A Brief Introduction to Machine Translation

Excerpt from <u>CS224N</u>, Natural Language Processing with Deep Learning, Stanford & <u>CMSC 723</u>, Computational Linguistics I, UMIACS

Historical Background

Rule-based & Statistical Machine Translation

Machine Translation

 Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

Early Machine Translation

- Early 1950s
 - Rule-based Machine Translation: Build dictionaries to map words in one language into their counterparts in another language

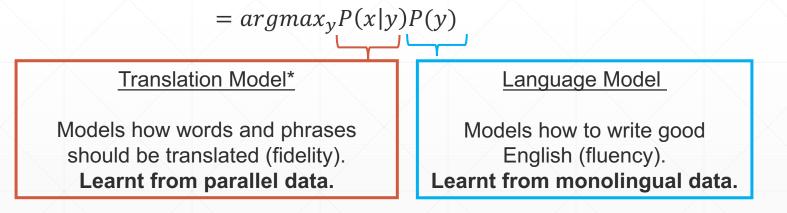
- Approach:
 - Build dictionaries
 - Write transformation rules
 - Refine, refine, refine

Statistical Machine Translation (SMT)

- 1990s 2010s
 - Statistical Machine Translation (SMT): Learn a probabilistic model from data
 - We want to find best English sentence y, given French sentence x

 $argmax_{y}P(y|x)$

- Use Bayes Rule to break this down into two components to be learnt separately:



 $argmax_{y}P(y|x)$

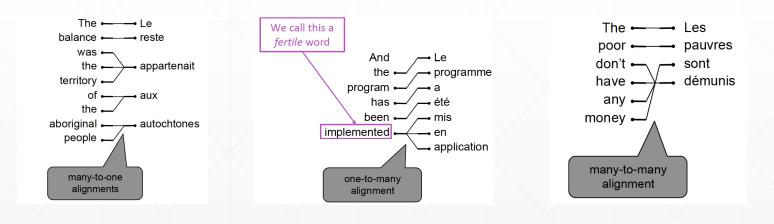
* Translation Model does not consider order of words.

Learning Alignment for SMT

- Question: How to learn translation model P(x|y) from the parallel corpus?
- Break it down further: we actually want to consider

P(x,a|y)

- where a is the alignment, i.e. word-level correspondence between French sentence x and English sentence y
- alignment can be one-to-one, one-to-many or many-to-many



Statistical Machine Translation (SMT)

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details we haven't mentioned here
 - Systems had many separately-designed subcomponents
 - Lots of feature engineering
 - Need to design features to capture particular language phenomena
 - Require compiling and maintaining extra resources
 - Like tables of equivalent phrases
 - Lots of human effort to maintain
 - Repeated effort for each language pair!

Neural Machine Translation

Sequence-to-sequence model

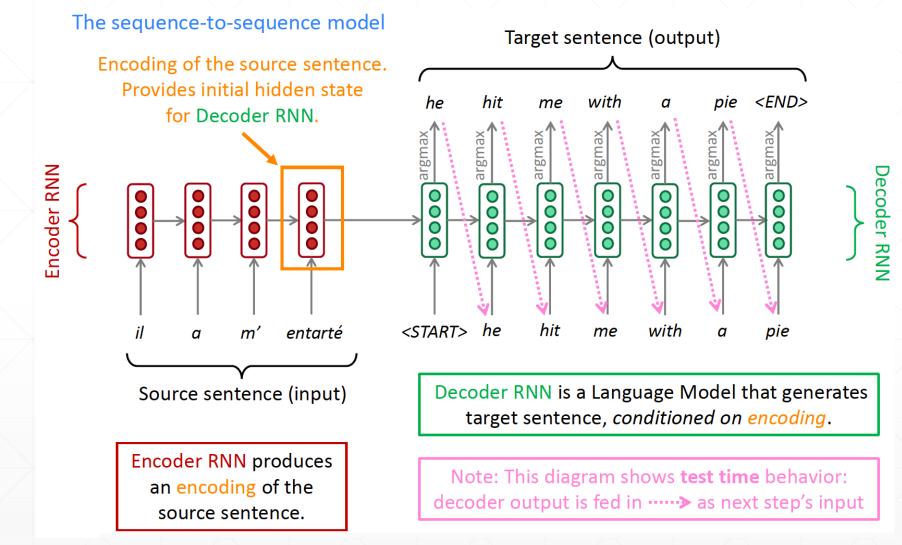
Neural Machine Translation (NMT)

 Sutskever, I., O. Vinyals, and Q. V. Le. "Sequence to sequence learning with neural networks." Advances in NIPS (2014).

- Neural machine translation (NMT) is an approach to machine translation that uses an artificial neural network to predict the likelihood of a sequence of words, typically modeling entire sentences in a single integrated model.
- The neural network architecture is called sequence-to-sequence (aka seq2seq) and it involves two RNNs.

Sometimes called encoder-decoder network

Sequence to Sequence Model



Sequence to Sequence Model

Ideally we want to find a (length T) translation y that maximizes

$$P(y|x) = P(y_1|x)P(y_2|y_1,x) \dots P(y_T|y_1, \dots, y_{T-1}, x)$$

=
$$\prod_{t=1}^{T} P(y_t|y_1, \dots, y_{t-1}, x)$$
 Probability of next target word, given target words so far and source sentence x

- We could try computing all possible sequences y
 - Far too expensive!
- Beam search decoding*
 - On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)
 - k is the beam size (in practice around 5 to 10)

Neural Machine Translation (NMT)

- Advantages of NMT
- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

Neural Machine Translation (NMT)

- Disadvantages of NMT?
- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation

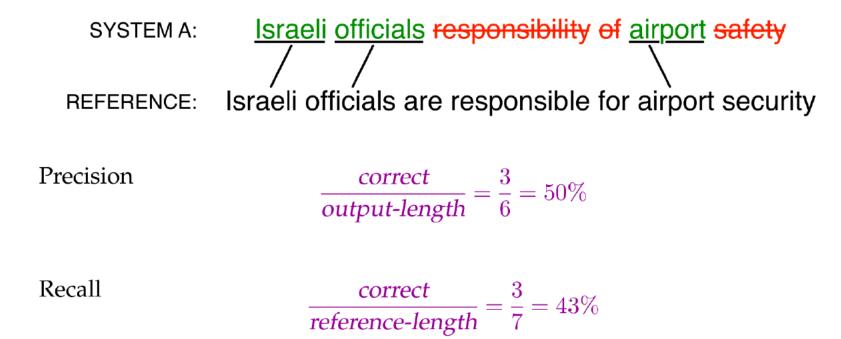
NMT: success story of NLP Deep Learning

- Neural Machine Translation went from a fringe research activity in 2014 to the leading standard method in 2016
 - 2014: First seq2seq paper published
 - 2016: Google Translate switches from SMT to NMT
- SMT systems, built by hundreds of engineers over many years, were outperformed by NMT systems trained by a handful of engineers in a few months
- However, many difficulties still remain
 - Out-of-vocabulary words
 - Domain mismatch between training and test data
 - Maintaining context over longer text
 - Low-resource language pairs

Evaluation

How good is a translation?

Precision & Recall of Words



F-measure $\frac{\text{precision} \times \text{recall}}{(\text{precision} + \text{recall})/2} = \frac{.5 \times .43}{(.5 + .43)/2} = 46\%$

Precision & Recall of Words

Metric	System A	System B
precision	50%	100%
recall	43%	100%
f-measure	46%	100%

Flaw: no penalty for re-ordering

How do we evaluate Machine Translation?

- BLEU (Bilingual Evaluation Understudy) Metric
 - Papineni, Kishore, et al. "BLEU: a method for automatic evaluation of machine translation." Proceedings of the 40th annual meeting on association for computational linguistics. Association for Computational Linguistics, 2002.

- BLEU compares the machine-written translation to one or several human-written translation(s), and computes a similarity score based on:
 - n-gram precision (usually for 1, 2, 3 and 4-grams)
 - Plus a penalty for too-short system translations

Bilingual Evaluation Understudy (BLEU)

- BLEU compares the machine-written translation to one or several human-written translation(s), and computes a similarity score based on:
 - n-gram precision (usually for 1, 2, 3 and 4-grams)
 - Plus a penalty for too-short system translations

$$BLEU = \min\left(1, \frac{len(output)}{len(reference)}\right) \left(\prod_{i=1}^{4} precision_i\right)^{1/4}$$
Penalty
Precision

Bilingual Evaluation Understudy (BLEU)

SYSTEM A:	Israeli officials 2-GRAM MATCH	s responsibility	of airport sa	afety	
REFERENCE:	Israeli officials are responsible for airport security				
SYSTEM B:	M B: airport security Israeli officials are responsible 2-GRAM MATCH 4-GRAM MATCH				*One 4-gram match also contains
	Metric	System A	System B		three 2-gram matches & two 3-gram matches
precis	sion (1gram)	3/6	6/6		
precis	sion (2gram)	1/5	4/5		
precis	sion (3gram)	0/4	2/4		
precis	sion (4gram)	0/3	1/3		
brev	vity penalty	6/7	6/7	-	
	BLEU	0%	52%		

How do we evaluate Machine Translation?

BLEU is useful but imperfect

- There are many valid ways to translate a sentence
- So a good translation can get a poor BLEU score because it has low n-gram overlap with the human translation

- Many other metrics
 - GLEU
 - NIST

- CHRF
- METEOR

Thanks

Q & A

