How Powerful are
Graph Neural Networks

Joint work with R. Ying, J. You, M. Zitnik, W. Hamilton, W. Hu, et al.
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New Paradigm For Discovery

Data Science,
Machine Learning
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Massive data: Observe “invisible” patterns



Modern ML Toolbox
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Text/Speech

Modern deep learning toolbox Is

designed for simple sequences & grids
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But not everything
can be represented as
a sequence or a grid

How can we develop neural
networks that are much more
broadly applicable?

New frontiers beyond classic neural
networks that learn on images and
Sequences




Networks: Common Language

co-worker

Tom

brothers friend

Albert

Protein 5
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Deep Learning in Graphs

Graph Regularization, Graph

convolutions e.g., dropout convolutions

)
&
O

X

Activation
function

Predictions: Node labels,
New links, Generated

Input: Network graphs and subgraphs

Jure Leskovec, Stanford University 8




Why is it Hard?

But networks are far more complex!

= Arbitrary size and complex topological
structure (i.e., no spatial locality like grids)

S o

Networks Images
= No fixed node ordering or reference point
= Often dynamic and have multimodal features

kovec, Stanford University



GraphSAGE:

Graph Neural Networks

Inductive Representation Learning on Large Graphs.

W. Hamilton, R. Ying, J. Leskovec. Neural Information Processing Systems (NIPS), 2017.

Representation Learning on Graphs: Methods and Applications.
W. Hamilton, R. Ying, J. Leskovec. IEEE Data Engineering Bulletin, 2017.

http://snap.stanford.edu/graphsage

Jure Leskovec, Stanford University

10


https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
http://snap.stanford.edu/graphsage

Setup

We have a graph G:

= I Is the vertex set

= A is the (binary) adjacency matrix

= X € R™IVl is a matrix of node features

= Meaningful node features:
= Social networks: User profile

= Biological networks: Gene expression profiles,
gene functional information

kovec, Stanford University



Graph Neural Networks

Idea: Node’s neighlborhood defines a
computation graph

Determine node Propagate and
computation graph transform information

Learn how to propagate information across
the graph to compute node features

The Graph Neural Network Model. Scarselli et al. IEEE Transactions on Neural Networks 2005
Semi-Supervised Classification with Graph Convolutional Networks. T. N. Kipf, M. Welling, ICLR 2017
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http://ieeexplore.ieee.org/document/4700287/
https://arxiv.org/pdf/1609.02907.pdf

Graph Neural Networks
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—ach node defines a computation graph

= Each edge in this graph is a
transformation/aggregation function

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.



https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf

Graph Neural Networks

TARGET NODE

l

INPUT GRAPH

Neural networks

Intuition: Nodes aggregate information from
their neighbors using neural networks

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.



https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf

|[dea: Aggregate Neighbors

Intuition: Network neighborhood

defines a computation graph

Every node defines a computation
graph based on its neighborhood!

® ® ® @ °
o 0 ] S i

Can be viewed as learning a generic linear combination
of graph low-pass and high-pass operators

Jure Leskovec, Stanford University 15
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Our Approach: GraphSAGE
qb(Z hy))
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k + 15t level Transform A’s own Transform and aggregate
embedding of node A  embedding from level k embeddings of neighbors n

k h/(lo) = attributes X, of node 4, o(-) is a sigmoid activation function

Jure Leskovec, Stanford University 16
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GraphSAGE: Training

INPUT GRAPH

Compute graph for node A Compute graph for node B

= Aggregation parameters are shared for all nodes
= Number of model parameters is independent of |V|
= (Can use different loss functions:

= Classification/Regression: L(hy) = ||va — f (hA)||2

= Pairwise Loss: L(hA,hB) = maX(O 1— dlst(hA,hB))

Jure Leskovec, Stanford University



Inductive Capability

train with a snapshot

new node arrives
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generate embedding
for new node

Even for nodes we
never trained on!



[NeurlPS ‘18]

Emlbedding Entire Graphs

Don’t just embed individual nodes.
Embed the entire graph.

Problem: Learn how to hierarchical pool the
nodes to embed the entire graph
Our solution: DIFFPOOL

= |earns hierarchical pooling strategy

= Sets of nodes are pooled hierarchicallv

Hierarchical Graph Representation L earning with Differentiable Pooling. R. Ying, et al. NeurlPS 2018.



https://arxiv.org/abs/1806.08804

[NeurlPS ‘18]

Embedding Entire Graphs

How expressive are
Graph Neural Networks?

» |earns hierarchical pooling strategy
= Sets of nodes are pooled hierarchicallv

Hierarchical Graph Representation L earning with Differentiable Pooling. R. Ying, et al. NeurlPS 2018.



https://arxiv.org/abs/1806.08804

How expressive are GNNS”?

Theoretical framework: Characterize
GNN'’s discriminative power:

= (Characterize upper bound of the
discriminative power of GNNs

= Propose a maximally powerful GNN w
= Characterize discriminative power GN/N;\ree:
of popular GNNs FER Y

- e . &

How Powerful are Graph Neural
Networks? K. Xu, et al. ICLR 2019.

-

wv W W


https://arxiv.org/abs/1810.00826

Discriminative Power of GNNs

Theorem: GNNs can be at most as
powerful as the Weisfeller-Lehman

graph isomorphism test (a.k.a. canonical
Iabellng or color reﬂnement

->,

Color nodes by their degrees.
» Aggregate colors of neighbors into a multiset.
Compress multisets into new colors.
©® @ Repeat n times or until colors in G and ¢’ differ.

e Leskovec, Stanford Uni 22




Discriminative Power of GNNs

Theorem: Power(GNNs) < Power(WL)

“Color” at node 1

Laboh

S0, to distinguish 2 nodes, GNN needs to
distinguish structure of their rooted subtrees




PINSAGE for
Recommender Systems

Graph Convolutional Neural Networks for Web-Scale Recommender Systems. R. Ying, R.

He, K. Chen, P. Eksombatchai, W. L. Hamilton, J. Leskovec. KDD, 2018.

24


https://cs.stanford.edu/people/jure/pubs/pinsage-kdd18.pdf
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Application: Pinterest

PinSage graph convolutional network:

= Goal: Generate embeddings for nodes in a large-
scale Pinterest graph containing billions of objects

= Key Idea: Borrow information from nearby nodes
= E.g., bed rall Pin might look like a garden fence, but

= Pin embeddings are essential to various tasks like
recommendation of Pins, classification, ranking
= Services like “Related Pins”, “Search”, “Shopping”, “Ads”

Jure Leskovec, Stanford University 26



Pinterest Graph @

Human curated collection of pins

Pins: Visual bookmarks someone
has saved from the intemet to a
board they’ve created.

Pin features: Image, text, inks




Pin Recommendation @

Task: Recommend related pins to users
S Task: Learn node

_ embeddings z; such
SUCCESSFUL
RECOMMENDATION tha't
\ d(Zcake1) Zeake2)
Source pin < d(Zcake1r Zsweater)

BAD RECOMMENDATION

Predict whether two nodes in a graph are related

RARRAA G kg




PINSAGE Training @

Goal: Identify target pin among 3B pins

= |[ssue: Need to learn with resolution of 100 vs. 3B
= Massive size: 3 billion nodes, 20 billion edges

= |dea: Use harder and harder negative samples

Positive Easy negative Hard negative

Jure Leskovec, Stanford University 29
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PINSAGE Performance @

Related Pin recommendations

= Given a user is looking at pin Q, predict
what pin X are they going to save next

= Setup: Embed 3B pins, perform nearest
neighbor to generate recommendations
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Plnsage Visual Annotation
Jure Leskovec, Stanford University




PINSAGE Example




Computational Drug
Discovery: Drug Side
Effect Prediction

Modeling Polypharmacy Side Effects with Graph Convolutional Networks. M. Zitnik, M. Agrawal, J.
Leskovec. Bioinformatics, 2018.

http://snap.stanford.edu/decagon/



https://cs.stanford.edu/people/jure/pubs/drugcomb-ismb18.pdf
https://cs.stanford.edu/people/jure/pubs/drugcomb-ismb18.pdf

Polypharmacy side effects

Many patients take multiple drugs to

treat complex or co-existing diseases:

= 46% of people ages 70-79 take more than 5 drugs

= Many patients take more than 20 drugs to treat heart
disease, depression, insomnia, etc.

Task: Given a pair of drugs predict
adverse side effects

29 > (5 S

30% 65%
prob. prob.

Jure Leskovec, Stanford Un 33



Approach: Builld a Graph

Iy Edgetypei
/\ Drug node

© Protein node

Drug-drug
interaction of type r,,
e.g., hausea

Protein-protein interaction

34



Task: Link Prediction

Task: Given a partially observed graph,
predict labeled edges between
drug nodes

Example query: Given drugs c, d, how likely is an edge (c,1,,d)?

Simvastatin

P
Ciprofloxaci

Co-prescribed drugs ¢ and
d lead to side effect r,

Mupirocin

Doxycycline

Jure Leskovec, Stanford University 35



Decagon: Graph Neural Net

Network neighborhood of Node C’s computation
node C graph




Decoder: Link Prediction
Predictedw

Two nodes oA, r,A) = o(z'D,,RD,,z,)
B P(A, r;, A) = 0o(z. D, RD;,2,)
»_\ p(A, 13, A) = 0(zID,,RD,,z,)
- /‘ P& rs,A) = 0(z'D,,RD,,z,)
A

. | Probability of
- | edge of type r,

p(&; rn!A) — O_(ZZDT’HRD'F”ZS)

Tensor factorized model to
capture dependences between
different types of edges

R, D, Parameter weight matrices

37



Results: Side Effect Prediction
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m Decagon RESCAL tensor factorization
DEDICOM tensor factorization Node2vec + Logistic regression

36% average in AP@50 improvement over baselines

Jure Leskovec, Stanford University 38



De novo Predictions

Rank| Drugc Drug d Side effect r
1 Pyrimethamine Aliskiren Sarcoma
2 Tigecycline Bimatoprost ~ Autonomic neuropathy
3 Omeprazole Dacarbazine  Telangiectases
4 | Tolcapone Pyrimethamine Breast disorder
5 Minoxidil Paricalcitol Cluster headache
6 | Omeprazole Amoxicillin  Renal tubular acidosis
7 | Anagrelide Azelaic acid  Cerebral thrombosis
8 | Atorvastatin ~ Amlodipine = Muscle inflammation
9 Aliskiren Tioconazole  Breast inflammation
10 | Estradiol Nadolol Endometriosis

Jure Leskovec, Stanford University 39



De novo Predictions

Rank| Drugc Drug d Side effect r Evidence found
2 Tigecycline Bimatoprost ~ Autonomic neuropathy
3 Omeprazole Dacarbazine  Telangiectases
5 Minoxidil Paricalcitol Cluster headache
7 | Anagrelide Azelaic acid  Cerebral thrombosis

9 | Aliskiren Tioconazole  Breast inflammation  Parving ef al. 2012
10 | Estradiol Nadolol Endometriosis
Case Report

Severe Rhabdomyolysis due to Presumed Drug Interactions
between Atorvastatin with Amlodipine and Ticagrelor

Jure Leskovec, Stanford University 40



Predictions in the Clinic

Clinical validation via drug-drug
mteractlon markers Iab values and

chlorthalidone

insulin glargine

prednisone

zolpidem

Medication List
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First method to predict side effects of drug pairs, even

for drug combinations not yet used in patients



Reasoning In
Knowledge Graphs

Embedding Logical Queries on Knowledge Graphs. W. Hamilton, P. Bajaj, M. Zitnik, D.

Jurafsky, J. Leskovec. Neural Information Processing Systems (NIPS), 2018.

42


https://arxiv.org/abs/1806.01445

Knowledge as a Graph

Alice Leonardo Da Vinci

is interested in

The Mona Lisa

&%

Person 14 July 1990
G La Joconde a Washington

Jure Leskovec, Stanford University 43



Knowledge Graph

Heterogeneous Knowledge Graphs

UPVOTE
INTERACT _ X CREATE
7 types of X: —_— =~  POST
- physical binding PROTElN ASSOC DISEASE U? -IESR(PT DOWNVOTE n = 147.618
) n = 448,02 __w = 147618
co-expression n = 17,467 n = 14,080 " R :
- catalysis .
- activation COMMENT
- inhibition, etc. 25 ™
- ;‘r;,";sv olar SUBSCRIBE BELONG /~ CONTAIN'
HAS_FUNCTION TARGET TREAT - reproductive :
- cognition, efc.
IS_A INTERACT X :
PROCESS SIDE EFFECT __ CAUSE DRUG COMMUNITY WORD
n = 44,639 n = 10,184 n=11.272 n = 105 n = 250,950

Biological interactions Online communities

Jure Leskovec, Stanford University 44



Conjunctive Graph Queries

Query formula  ——s| C2.3P : uPVOTE(u, P) A BELONG(P, Cy)

“Predict communities C7 in which
user u is likely to upvote a post”

Query DAG > U @) v

Jure Leskovec, Stanford University 45



Predictive Graph Queries

Key challenges: Big graphs and queries
can involve noisy and unobserved datal

Some links might be
NoIsy or unobserved or
haven’t occurred yet

Problem: Nalve link prediction and graph
template matching are too expensive

Jure Leskovec, Stanford University 46



Overview of Our Framework

G 0O al: Aﬂ s\Wwer C».3P : TARGET(C?, ﬁ)pﬁtziior;z(P, da) A ASSOC(P, ds)
complex logical ‘,
queries / O g .o
E.g.: “Predict drugs C ™ Guery pac
kel target ¥ [CEET
P associated with =
diseases d; and d,” Zd, e, rg
o I: ;;;;; P'
PN
Idea: Logical operators YT
become spatial operators

Operations in an embedding space

Jure Leskovec, Stanford University 47



Model Specification

= T... edge type
Given: Knowledge graph o
Fi n d : \‘i’vy ég}ngarggator

NN... neural net

= Node embeddings
= Projection operator P: P(q,7) = R; - z
= Applies transition R of relation 7 to g

= |ntersection operator I:
1(q1.n) = W, 'AGGj=1...n(NN(qi))
= Set intersection in the embedding space



Model Training

Training examples: Queries on the graph

¢ .
= Positives: Path with a known answer

= “Standard” negatives: Random nodes of the
correct answer type

= “"Hard” negatives: Correct answers if a logical
conjunction is relaxed to a disjunction

= | 0SS: £(q) = max (0,1 — score(q, Z,+) + score(q, Z,, ))



Performance

= Performance on different query types:

BN Bio

90

60

AUC

30

0

e e o000 6'.5 o000

O o ®
o1’
S E A
Query graph

Jure Leskovec, Stanford University



How can this technology
be used for other problems?

We can now apply neural networks
much more broadly

New frontiers beyond classic neural networks
that learn on images and sequences

Many other applications:
* Nodes: Predict tissue-specific protein functions
= Subgraphs: Predict which drug treats what disease
= Graphs: Predict properties of molecules/drugs

Jure Leskovec, Stanford University 51



Summary

Graph Convolutional Neural Networks
= (Generalize beyond simple convolutions

Fuses node features & graph info

= State-of-the-art accuracy for node
classification and link prediction

Model size independent of graph size;

can scale to billions of nodes
= [argest embedding to date (3B nodes, 20B edges)

Leads to significant performance gains

Jure Leskovec, Stanford University



Conclusion

Results from the past 2-3 years have shown:

= Representation learning paradigm can be
extended to graphs

= No feature engineering necessary

= (Can effectively combine node attribute data
with the network information

= State-of-the-art results in a number of
domains/tasks

= Use end-to-end training instead of
multi-stage approaches for better performance

Jure Leskovec, Stanford University
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Code:
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. http://snap.stanford.edu/decagon/

. https://qithub.com/bowenliu16/rl_graph generation

. https://github.com/williamleif/graphgembed

. https://qithub.com/snap-stanford/GraphBNN
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