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Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
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Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
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Citation networks and Maps of science
[Börner et al., 2012]
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Seven Bridges of Königsberg
[Euler, 1735]

Return to the starting point by traveling each 
link of the graph once and only once.



¡ Web as a directed graph:

§ Nodes: Webpages
§ Edges: Hyperlinks
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¡ How to organize the Web?
¡ First try: Human curated

Web directories

§ Yahoo, DMOZ, LookSmart
¡ Second try: Web Search

§ Information Retrieval investigates:
Find relevant docs in a small 
and trusted set
§ Newspaper articles, Patents, etc.

§ But: Web is huge, full of untrusted documents, 
random things, web spam, etc.
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2 challenges of web search:

¡ (1) Web contains many sources of information

Who to “trust”?

§ Trick: Trustworthy pages may point to each other!

¡ (2) What is the “best” answer to query 

“newspaper”?

§ No single right answer

§ Trick: Pages that actually know about newspapers 
might all be pointing to many newspapers
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¡ All web pages are not equally “important”

¡ There is large diversity 
in the web-graph 
node connectivity.
Let’s rank the pages by 
the link structure!
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¡ We will cover the following Link Analysis 

approaches for computing importances

of nodes in a graph:
§ Page Rank

§ Topic-Specific (Personalized) Page Rank

§ Web Spam Detection Algorithms
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¡ Idea: Links as votes
§ Page is more important if it has more links

§ In-coming links? Out-going links?
¡ Think of in-links as votes:

§ www.stanford.edu has 23,400 in-links

¡ Are all in-links are equal?
§ Links from important pages count more
§ Recursive question! 
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¡ Each link’s vote is proportional to the 
importance of its source page

¡ If page j with importance rj has n out-links, 
each link gets rj / n votes

¡ Page j’s own importance is the sum of the 
votes on its in-links
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¡ A “vote” from an important 

page is worth more

¡ A page is important if it is 

pointed to by other important 

pages

¡ Define a “rank” rj for page j
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The web in 1839

“Flow” equations:

ry = ry /2 + ra /2
ra = ry /2 + rm
rm = ra /2

!! … out-degree of node "



¡ 3 equations, 3 unknowns, 
no constants

§ No unique solution
§ All solutions equivalent modulo the scale factor

¡ Additional constraint forces uniqueness:

§ !! + !" + !# = $
§ Solution: !! = $

% , !" = $
% , !# = &

%
¡ Gaussian elimination method works for 

small examples, but we need a better 
method for large web-size graphs

¡ We need a new formulation!
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ry = ry /2 + ra /2
ra = ry /2 + rm
rm = ra /2

Flow equations:



¡ Stochastic adjacency matrix !
§ Let page & has '! out-links

§ If & → ), then  "!" = !
"!

else   "!" = 0
§ ! is a column stochastic matrix

§ Columns sum to 1
¡ Rank vector %: vector with an entry per page
§ *! is the importance score of page &
§ ∑' *' = 1

¡ The flow equations can be written 

! = # ⋅ !
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¡ Remember the flow equation:
¡ Flow equation in the matrix form

! ⋅ # = #
§ Suppose page i links to 3 pages, including j
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¡ The flow equations can be written

! = # $ !
¡ So the rank vector r is an eigenvector of the 

stochastic web matrix M
§ In fact, its first or principal eigenvector, 

with corresponding eigenvalue 1
§ Largest eigenvalue of M is 1 since M is

column stochastic (with non-negative entries)
§ We know r is unit length and each column of M

sums to one, so () ≤ &

¡ We can now efficiently solve for r!
The method is called Power iteration
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NOTE: x is an 
eigenvector with 
the corresponding 
eigenvalue λ if:

#$ = &$



r = M·r

y       ½    ½    0     y
a   =  ½     0    1     a
m       0    ½    0    m
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¡ Given a web graph with n nodes, where the 

nodes are pages and edges are hyperlinks

¡ Power iteration: a simple iterative scheme
§ Suppose there are N web pages

§ Initialize: r(0) = [1/N,….,1/N]T

§ Iterate: r(t+1) = M · r(t)

§ Stop when |r(t+1) – r(t)|1 < e
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|x|1 = å1≤i≤N|xi| is the L1 norm 
Can use any other vector norm, e.g., Euclidean



¡ Power Iteration:

§ Set *+ = 1/N

§ 1: *′+ = ∑'→+ -!.!
§ 2: * = *′
§ Goto 1

¡ Example:

ry 1/3 1/3 5/12 9/24 6/15
ra = 1/3 3/6 1/3 11/24 … 6/15
rm 1/3 1/6 3/12 1/6 3/15
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Iteration 0, 1, 2, …

ry = ry /2 + ra /2
ra = ry /2 + rm
rm = ra /2
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Iteration 0, 1, 2, …

ry = ry /2 + ra /2
ra = ry /2 + rm
rm = ra /2



¡ Imagine a random web surfer:

§ At any time ), surfer is on some page *
§ At time ) + ,, the surfer follows an 

out-link from * uniformly at random

§ Ends up on some page - linked from *
§ Process repeats indefinitely

¡ Let:
¡ .()) … vector whose *th coordinate is the 

prob. that the surfer is at page * at time )
§ So, .()) is a probability distribution over pages
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¡ Where is the surfer at time t+1?

§ Follows a link uniformly at random
! " + $ = & ⋅ !(")

¡ Suppose the random walk reaches a state 
! " + $ = & ⋅ !(") = !(")
then .()) is stationary distribution of a random walk

¡ Our original rank vector * satisfies  * = & ⋅ *
§ So, & is a stationary distribution for 

the random walk

)(M)1( tptp ×=+
j

i1 i2 i3
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¡ A central result from the theory of random 

walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and 

eventually will be reached no matter what the 
initial probability distribution at time t = 0
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¡ Does this converge?

¡ Does it converge to what we want?

¡ Are results reasonable?
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¡ Example:

ra 1 0 1 0
rb 0 1 0 1
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¡ Example:

ra 1 0 0 0
rb 0 1 0 0
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2 problems:

¡ (1) Some pages are 
dead ends (have no out-links)
§ Random walk has “nowhere” to go to

§ Such pages cause importance to “leak out”

¡ (2) Spider traps:

(all out-links are within the group)
§ Random walked gets “stuck” in a trap

§ And eventually spider traps absorb all importance
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Dead end

Spider trap



¡ Power Iteration:

§ Set !+ = 1
§ !+ = ∑'→+ -!.!

§ And iterate

¡ Example:

ry 1/3 2/6 3/12 5/24 0
ra = 1/3 1/6 2/12 3/24 … 0
rm 1/3 3/6 7/12 16/24 1
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Iteration 0, 1, 2, …

y

a m

y a m
y ½ ½ 0
a ½ 0 0
m 0 ½ 1

ry = ry /2 + ra /2
ra = ry /2
rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m.



¡ The Google solution for spider traps: At each 

time step, the random surfer has two options

§ With prob. b, follow a link at random

§ With prob. 1-b, jump to some random page

§ Common values for b are in the range 0.8 to 0.9
¡ Surfer will teleport out of spider trap 

within a few time steps
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¡ Power Iteration:

§ Set !+ = 1
§ !+ = ∑'→+ -!.!

§ And iterate

¡ Example:

ry 1/3 2/6 3/12 5/24 0
ra = 1/3 1/6 2/12 3/24 … 0
rm 1/3 1/6 1/12 2/24 0
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Iteration 0, 1, 2, …

y

a m

y a m
y ½ ½ 0
a ½ 0 0
m 0 ½ 0

ry = ry /2 + ra /2
ra = ry /2
rm = ra /2

Here the PageRank “leaks” out since the matrix is not stochastic.



¡ Teleports: Follow random teleport links with 
probability 1.0 from dead-ends
§ Adjust matrix accordingly
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Why are dead-ends and spider traps a problem 

and why do teleports solve the problem?

¡ Spider-traps are not a problem, but with traps 
PageRank scores are not what we want
§ Solution: Never get stuck in a spider trap by 

teleporting out of it in a finite number of steps
¡ Dead-ends are a problem
§ The matrix is not column stochastic so our initial 

assumptions are not met

§ Solution: Make matrix column stochastic by always 
teleporting when there is nowhere else to go
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¡ Google’s solution that does it all:

At each step, random surfer has two options:
§ With probability b,  follow a link at random

§ With probability 1-b, jump to some random page

¡ PageRank equation [Brin-Page, 98]

%! =&
"→!

' %"
("
+ (1 − ') 1.
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di … out-degree 
of node i

This formulation assumes that & has no dead ends. We can either 
preprocess matrix & to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends.



¡ PageRank equation [Brin-Page, ‘98]

+' =,
(→'

- +(.(
+ (1 − -) 11

¡ The Google Matrix A:

2 = - 3 + 1 − - 1
1 *×*

¡ We have a recursive problem: * = 4 ⋅ *
And the Power method still works!

¡ What is b ?

§ In practice b =0.8,0.9 (make 5 steps on avg., jump)
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[1/N]NxN…N by N matrix
where all entries are 1/N



y
a    =
m

1/3
1/3
1/3

0.33
0.20
0.46

0.24
0.20
0.52

0.26
0.18
0.56

7/33
5/33

21/33
. . .
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1/2 1/2   0
1/2   0    0
0   1/2   1

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

y   7/15  7/15   1/15
a   7/15  1/15   1/15
m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

A


