, i.e., service call edges at VM level. As an example,
the corresponding VCG for Figure 5 is shown in Figure 6.

The challenge to transform Figure 5 into Figure 6 is how
to determine the direction of edges between two VMs. As we

Fig. 5. A causal path graph produced by PreciseTracer.

Fig. 6. The VCG corresponding to Figure 5.

know, a complete service call usually consists of two stages,
i.e., stage 1 during which a VM vms sends a request to another
VM vmd, and stage 2 during which vmd responding to vms.
The direction of the edge between two VMs should be from
the requester to the responder, and the VM who initiates the
first communication between two VMs is the requester. So the
steps for us to construct the VCG are as follows:

1) We classify activities in the causal path graph into
different sets according to hostname of each activity, and
the activity set §v includes all activities related to vmv.

2) For each VM vmv, sort the activities in §v according to
their timestamp.

3) For each VM vmv , try to determine directions of its
related edges based on distinguishing the requester and
the responder of a service call.
3.1) For each SEND activity Sii,j ∈ §v, find its corre-

sponding RECEIVE activity Rji,j in the causal path
graph. For example, S1

1,2 is a SEND activity and
its corresponding RECEIVE activity is R2

1,2.
3.2) If we cannot find a SEND activity Sjj,i that satisfies

both h(Sjj,i) = h(Rji,j) and t(Sjj,i) < t(Rji,j), add
the edge h(Sii,j)→h(Rji,j) to the VCG.

C. APG Construction

As we stated at the beginning of Section IV, we need
APGs to analyze possible root causes of an anomaly, and
the APGs should include two types of edges: collocation
dependency edges and service call edges. Now we have found
all collocation edges based on nova APIs and we also obtained
VCGs such as Figure 6 that includes all service call edges.
Then we can constructs the APG by combining VCG and VM
co-location relationship. Take the scenario shown in Figure 1
as an example, assume there is a ViewItem request from TA’s
users. The request will be handled through path 2, and the
APG for this request is shown in Figure 7.

V. ROOT CAUSE LOCALIZATION

In this section, we will try to solve the second task,
i.e., pointing out the most likely root causes from all related
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Fig. 7. The APG of ViewItem requests in Figure 1.

elements included in GAPGa . We define Φa(i) as the probabil-
ity of vmi being the root cause of the anomaly a.

In this paper, an anomaly refers to that the response time of
a request of the multitier services becomes longer than users
can tolerate. For example, in the scenario shown in Figure 1,
assume a user of TA sends a SearchItemsByCategory request r,
and it takes the user very long time to receive the response
of r. The user will complain to TA and TA will regard this
slow response as an anomaly. As we have stated in Section III,
TA has to ask the cloud provider for help to find out the most
likely root causes of this anomaly.

Which VM is the root cause of this slow response for the
request r? Let us denote the root cause VM as vmroot. It is
reasonable to conjecture that vmroot should be very busy when
the anomaly occurs. In other words, vmroot becomes very
busy due to some reasons, e.g., software bugs or resource
exhaustion, and it then causes the slower response for the
request r. Therefore, there should be a correlation, i.e., sim-
ilarity, between the metrics data of vmroot and the response
time. As there are many services provided by the multitier
service application and if a request calls a different service,
it may form a different causal path graph. We define R(r) as
a collection of requests that form the same causal path graph
as r does. Obviously different requests in the R(r) happen
at different time. We define S(vmi,R(r)) as the similarity
between the metrics data of vmi and the response time of
requests R(r), e.g., R2 mentioned in Section III. The similarity
can be used to derive the probability of being the root cause
to a certain extent.

However, one VM vmi with a high S(vmi,R(r)) is not
a sufficient condition to determine that vmi must be a root
cause. For example, in Figure 1, assume both TA and TB are
providing online auction services, it is highly possible that
more users will visit the two websites at weekends and then
more requests need to be handled at weekends for services of
both TA and TB. It is natural that TA’s response time will be
longer than weekdays. At the same time, we can see vm6

will be busier than weekdays. Performance of vm6 shows
a high correlation with the response time of TA’s requests,
i.e., S(vm6, R2) is high. Can we conjecture that vm6 is a
root cause of TA’s slow response at weekends? Obviously,
we cannot. vm6 is correlated with TA’s response time only
because TA and TB share a same periodic user behavior
pattern.

How to exclude these VMs during our root cause analysis?
In the case mentioned above, vm6 does not belong to TA
and it appears in APG just because it is co-located with vm1

of TA. So vm6 can interfere with the performance of TA’s
services only by its resource contentions with vm1. If this
resource contention really results in longer response time,
it must be true that S(vm1, R2) will also be high. Therefore,
we can say that if both S(vm6, R2) and S(vm1, R2) are high,
the anomaly of TA might be caused by vm6; if S(vm6, R2)
is high and S(vm1, R2) is small, vm6 cannot be a root cause
of the anomaly. Here we say vm1 blocks the possibility of

vm6’s anomaly propagation through the APG. In our solution,
we exploit the random walk algorithm to reflect the possibility
of anomaly propagation.

Proposition 2: A VM being the root cause must meet two
conditions: 1) the metrics data of the VM must have a high
similarity with the response time of the requests R(r), 2) the
VM must have a high possibility to propagate its anomaly
through APG.

Obviously, we need to collect related metrics data continu-
ously in order to calculate similarity of metrics data anytime
when an anomaly occurs. We will introduce our data collection
method in Subsection V-A. In Subsection V-B, we would
show how to calculate the similarity of each VM in the APG.
In Subsection V-C, we will run a random walk algorithm over
the APG to further include the factor of propagation possibility
to determine the Φa(i).

A. Metrics Data Collection

For one VM vmi, there can be various metrics to evaluate
its performance. Which metrics is better to be used in calcu-
lating S(vmi,R(r))? If vmi is included in the APG because
vmi provides a service which is necessary to complete the
request r, the service time of vmi spent on vmi to handle the
request would be a good choice. If vmi is included into the
APG through collocation dependency relationship, resource
contention is the reason that vmi can interfere with the
performance of multitier services, then resource consumption
would be a good choice.

So we need to collect different types of metrics data i.e., the
service time and the resource consumption, for different types
of VMs :

1) Service Time Computation: As we know, one multitier
service needs many VMs to work coordinately to serve a
request r, so the response time of r is the sum of the service
time spent on each VM to handle the request r. The service
time ηi of each vmi for the request r can be calculated from
the corresponding causal path graph as follows:

ηi =
∑

x

(
t(Sii,x)− t(Rix,i)

)−
∑

y

(
t(Riy,i)− t(Sii,y)

)

In this formula, x stands for the VM which sends request to
vmi and y stands for the VM to which vmi sends request. The
first item is the sum of all intervals that vmi spends in handling
the requests from other VMs. Because the first item includes
the intervals that vmi spends in waiting for the response from
other VMs, so we subtract the sum of waiting intervals in
the second item.

2) Resource Utilization Collection: We use Ganglia mon-
itoring system [29] to collect resource utilization data.
Ganglia is a scalable distributed monitoring system for
high-performance computing systems such as clusters and
Grids and it can achieve very low per-node overheads and high
concurrency. By default, Ganglia only collects metrics data of
physical machines. Fortunately there is a plugin sFlow [30]
which can collect metrics data of virtual machines through
hypervisor in physical machines. So we use Ganglia and sFlow
to collect CPU and memory consumption, I/O and network
throughput for every VM.

B. Similarity Calculating

If an anomaly a of request r occurs, we can construct the
APG. Given the APG, our goal is to locate the VM in the APG
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Fig. 8. The changing trend of metrics data of different VMs.

that causes a. Our intuition is that the correlation between
metrics data of one VM and the response time of R(r) can
be used to measure the probability of the VM being the root
cause to a certain extent.

Again, let us take the scenario shown in Figure 1 as
an example. We gradually increase vm8’s CPU utilization
rate and send SearchItemsByCategory requests continuously.
We monitor metrics data of each VM and the response time
of users’ requests. Figure 8 shows the changing trend of the
response time of SearchItemsByCategory requests which are
handled through the path 2, the service time of vm5, the ser-
vice time of vm1 and the CPU utilization of vm8. From the
figure, we can observe that except for the curve of the service
time of vm1, the other three curves are of strong correlation
when the performance of vm5 is interfered with, i.e., from ts
to te. We will show how to determine ts and te later. But,
in the beginning, the curves, i.e., before ts, the response time
and CPU utilization of vm8 are of weak correlation because
the CPU utilization of vm8 is low and the performance of vm5

hasn’t been interfered with at that time. This phenomenon has
been illustrated in Figure 2, where the response time does not
increase with the CPU utilization of vm8 when vm8’s CPU
utilization is smaller than a certain threshold. In Figure 8,
the root cause is vm8 according to our experiment setting,
and the experiment result shows that metrics data of vm8 and
vm5 are both of strong correlation with the response time.
It proves our Proposition 2 is reasonable.

If vmi is a component of the multitier service, we calculate
the similarity according to its service time ηi. For a co-located
VM, we first calculate the correlations between the response
time of requests and its contentions of different resource types,
e.g. CPU and memory, I/O and network throughput, and then
we select the maximum of these correlations to denote its
similarity. This is because the service performance can be
affected due to contentions of different types of resources.

We define t(r) as the timestamp when request r is issued
and τ(r) as the response time of request r. Then we define
a function R(i,M,R(r), ts, te) that calculates the correlation
between the metric M of vmi and response time of requests
R(r) which are issued from ts to te based on Pearson
Correlation Coefficient. The calculation formula is as follows:

R(i,M,R(r), ts, te) =
Cov

(
M
te
ts(M, i),Ttets (R(r))

)

σ
M

te
ts

(M,i)σT
te
ts

(R(r))

wherein M
te
ts(M, i) is a series of metric data M of vmi from

ts to te and T
te
ts (R(r)) is a series of response time of related

requests (share a same causal path graph) issued from ts
to te. The similarity S(vmi,R(r)) is calculated based on the

correlation defined above as follows:

S(vmi,R(r))

=
{R(i, η,R(r), ts, te), if vmi ∈ V CG
max{R(i, υ,R(r), ts, te)|υ ∈ Υ}, otherwise

wherein Υ is the set of types of resource competed for by
VMs. For example, Υ can be {CPU, Memory, I/O, Network}.

Given the formula above, we now need to solve two
problems. The first one is to collect history data of service
time ηi of vmi when vmi handles requests R(r). The second
problem is to determine the time point ts and te.

For the first one, because the service time can be calculated
based on the causal path graph according to Equation 1,
we only need to find out all causal path graphs of requests
in R(r), then we can calculate the history data of service time
ηi of vmi. As R(r) are requests that can form the same causal
path graph as r does, we need to find out all the causal path
graphs that are the same as the causal path graph of request r.

To find out all the same causal path graphs, we need to
extract the sequence of a causal path graph. Specifically,
given a causal path graph, we can get the activity sequence §
according to the topological sorting algorithm. We then use the
attribute tuple (activity type, program name) of activity A to
represent the activity A in §. Using the method above, we can
get the sequence of (activity type, program name) tuple for
every causal path graph. For example, the sequence of causal
path graph in Figure 5 are {(B,P1), (S, P1), (R,P2), (S, P2),
(R,P1), (S, P1), (R,P2), (S, P2), (R,P3), (S, P3), (R,P2),
(S, P2), (R,P3), (S, P3), (R,P2), (S, P2), (R,P1), (E,P1)},
wherein B, E, S and R stand for activity type BEGIN, END,
SEND, and RECEIVE, Pi stands for the name of process i.
At last, we only need to find out causal path graphs that have
the same sequence of (activity type, program name) tuple as
the causal path graph of r does.

The second problem is to determine the time point ts and te.
We set te as the time point when a tenant submits the root
cause analysis job to our system. We set ts as the time point
when the performance of multitier service starts to degrade.
It is reasonable to assume the tenant knows ts and can provide
it to the system. If the system cannot get ts from tenants,
we can find out it from historical data as follows:

ts = min{t| τ(rt)
E

(
T
t
t−w (R(r))

) > δ}

wherein rt is the request whose timestamp is t and w is the
length of the time window. That is we set ts as the earliest
time point t when the ratio of response time of request that
was issued at t to the average response time of requests that
are issued during the previous time window is bigger than a
threshold δ (e.g. 1.2).

C. Random Walk Over APG

As we have discussed at the beginning of this section, high
S(vmi,R(r)) is a necessary but not sufficient condition to
conclude that vmi is a root cause of the anomaly of request r.
We now need to further consider the probability that those
VMs propagate their anomaly through the APG.

We propose to conduct a random walk over the APG to
emulate the procedure of one cloud provider tracing back to
the root causes of the anomaly. The walker starts from the
VM where the anomaly occurs, and moves forward from one
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Fig. 9. Experimental environment

node to one of its neighbors. Given an APG GAPG(V,E), let
us define a matrix Q as follow.

• Forward-edges: as we described in Section IV, the edges
in APG have the reverse directions of anomaly propa-
gations. That is if edge eij ∈ E, vmj may propagate
anomalies to vmi. Recall that a node with higher sim-
ilarity is more likely to be a root cause. Therefore the
walker prefers to move to vmj with higher similarity to
trace back to the anomaly source. As a result, we set Qij
as S(vmj ,R(r)) if edge eij ∈ E.

• Backward-edges: it is possible that the walker arrives at
VMs with low similarity. In that case, he may want to
go back to the previous node and then he can move to
other neighbors from that node. We add backward-edges
for such cases. If eij ∈ E and eji /∈ E, Qji is set
as ρS(vmi,R(r)), where ρ is a parameter set by the
administrator and ρ ∈ [0, 1).

• Self-edges: when the walker stands in a VM with a
higher similarity than the neighbors of the VM, it is
an indication that the VM is likely to be one of root
causes, so the walker should stay at the VM. As a result,
we add self-edges, if we set Qii as the result of the
similarity of vmi minus the maximum similarity score
of the neighboring VMs.

In summary, we calculate matrix Q according to the fol-
lowing formula.

Qij =

⎧
⎪⎪⎨

⎪⎪⎩

S(vmj ,R(r)), if eij ∈ E
ρS(vmj ,R(r)), if eji ∈ E, eij /∈ E
max

(
0, S(vmi,R(r)) −maxk:ejk∈ES(vmk,R(r))

)
,

if j = i

We normalize every row of the matrix Q, and get our
transition probability matrix Q̄ as follows.

Q̄ij =
Qij∑
j Qij

Now we can do random walk over the APG, and the
probability of the random walker moving from vmi to vmj

is Q̄ij . Let the walker move a lot of steps, and we count
the number of visits on each VM. More visits on a certain
VM implies that the VM is more likely to be a root cause.

VI. EXPERIMENT AND EVALUATION

A. Experimental Environment

As shown in Figure 9, we implement and deploy our
proposed system to do root cause analysis in our real cloud
platform. We use OpenStack [32] which is a well-known
enterprise-class cloud computing stack used for both private

and public cloud computing infrastructure to do VM man-
agement and resource allocation. We use PreciserTracer [16]
to do request tracing of multitier services to construct causal
path graph of requests. PreciserTracer needs to deploy an
agent called TCP_Tracer on each VM to record interaction
activities of interest. Then PreciserTracer would correlate those
activity logs of different VMs into causal path graphs. We then
calculate the metrics data about service time of each VM from
the causal path graphs, and store the results in the database.
We also use the Ganglia which is deployed on each physical
server to collect resource utilization of each VM. The root
cause localization subsystem can find out the root cause list
and corresponding probability if an anomaly of a request
occurs.

B. Performance Evaluation

Baseline methods. For the purpose of comparison,
we firstly introduce three baseline methods:

• Random Selection (RS): A human without any domain
knowledge will examine VMs in random order. We mimic
this behavior by issuing random permutations.

• Sudden Change (SC): It compares the metrics in the
current and previous time windows and checks if there
is any sudden change between the two time windows.
It then calculates the ratio between average metrics in
the current and previous time windows and refers to this
ratio as the root cause score of each VM.

• Distance Based Rank (DBR) [9]: In DBR, for every
component c, it forms a propagation graphs wherein
nodes are a set of anomalous components that can be
reached from c. Then the problem of finding out the
root cause can be transformed into selecting the best
propagation graph. The rank of a propagation graph
is determined by the minimum total distance from the
source entity to all other anomaly entities.

Evaluation metric. We use the following two evaluation
metrics proposed by [8] to quantify the performance of each
method on a set of anomalies A, where ψa(i) means the rank
of vmi as the root cause of an anomaly a and Ia(i) represents
whether vmi actually is the root cause of an anomaly a (that
is, either 0 or 1):

• Precision at top K (PR@K) indicates the probability that
top K VMs given by each algorithm actually are the root
causes of each anomaly case.

PR@K =
1
|A|

∑

a∈A

∑
i:ψa(i)≤K Ia(i)

min (K,
∑
i Ia(i))

• Mean Average Precision (MAP ) quantifies the over-
all performance of a method, where N is the number
of VMs:

MAP =
1
|A|

∑

a∈A

∑

1≤k≤N
PR@k

We also use two metrics to quantify the cost for a cloud
provider to diagnose an anomaly with the help of our system.
Assume the operator gets the list from our system, and then
he checks VMs one by one, from VM with higher probability
to lower probability, to recover the service.

We define Na(i) as the number of VMs that are not true
root causes but have been checked before checking the root
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Fig. 10. Response time of different cases.

cause vmi of the anomaly a:

Na(i) =

{∑
1≤j≤ψa(i)(1 − Ia(j)), if Ia(i) = 1

0, if Ia(i) = 0

When Ia(i) is 0, Na(i) is defined as 0 for convenience.
Based on the definition of Na(i), we define our two metrics,

AFP (average false positive) and MFP (max false positive)
as follows:

AFP =
1
|A|

∑

a∈A

∑
1≤i≤N Na(i)∑
1≤i≤N Ia(i)

MFP =
1
|A|

∑

a∈A

max{Na(i)|1 ≤ i ≤ N}

C. Root Cause Analysis at the VM Level

In the first experiment, we use the same scenario as shown
in Section III-A. There are two tenants in the cloud, each of
which runs a 3-tiered web application RUBiS. In this scenario,
the mapping between server processes and the VMs is one-to-
one, and we only need to find out root causes at the VM level.

We consider 4 cases for our performance evaluation under
this scenario. The first case is to emulate the anomaly caused
by one component within the service and propagated through
service calls. The second case is to emulate the anomaly
caused by collocated VMs of other tenants and propagated
through collocation edges. The third case is to emulate the
situation that resource insufficiency on collocated VMs cannot
propagate to affect the service. The forth case is to emulate
a more complex situation where resource insufficiency occurs
on two collocated VMs and one of them cannot propagate.
Technically, we inject anomalies to the RUBiS of TA as
follows:

• Case 1: We inject delays into PHP “Search-
ItemsByCategories” function on vm4, and the delay is a
random value between 2ms and 25ms for each request.

• Case 2: We orchestrate the CPU utilization of vm8 from
10% up to 90% linearly and then from 90% down to 10%
linearly using the tool lookbusy [31]. It would interfere
with the performance of mysql on vm5, and finally results
in an anomaly of the service.

• Case 3: We orchestrate the CPU utilization of vm6 from
10% up to 90% linearly and then from 90% down to
10% linearly. It would not interfere with the performance
of LVS on vm1 because vm1 only requires little CPU
resource.

• Case 4: We combine case 2 and case 3. That is,
we orchestrate the CPU utilization of both vm8 and vm6

at the same pace.
Figure 10 shows the response time of SearchItemsByCate-

gory requests of TA’s website in different cases. We can find
that except for case 3, the performance of the website degrades

Fig. 11. Precision at top K of different methods in scenario 1.

TABLE I

MAP OF DIFFERENT METHODS

seriously. For case 3, because the CPU requirement of LVS on
vm1 is so low that vm6 cannot interfere with the performance
of vm1 by CPU resource contention, the performance of the
website doesn’t degrade.

For later comparison of methods, let us first point out the
root causes of above three anomalies as ground truth. The root
cause of case 1 is vm4. For case 2, the performance of the
website degrades because the performance of vm5 is interfered
with vm8, so the root causes of case 2 are vm8 and vm5. For
case 4, as the increase of the CPU utilization of vm6 does not
interfere with the performance of the website, the root causes
of case 4 are vm8 and vm5.

Next we conduct different root cause analysis methods to
localize the root causes of the three anomalies i.e., case 1,
2 and 4, to compare their accuracies. In this experiment,
the A in the definition of our metrics includes the above three
anomalies.

Experiment Results. We evaluate our method and all
the three baseline methods on three cases. Figure 11 shows
PR@1, PR@2, PR@3 of different methods. Table I shows the
average MAP metric of different methods. In every evaluation
metric, our method outperforms the baseline methods by a
large factor. More specifically, in terms of MAP, the improve-
ment over the DBR method is approximately 38.9%.

D. Root Cause Analysis of Anomalies Arising
From Multiple Causes

To evaluate our method in large-scale cloud platform and
more complicated scenario, we conduct simulation experi-
ments. CloudSim [37], [38] is a generalized simulation frame-
work that allows modeling, simulation and experimenting
the cloud computing infrastructure and application services.
However, CloudSim can only simulate very simplistic appli-
cation models without any communicating tasks within the
data center. Networkcloudsim [39] extends the function of
CloudSim. It can simulate applications with communicating
elements or tasks such as MPI (message passing interface)
and workflows. So we can use Networkcloudsim to simulate
multitier services in cloud environment conveniently.

Networkcloudsim defines a basic and general structure
i.e., a Java class, called AppCloudlet to simulate complex
parallel and distributed services. Each AppCloudlet object
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consists of several communicating elements, i.e., Network-
Cloudlet. Each NetworkCloudlet runs in a single virtual
machine and consists of communicating and computing stages.

We firstly design an algorithm to construct a cloud environ-
ment and simulate the allocation of VMs to physical servers
when a tenant applies for VMs. We also design an algorithm
to construct a topology of multi-tier service for cloud tenants.
Then we use Networkcloudsim to simulate the running of the
cloud and services of tenants.

We simulate a cloud with Nu tenants. We randomly
select a tenant from the Nu tenants as our target tenant
u∗ for our study. Let U ′ denote the set of other tenants,
i.e., U ′ = (U − u∗).

The cloud has Np physical servers, and the number of CPU
cores of every physical servers is set as a value randomly
selected from integers between Cl and Ch. If the number of
CPU cores of one physical server is c, the max number of VMs
allocated to the physical server is set to be (2 ∗ c). We can
derive that one tenant in U ′ can have ((Cl+Ch)∗Np/(Nu−1))
vms in average.

The frequency of every CPU core of physical servers is F.
Each vm has only one CPU core and its frequency is set to
be F/2. The VM allocation procedure is shown in Algorithm 1.
In our simulation, the parameter Np, Nu and F are set as
10000, 500 and 3GHz respectively.

Algorithm 1 vm Allocation in the Cloud
Parameters: Np: the number of physical servers

Cl,Ch: min and max num of cpu cores of PM
Nu: the num of tenants, Nt: vm number of u∗

Output: result: {(tenantId, vmId)→ pmId}
1: result← {}, count← 0, index_u∗ ← randomInt(Nu)
2: avg_num← ((Cl + Ch) ∗ Np/(Nu − 1))
3: while count < Nu do
4: i← randomInt(Nu)
5: num← randomInt(avg_num− 10, avg_num+ 10)
6: if tenanti has not been allocated then
7: count← count+ 1
8: if i == index_u∗ then
9: num← Nt

10: for j ∈ range(0, num) do
11: find a PM k with free resource
12: add (i,j) → k to result
13: return result

Now we generate multitier services topology for u∗, since
we need to know the service call edges of u∗. There are
three parameters for this generation. The number of VMs of
the tenant u∗ is Nt. In each layer of the multi-tier service,
the number of VMs is set as a random integer between Ll

and Lh, where Ll is the lower bound and Lh is the upper
bound. Every VM in ith layer is connected to every VM in
(i+1)th layer. In our simulation, we generate topologies using
four settings in Table II.

Given the cloud and the service topology of the target
tenant, we run one NetworkCloudlet in every VM of u∗ and set
up the communication relationships among NetworkCloudlets
based on the generated topology.

We define Os(ts, te, η1, η2, linear) on NetworkCloudlet
C as the operation that we orchestrate the service time of
NetworkCloudlet C from η1 up to η2 linearly in the time

TABLE II

SETTINGS OF TOPOLOGY GENERATION

window (ts, te). And we define Os(ts, te, η1, η2, random)
on NetworkCloudlet C as the operation that we set the service
times of NetworkCloudlet C as values randomly selected from
integer between η1 and η2 in the time window (ts, te). Simi-
larly, Of (ts, te, F1, F2, linear) on VM vm is the operation
that we orchestrate the CPU frequency of vm from F1 up to
F2 linearly in the time window (ts, te). Of (ts, te, F1, F2,
random) on VM vm is the operation that we orchestrate the
CPU frequency of vm as values randomly selected between
F1 and F2 in the time window (ts, te).

We attempt to do anomaly injection to the multitier service
of u∗ as the following four cases, and each anomaly arises
from multiple causes. In this experiment, the set A includes
the following four anomalies.

• Case 1: We firstly select N
f
v NetworkCloudlets of u∗

and apply operation Os(0, 20, 1500, 2000, linear) on
these NetworkCloudlets synchronously. Let us denote the
set of these selected NetworkCloudlets as Vf . Secondly,
to increase the complexity for our performance eval-
uation, we select another N

f
v NetworkCloudlets of u∗

to simulate normal fluctuations of service time, that is
we apply operation Os(0, 20, 100, 150, linear) on
these NetworkCloudlets synchronously. Let V̂f denote
the second set of selected NetworkCloudlets. The root
causes of this case are VMs which run NetworkCloudlets
in Vf .

• Case 2: Similar to case 1, we apply operation Os(0, 20,
1500, 2000, random) on NetworkCloudlets in Vf syn-
chronously and we apply operation Os(0, 20, 100, 150,
random) on NetworkCloudlets in V̂f synchronously. The
root causes of this case are VMs which run Network-
Cloudlets in Vf .

• Case 3: We firstly select N
f
v VMs of tenants in U ′ to apply

operation Of (0, 20, F/2, F , linear) on these selected
VMs synchronously. Let Vf denote the set of these VMs.
Secondly, to increase the complexity of finding out root
causes, we select another N

f
v VMs of U ′ to simulate

normal fluctuations of resource utilization rate, and we
apply the operation Of (0, 20, F/20, F/2, linear) on
these VMs synchronously. We denote the second set of
selected VMs as V̂f . The root causes of this case are VMs
in Vf and {H(i)|∀vmi ∈ Vf}, where H(i) is the set of
VMs of u∗ which are collocated with vmi.

• Case 4: Similar to case 3, we apply operation Of (0, 20,
F/2, F , random) on VMs in Vf synchronously and we
apply operation Of (0, 20, F/20, F/2, random) on VMs
in V̂f synchronously. The root causes of this case are
VMs in Vf and {H(i)|∀vmi ∈ Vf}.

In summary, we use the first two cases to simulate an
anomaly caused by abnormal components of the multitier ser-
vice and there are some components with normal fluctuations
of service time. And we use the last two cases to simulate
an anomaly caused by performance interference of abnormal
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Fig. 12. PR@K of different methods (different Nt).

Fig. 13. MAP, AFP and MFP of methods (different service sizes).

Fig. 14. MAP, AFP and MFP of all methods (different cloud sizes).

collocated VM of other tenants and there are collocated VMs
with normal fluctuations of resource utilization rate.

We conduct our method and all baseline methods under
different parameter settings. For each setting, we construct
the cloud and the topology of u∗’s service, inject anomalies
as described above, and then run methods to localize root
causes. For each case and each method, we repeat 100 times
and calculate the average of performance metrics.
• Performance and the scale of service. In this experiment,

Nt, the number of VMs u∗ has in its service, is set to be 60,
90, 120 and 150 respectively. Additionally, (Cl, Ch) is set
as (2, 3) and N

f
v is set as 5. Figure 12 shows PR@K , and

Figure 13 shows MAP, AFP and MFP of all methods. We can
see that our method outperforms other methods in terms of
any performance metrics in all settings. As Nt gets bigger,
which means the service becomes larger scale, AFP and MFP
increase and the MAP decreases for all methods.

We calculate the MAP improvement of our method com-
pared with DBR by the formula MAPours−MAPDBR

MAPDBR
, and the

MAP improvements are 45.21%, 47.76%, 48.45% and 70.96%
in different Nt. We can see that our method achieves more
precision improvement than the DBR method for tenants with
more VMs.
• Performance and the size of cloud. In this experiments,

(Cl, Ch) is set to be (1, 2), (2, 3), (3, 4) and (4, 5). These
settings result in four clouds and the number of VMs in
the clouds are 30030, 49992, 69949 and 89915 respectively.

Fig. 15. MAP, AFP and MFP of all methods (different N
f
v ).

TABLE III

RUNNING TIME OF EXPERIMENTS IN SECTION VI-D

Additionally, Nt is set as 90 and N
f
v is set as 5. Figure 14

shows MAP, AFP and MFP of all methods under different
cloud sizes. Obviously, the performance degrades as the cloud
size increases for all methods. The MAP improvement of our
method compared with DBR is 23.45%, 43.55%, 60.02% and
63.12% in different cloud sizes. Again, we see that our method
achieves more precision improvement as cloud size increases
compared with DBR.
• Performance and the number of faults. In this exper-

iments, N
f
v is set as 3, 5, 7 and 9 respectively. Additionally,

Nt = 90, Cl = 2, and Ch = 3. Figure 15 shows MAP, AFP
and MFP of all methods under different N

f
v . We can see that

the performance degrades for all methods as there are more
and more synchronous faults. The MAP improvement of our
method compared with DBR is 14.28%, 60.87%, 70.47% and
70.89% in different N

f
v . We see that our method achieves more

precision improvement as N
f
v increases.

E. Diagnose Time Analysis of Our Method

We analyze the complexity of our method as follows. In the
worst scenario, every VM of u∗ is allocated to a different phys-
ical server, that is the number of physical servers associated
with the APG is Nt. And the average number of VMs in one
physical server is (Cl + Ch). So the number of nodes in the
APG is approximately N

APG ≈ ((Cl + Ch) ∗ Nt).
Our method needs two kinds of computations:
• Similarity calculation: for every node in the APG,

we need to calculate its similarity. The complexity of
this procedure is O(NAPG).

• Random walk over APG: according to [40], the complex-
ity of the random walk algorithm is O(NAPG+N

APG2).
So the total complexity of our method can be about

O(NAPG)+O(NAPG + N
APG2).

Besides the above theoretic analysis on time complexity
of our method, in Table III we also show the running
times of our method for all experiments we conducted in
Section VI-D. Take the first row as an example. It reports the
running times of the four experiments with different service
sizes, i.e., the experiments in Figure 13, and the corresponding
service sizes are 60, 90, 120, and 150. We can find that the
running time increases as the service size increases. Similarly,
we can also find that the running time increases with cloud
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TABLE IV

SIMILARITY AND PROBABILITY OF VM IN CASE 4 OF SUBSECTION VI-C

Fig. 16. MAP, AFP and MFP with and without random walk.

size, while the number of faults does not have a clear impact
on the running time. In almost all experiments we conducted,
our method can get results within 30 seconds. Our code is
written in Python and run on a server with dual-core 3.6GHz
CPU and 4G ram.

F. Discussion of Our Approach

In this paper, we argue that the high similarity between
metrics data of one VM and the response time of the multitier
service is a necessary but not sufficient condition for the VM to
be a root cause. Besides the similarity metrics, we also include
a random walk algorithm to exclude those VMs which are
highly correlated with the multitier service only because of
same periodic user behavior patterns.

We show the necessity of this random walk algorithm by
a data analysis for case 4 in Subsection VI-C. The first row
of Table IV shows the similarity score of each VM (without
random walk), while the second column shows the root cause
probability of each VM, i.e., considering both similarity and
random walk. In case 4, we use the same tool and algorithm
to increase the CPU utilization of vm6 and vm8, so they have
approximately same similarity score, i.e., 0.567 and 0.599.
We can also see that the similarity score of vm1 is 0.052
which is very low. It indicates that vm1 is not affected by
vm6’s high CPU utilization. In other words, vm6 is not a root
cause for TA’s slow response. This is consistent with our result
of random walk. From the second row of the table, we can see
that the root cause probabilities of them given by random walk
algorithm are 0.067 and 0.403. By the random walk algorithm,
we exclude the vm6 from the possible root cause list.

The necessity and value of random walk is also evaluated
in large-scale clouds. We use the same simulation parameters
as the experiments in Figure 15. Figure 16 shows MAP, AFP
and MFP of the system with random walk and without random
walk. Obviously, the system with random walk outperforms
the other one in all cases. The MAP improvement when
using random walk is 2.46%, 23.69%, 25.54% and 26.14%
in different N

f
v . It also proves the necessity of the random

walk over APG.
Therefore, it is necessary for us to use the random walk to

determine the probability of being the root cause, because it
can consider the possibility that a VM propagates its anomaly
through the APG and return the probability more precisely.

Fig. 17. Two tenants’ Storm applications in a cloud.

VII. ROOT CAUSE ANALYSIS AT THE PROCESS LEVEL

In the previous sections, we mainly focus on finding out
root cause at the VM level, that is we can only localize which
VM is anomalous. But in some scenarios, there are VMs that
host multiple server processes. For example, Figure 17 shows
two tenants TA and TB both run a Storm [34] application
Word Count Topology(stream version) [35] in a cloud. In this
scenario, there are two processes i.e., tasks running on each
VM of TA at the same time. If the performance of topology
of TA degrades, we need to find out root cause at the process
level. In other words, we need to localize which process
behaves anomalously.

A Storm application is modeled as a directed graph called
a topology, which usually includes two types of components:
spouts and bolts. A spout is a source of data stream, while a
bolt consumes tuples from spouts or other bolts, and processes
them in the way defined by user code. Spouts and bolts can be
executed as many tasks in parallel on multiple virtual machines
i.e., worker nodes in a cluster.

The application in Figure 17 has a chain-like topology with
one spout and two bolts. The Data spout is a consumer of
the distributed streaming platform Kafka [36]. The Data spout
subscribes one of the topics of Kafka, Kafka will send data
to the spout automatically. The Data spout is connected to
a SplitSentence bolt which splits each line into words and
feeds them to a WordCount bolt using fields grouping. The
WordCount bolt increments counters based on distinct input
word tuples.
TA sets the parallelism of the spout and bolts as 2, that is

for every spout or bolt, there are two tasks running at the same
time in vm1, vm2 and vm3. While TB set the parallelism of
the spout and bolts as 1.

In this scenario, as there are two processes running on the
same VM, the cloud provider cannot use PreciseTracer to do
request tracing and collect metrics data directly. Instead, Storm
provides the Thrift API for users to monitor the topology
running in it without intrusiveness to tenants’ service.

Firstly, the cloud provider can use function getExecutors
to get process list of TA’s Word Count Topology. For each
process, cloud provider can use function getComponent_id to
get name of the process and use function getHost to find out
the VM where the process runs. Based on the process name,
cloud provider can construct the communication relationship
of these processes. For example, there will be an edge between
the process named SplitSentence and the process named
WordCount because the SplitSentence bolt will send words to
WordCount bolt. And based on the VM name, cloud provider
can find out co-located VMs of TB by the API of the cloud
platform. Given these two relationships, cloud provider can
construct the APG as shown in Figure 18. We need to notice
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Fig. 18. The APG corresponding to Figure 17.

Fig. 19. Root cause analysis procedure at the process level.

that some nodes, i.e., the green circles in the APG stand for
processes, so the cloud provider can do root cause analysis at
the process level. Then the cloud provider can use the function
getComplete_ms_avg to get total tuple process time (the time
from Data spout receiving the sentence to WordCount bolt
finishing counting of the words of the sentence) and use the
function getExecute_ms_avg to get the time spent by every
bolt process. Using these metrics data, cloud provider can
calculate the similarity score of those nodes, i.e., the green
circles which stand for processes in the APG. In the meantime,
cloud provider can calculate the similarity score of the rest
nodes, i.e., the blue circles which stand for co-located VMs of
TB based on resource assumption of these VMs. At last, cloud
provider can do the random walk over APG to find out the
root cause list and corresponding probability. The root cause
analysis procedure at the process level is shown in Figure 19.

The experiments and their results are similar to the exper-
iments in Section VI. Due to page limitations, we skip the
details of experiments and results.

VIII. CONCLUSION

In this paper, we propose a solution for a public cloud
provider to help its tenants to localize the root causes of
anomalies of multitier services. Our solution consists of two
parts: a data collection subsystem and a root cause localization
subsystem. The data collection subsystem is running continu-
ously to collect data to be used when anomalies occur. Since
our solution is proposed from the aspect of cloud providers,
we particularly design the data collection subsystem to be
non-intrusive to tenants. This makes our root cause analysis
system more feasible to be deployed in public clouds. The
root cause localization subsystem is responsible to find out
a possible root cause VM list when an anomaly occurs. Our
solution is able to find both factors which can cause anomalies
in public clouds: software bugs of the anomalous service
components and performance interference from other tenant.
We argue that cloud providers are in a better position to
diagnose anomalies caused by performance interference. Our
consideration about interference among tenants is essentially
valuable for tenants to localize the root causes of anomalies
and improve the quality of their services.

We implement and deploy the system in our real-world
small-scale cloud platform and conduct experiments on a
three-tier web application and a Storm topology to show
that our method can find out root causes at both VM and
process level. We also conduct simulation experiments to do
root cause analysis of anomalies that arise from multiple
causes. Experimental results demonstrate that our solution
outperforms previous works.
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