Selecting a useful subset from all the features

590

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Selecting a useful subset from all the features Why Feature Selection?

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Selecting a useful subset from all the features

Why Feature Selection?

• Some algorithms scale (computationally) poorly with increased dimension

æ

5900

< □ > < □ > < □ > < □ > < □ >

Selecting a useful subset from all the features

Why Feature Selection?

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms

5900

<ロト < 回 > < 回 > < 回 > < 回 >

Selecting a useful subset from all the features Why Feature Selection?

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization

SQ (V

<ロト < 同ト < ヨト < ヨト

Selecting a useful subset from all the features Why Feature Selection?

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Removal of features can increase (relative) margin (and generalization)

SQ (V

(二)、(四)、(三)、(三)、

Selecting a useful subset from all the features

Why Feature Selection?

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Removal of features can increase (relative) margin (and generalization)
- Reduces data set and resulting model size

SQ (P

<ロト < 同ト < ヨト < ヨト

Selecting a useful subset from all the features Why Feature Selection?

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Removal of features can increase (relative) margin (and generalization)
- Reduces data set and resulting model size
- Note: Feature Selection is different from Feature Extraction
  - The latter transforms original features to get a small set of new features
  - More on feature extraction when we cover Dimensionality Reduction

SQ (V

<ロト < 同ト < ヨト < ヨト

• Methods agnostic to the learning algorithm

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

< □ > < □ > < □ > < □ > < □ > < □ >

#### • Methods agnostic to the learning algorithm

- Preprocessing based methods
  - E.g., remove a binary feature if it's ON in very few or most examples

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Methods agnostic to the learning algorithm
  - Preprocessing based methods
    - E.g., remove a binary feature if it's ON in very few or most examples
  - Filter Feature Selection methods
    - Use some ranking criteria to rank features
    - Select the top ranking features

E nac

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶

- Methods agnostic to the learning algorithm
  - Preprocessing based methods
    - E.g., remove a binary feature if it's ON in very few or most examples
  - Filter Feature Selection methods
    - Use some ranking criteria to rank features
    - Select the top ranking features
- Wrapper Methods (keep the learning algorithm in the loop)

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

イロト イポト イヨト イヨト

- Methods agnostic to the learning algorithm
  - Preprocessing based methods
    - E.g., remove a binary feature if it's ON in very few or most examples
  - Filter Feature Selection methods
    - Use some ranking criteria to rank features
    - Select the top ranking features
- Wrapper Methods (keep the learning algorithm in the loop)
  - Requires repeated runs of the learning algorithm with different set of features

3

SQ (~

<ロト < 同ト < ヨト < ヨト

- Methods agnostic to the learning algorithm
  - Preprocessing based methods
    - E.g., remove a binary feature if it's ON in very few or most examples
  - Filter Feature Selection methods
    - Use some ranking criteria to rank features
    - Select the top ranking features
- Wrapper Methods (keep the learning algorithm in the loop)
  - Requires repeated runs of the learning algorithm with different set of features
  - Can be computationally expensive

3

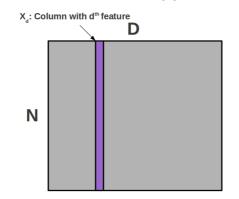
 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

<ロト < 同ト < ヨト < ヨト

• Uses heuristics but is much faster than wrapper methods

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Uses heuristics but is much faster than wrapper methods

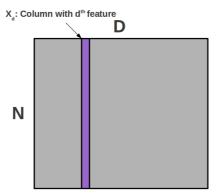


- 12

DQ C

<ロ> < 回> < 回> < 回> < 回>

• Uses heuristics but is much faster than wrapper methods



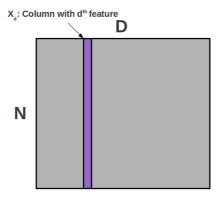
• Correlation Critera: Rank features in order of their correlation with the labels ()/ )/)

$$R(X_d, Y) = rac{cov(X_d, Y)}{\sqrt{var(X_d)var(Y)}}$$

SQ (V

▲□▶ ▲□▶ ▲□▶ ▲□▶

• Uses heuristics but is much faster than wrapper methods



• Correlation Critera: Rank features in order of their correlation with the labels

$$R(X_d, Y) = rac{cov(X_d, Y)}{\sqrt{var(X_d)var(Y)}}$$

• Mutual Information Criteria:

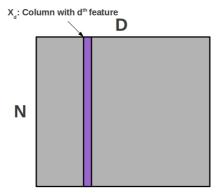
$$MI(X_d, Y) = \sum_{X_d \in \{0,1\}} \sum_{Y \in \{-1,+1\}} P(X_d, Y) \frac{\log P(X_d, Y)}{P(X_d) P(Y)}$$

3

SQ (V

< □ > < □ > < □ > < □ > < □ > < □ >

• Uses heuristics but is much faster than wrapper methods



• **Correlation Critera:** Rank features in order of their correlation with the labels

$$R(X_d, Y) = \frac{cov(X_d, Y)}{\sqrt{var(X_d)var(Y)}}$$

• Mutual Information Criteria:

$$MI(X_d, Y) = \sum_{X_d \in \{0,1\}} \sum_{Y \in \{-1,+1\}} P(X_d, Y) \frac{\log P(X_d, Y)}{P(X_d) P(Y)}$$

• High mutual information mean high relevance of that feature

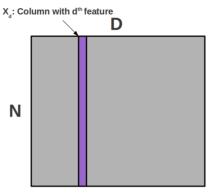
(CS5350/6350)

E

SQ (V

< □ > < □ > < □ > < □ > < □ >

• Uses heuristics but is much faster than wrapper methods



• **Correlation Critera:** Rank features in order of their correlation with the labels

$$R(X_d, Y) = rac{cov(X_d, Y)}{\sqrt{var(X_d)var(Y)}}$$

• Mutual Information Criteria:

$$MI(X_d, Y) = \sum_{X_d \in \{0,1\}} \sum_{Y \in \{-1,+1\}} P(X_d, Y) \frac{\log P(X_d, Y)}{P(X_d) P(Y)}$$

- High mutual information mean high relevance of that feature
- Note: These probabilities can be easily estimated from the data

(CS5350/6350)

SQA

< □ > < □ > < □ > < □ > < □ >

• Two types: Forward Search and Backward Search

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Two types: Forward Search and Backward Search
  - Forward Search

5900

< □ > < □ > < □ > < □ > < □ > < □ >

- Two types: Forward Search and Backward Search
  - Forward Search
    - Start with no features

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Two types: Forward Search and Backward Search

- Forward Search
  - Start with no features
  - Greedily include the most relevant feature

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

• Two types: Forward Search and Backward Search

#### • Forward Search

- Start with no features
- Greedily include the most relevant feature
- Stop when selected the desired number of features
- Backward Search

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

< □ > < □ > < □ > < □ > < □ >

• Two types: Forward Search and Backward Search

#### • Forward Search

- Start with no features
- Greedily include the most relevant feature
- Stop when selected the desired number of features

#### Backward Search

• Start with all the features

王

SQ P

< □ > < □ > < □ > < □ > < □ > < □ >

• Two types: Forward Search and Backward Search

#### • Forward Search

- Start with no features
- Greedily include the most relevant feature
- Stop when selected the desired number of features

#### Backward Search

- Start with all the features
- Greedily remove the least relevant feature

E 990

< □ > < □ > < □ > < □ > < □ > < □ >

• Two types: Forward Search and Backward Search

#### Forward Search

- Start with no features
- Greedily include the most relevant feature
- Stop when selected the desired number of features

#### Backward Search

- Start with all the features
- Greedily remove the least relevant feature
- Stop when selected the desired number of features

SQ (V

<ロト < 団ト < 団ト < 団ト

• Two types: Forward Search and Backward Search

#### Forward Search

- Start with no features
- Greedily include the most relevant feature
- Stop when selected the desired number of features

#### Backward Search

- Start with all the features
- Greedily remove the least relevant feature
- Stop when selected the desired number of features
- Inclusion/Removal criteria uses cross-validation

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

< □ > < □ > < □ > < □ > < □ >

#### • Forward Search

• Let  $\mathcal{F} = \{\}$ 

5900

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

### Forward Search

- Let  $\mathcal{F} = \{\}$
- While not selected desired number of features
- For each unused feature f:

E 990

▲ロト ▲圖ト ▲屋ト ▲屋ト

### Forward Search

- Let  $\mathcal{F} = \{\}$
- While not selected desired number of features
- For each unused feature *f*:
  - Estimate model's error on feature set  $\mathcal{F} \bigcup f$  (using cross-validation)

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● のへで

### Forward Search

- Let  $\mathcal{F} = \{\}$
- While not selected desired number of features
- For each unused feature *f*:
  - Estimate model's error on feature set  $\mathcal{F} \bigcup f$  (using cross-validation)
- Add f with lowest error to  $\mathcal{F}$

### Backward Search

• Let  $\mathcal{F} = \{ all \text{ features} \}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

### Forward Search

- Let  $\mathcal{F} = \{\}$
- While not selected desired number of features
- For each unused feature *f*:
  - Estimate model's error on feature set  $\mathcal{F} \bigcup f$  (using cross-validation)
- Add f with lowest error to  $\mathcal{F}$

#### Backward Search

- Let  $\mathcal{F} = \{ all features \}$
- While not reduced to desired number of features
- For each feature  $f \in \mathcal{F}$ :

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

<ロト < 団 > < 巨 > < 巨 >

### Forward Search

- Let  $\mathcal{F} = \{\}$
- While not selected desired number of features
- For each unused feature *f*:
  - Estimate model's error on feature set  $\mathcal{F} \bigcup f$  (using cross-validation)
- Add f with lowest error to  $\mathcal{F}$

#### Backward Search

- Let  $\mathcal{F} = \{ all \text{ features} \}$
- While not reduced to desired number of features
- For each feature  $f \in \mathcal{F}$ :
  - Estimate model's error on feature set  $\mathcal{F} \setminus f$  (using cross-validation)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

### Forward Search

- Let  $\mathcal{F} = \{\}$
- While not selected desired number of features
- For each unused feature *f*:
  - Estimate model's error on feature set  $\mathcal{F} \bigcup f$  (using cross-validation)
- Add f with lowest error to  $\mathcal{F}$

#### Backward Search

- Let  $\mathcal{F} = \{ all \text{ features} \}$
- While not reduced to desired number of features
- For each feature  $f \in \mathcal{F}$ :
  - Estimate model's error on feature set  $\mathcal{F} \setminus f$  (using cross-validation)
- Remove f with lowest error from  $\mathcal{F}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのへで