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Abstract— Service architecture adoption is widespread and
brings many benefits, such as agile development and immutable
infrastructure. However, it's hard to govern and understand the
vast service ecosystem as each application evolved independently
and differently (e.g., features and development methods) from
each team. In this paper, we present an approach to model and
process application ecosystem as a knowledge graph. The
application knowledge graph can help with architectural visibility,
operational efficiency, and developer productivity.
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I. INTRODUCTION

Today, eBay’s production system has over 6,000 application
services. It’s challenging to achieve efficient development, due
to various reasons like complex systems, not having proper
knowledge about internal consumers and lack of documentation.
In addition to this, platform upgrades, data-center exit,
compliance and governance, microservices architecture
adoption consumes huge efforts. Hence, gaining visibility inside
service ecosystem is critical. In this work, we propose a novel
approach to provide better visibility, which can help us improve
operation and engineering efficiency (e.g., speedy information
retrieval); support domain-driven design [1]; and recommend
improvements to the above mention challenges.

Hence, we conduct multiple research pieces and build a
system to solve the following high-level problems:

Visibility: Limited visibility inside the eBay ecosystem
which impacts diagnostic-ability. For example, unable to detect
the architectural issue such as inappropriate dependencies for
software and/or hardware; or unable to envision the eBay
infrastructure and ecosystem with customized search.

(Operational) Efficiency: No service or architectural metrics
to systematically and algorithmically provide suggestions to
improve operational efficiency.

“If you can’t measure it, you can’t improve it.”
-Peter Drucker

(Developer) Productivity: There is no centralized system for
efficient information retrieval. In general, operators or
developers have to go through many different tools to retrieve
information.
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II. APPROACH

We propose a vision to connect data sources and break the
boundaries between domains; Figure 1 explains the high-level
concept and possibilities.
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Fig. 1. Knowledge Graph Concept Across eBay Domains

A. Knowledge Graph Construction

To address the problems, Figure 2 explains high-level steps
to construct, enhance and use the knowledge graph. We build
the graph with real-time metrics, business features, and
operational metadata.
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Fig. 2. High-level Overview to Build Knowledge Graph



B. Behavior Metrics and Intelligent Layering

In this step, we calculate the proposed application metrics
and apply machine learning algorithms to automatically cluster
the applications. In the literature, related works of application
metrics are limited to QoS [3] or code quality [4,5].

We propose new metrics which measure the application
popularities, based on run-time dependencies and real-time
traffic volume. We conduct the experiment for all eBay
applications.

For any given application (cluster), p, may has the
dependencies:

(Pxi)' [Dxi] - (px) - [on] -> (ng)

The inbound dependencies: D, = {dxu'dmz"dxl-n} from
the application clusters:P,; = {pxi 1,pxiz..pxin}; and outbound
dependencies: D {de »d d P

Xo
{pxol’ pxoz' : pxom}'

For every dependency d, is associated with attributes:
dt: The count of target endpoints of p,, are being called from p,;
d;: The count of source endpoints of p, are calling to p,; dy:
The daily average volume between all end points; d.: The 95-
percentile latency for most frequent call between all end points.

Xo

to

Xo02"* "Xom

We define the following metrics to measure the connectives
between eBay application clusters:

StruCEssential(px)
Log (Sasen, &) dim(D,)
_ Log(MAX4ep(d®)) * MAXp, cp(dim(D;))

2
StruCConsum (px)
Log (deer,, datc) N dim(on)
_ Log(MAX4ep(d®)) ~ MAX,,ep(dim(D,))
a 2

The Strucgsgentiar and Struceonsum are trying to measure
the structural inbound and outbound impact of a clusters. To ex-
tend and consider traffic volume (the service behaviors):

c LOg(deerl. dy)
trUcCgssential(py) Log(MAX ;¢p(dV))
2

Essential(p,) =

Consumption(p,)
L0g (Zayeny, 4%)
Strucconsum(Px) + Log(MAX ;cp (A7)
B 2

Interoperability(p,)
__ Essential(p,) + Consumption(p,)

2
TheEssential,Consumption, and Interoperability

metrics are designed to define the popularity of a given clusters.
All metrics are nominalized after getting calculated.
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We calculated above metrics for all eBay clusters and used
K-means[6] and canopy clustering[7] to cluster all services and
based on their popularity scores and two sets of clusters are:
“customer-facing oriented”, “domain services”, and “backend”;
“low-activity”, “high-activity”, “mid-activity (frontend)” and
“Mid-Activity (backend)”. Interesting results are also
discovered such as around 80% of the clusters are labeled as
low-activity.
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Fig. 3. Knowledge Graph Design

C. Graph Search and Result Visualization

To tackle the Productivity issue, we build a complete
batching system which fetches data from different sources and
build the knowledge graph automatically. From a research per-
spective, we build an intelligent graph search that dynamically
generates a query to explore the knowledge graph (which
includes service metrics, and intelligent layering).

Figure 3 catpures our POC graph design and Figure 4
(application names are grammaticalized) shows a motivating
example of graph search: high criticality clusters from a team
(blue) are calling low criticality tier application clusters.

The visualization focuses on delivering readable and rich
information in a directed graph format: the edge thickness
represents edge property (e.g. volume); Node size represents the
behavior metrics; and team or organization can differentiate by
different colors (e.g., yellow is one domain team)
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Fig. 4. Knowledge Graph Search Engine

III. RESULTS

We calculated metrics and service layering in section 3.2 on
over 6000 eBay production applications. The initial results with
popularity metrics and automated clustering are manually
validated by three senior architects. We discovered that some of



applications are running under incorrect availability zone which
can impact operational performance and uptime. With 65-80%
accuracy (manual validation for 100 applications), our results
show around 10% of the “high-activity” applications fall into
above mentioned condition.

Since our approach towards a functioning system, the main
outcome is a dependency system powered by a graph DB (Figure
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The functionalities and use cases enabled by our system
named galaxies, include: top-down and bottom-up view of
application along with the dependencies and increased accuracy;
enrich data to enforce application compliance; governance with
clear ownership details; and operational performance
recommendations.

Fig. 5. Dependency System Graph Model

IV. CONCLUSION

In this paper, we presented our approach for building eBay
knowledge graph and use cases: customizable visualization,
application metrics, intelligent service layering, and graph
search. As the next step, we plan to enhance the graph to support
site anomaly detection by presenting suspected events on the
graph with full causality details of each incident. We also plan
to extend this graph to include service API metadata, which will
enable service layering, recommendation and clustering.
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