Accuracy, Cross-Validation, Overfitting, and ROC

Slides adopted from Data Mining for Business Analytics

Stern School of Business New York University Spring 2014

Evaluation

How do we measure generalization performance?

Evaluating Classifiers: Plain Accuracy

$$\label{eq:accuracy} Accuracy = \frac{\text{Number of correct decisions made}}{\text{Total number of decisions made}}$$

Too simplistic..

Evaluating Classifiers: The Confusion Matrix

- A confusion matrix for a problem involving n classes is an n×n matrix,
 - with the columns labeled with actual classes and the rows labeled with predicted classes
- It separates out the decisions made by the classifier,
 - making explicit how one class is being confused for another

	р	n
Υ	True Positives	False Positives
N	False Negatives	True Negatives

 The errors of the classifier are the false positives and false negatives

Building a Confusion Matrix

Default Truth	Model Prediction
0	0
1	1
0	1
0	1
0	0
1	1
0	0
0	0
1	1
1	0

Predicted class Actual class	Default	No Default	Total
Default	3	1	4
No Default	2	4	6
Total	5	5	10

Other Evaluation Metrics

• Precision =
$$\frac{TP}{TP+FP}$$

• Recall =
$$\frac{TP}{TP+FN}$$

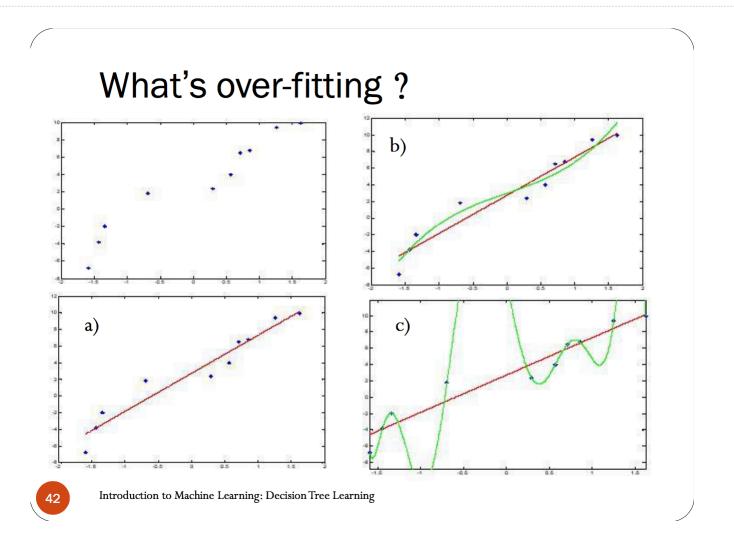
• F-measure =
$$2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

Over-fitting the data

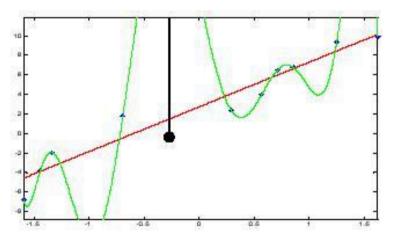
- Finding chance occurrences in data that look like interesting patterns, but which do not generalize, is called over-fitting the data
- We want models to apply not just to the exact training set but to the general population from which the training data came
 - Generalization

Over-fitting

- The tendency of DM procedures to tailor models to the training data, at the expense of generalization to previously unseen data points.
- All data mining procedures have the tendency to over-fit to some extent
 - Some more than others.
- "If you torture the data long enough, it will confess"
- There is no single choice or procedure that will eliminate over-fitting
 - recognize over-fitting and manage complexity in a principled way.



What's over-fitting?



h ∈ H overfits training data
if there's an alternative h'
∈ H such that:

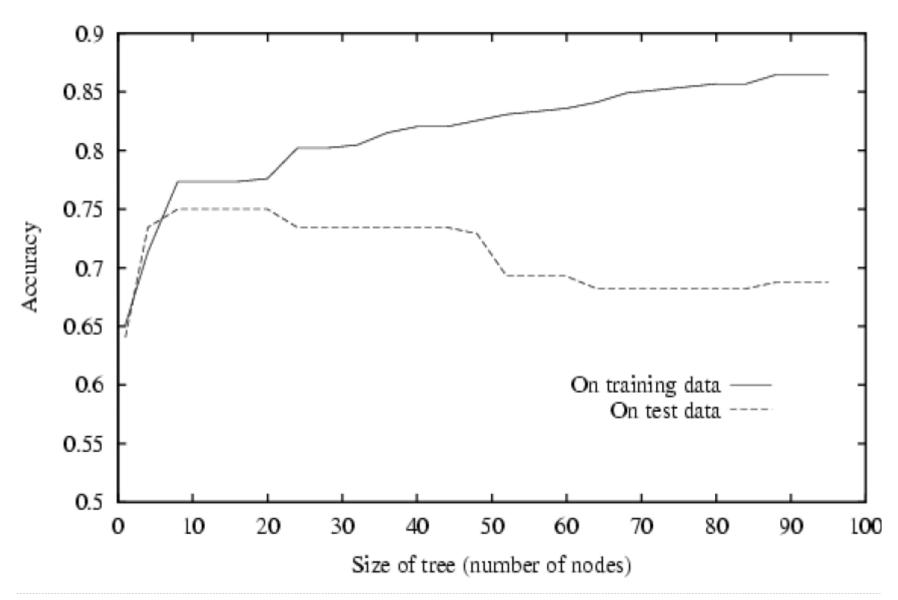
$$err_{train}(h) \le err_{train}(h')$$
AND
 $err_{test}(h) \ge err_{test}(h')$

An example of over-fitting in DTree

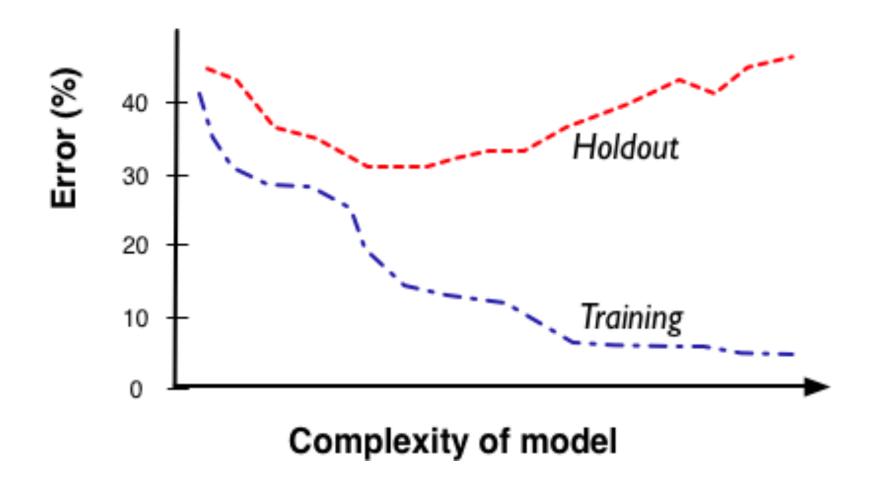
• Each leaf corresponds to a single training point and the full tree is merely a convenient implementation of a lookup table

43

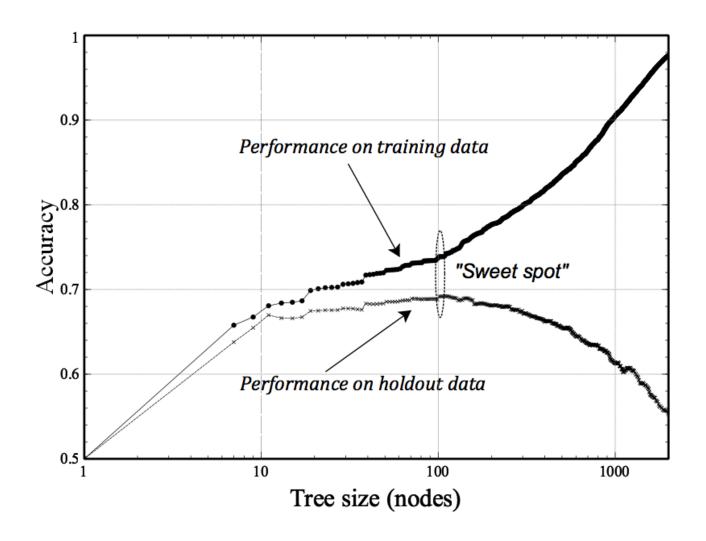
Tree Complexity and Over-fitting



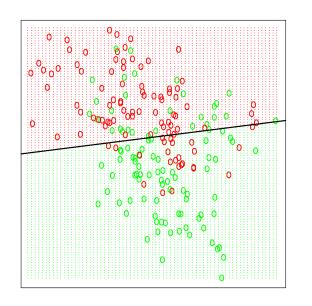
Fitting Graph

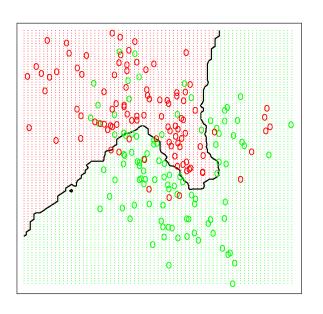


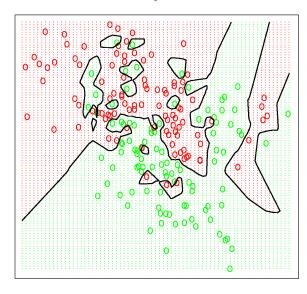
Over-fitting in tree induction



Need for holdout evaluation







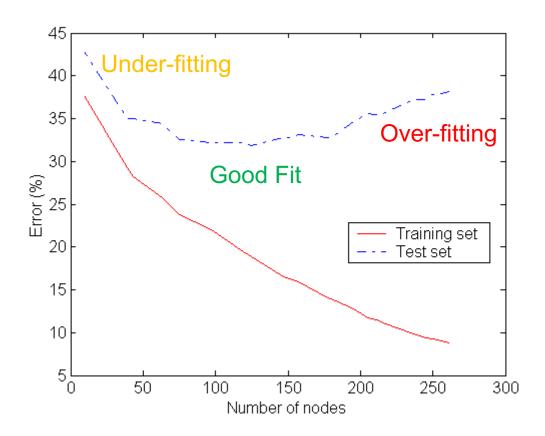
Under-fitting

Good

Over-fitting

- In sample evaluation is in favor or "memorizing"
- On the *training data* the right model would be best
- But on new data it would be bad

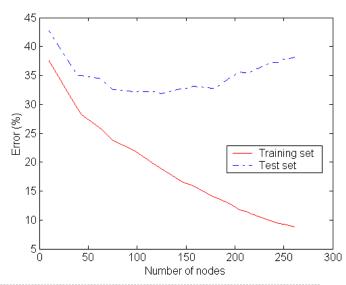
Over-fitting



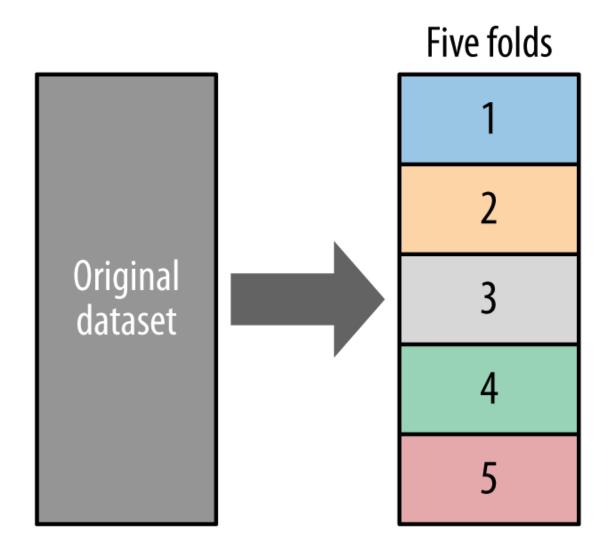
 Over-fitting: Model "memorizes" the properties of the particular training set rather than learning the underlying concept or phenomenon

Holdout validation

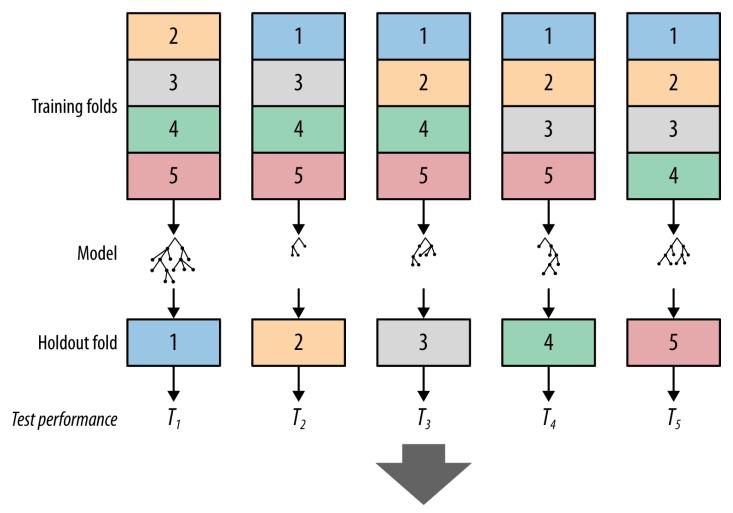
- We are interested in generalization
 - The performance on data not used for training
- Given only one data set, we hold out some data for evaluation
 - Holdout set for final evaluation is called the test set
- Accuracy on training data is sometimes called "in-sample" accuracy, vs. "out-of-sample" accuracy on test data



Cross-Validation



Cross-Validation



Mean and standard deviation of test sample performance

From Holdout Evaluation to Cross-Validation

- Not only a simple estimate of the generalization performance, but also some statistics on the estimated performance,
 - such as the mean and variance
- Better use of a limited dataset
 - Cross-validation computes its estimates over all the data
- Used for comparing different learning procedure
 - e.g. Decision Trees vs Logistic Regression
- Used for comparing hyper-parameters in a specific procedure
 - e.g. the maximum depth (minimum amount of data in the leaf node) of the decision tree.

Pruning

 Pruning simplifies a decision tree to prevent over-fitting to noise in the data

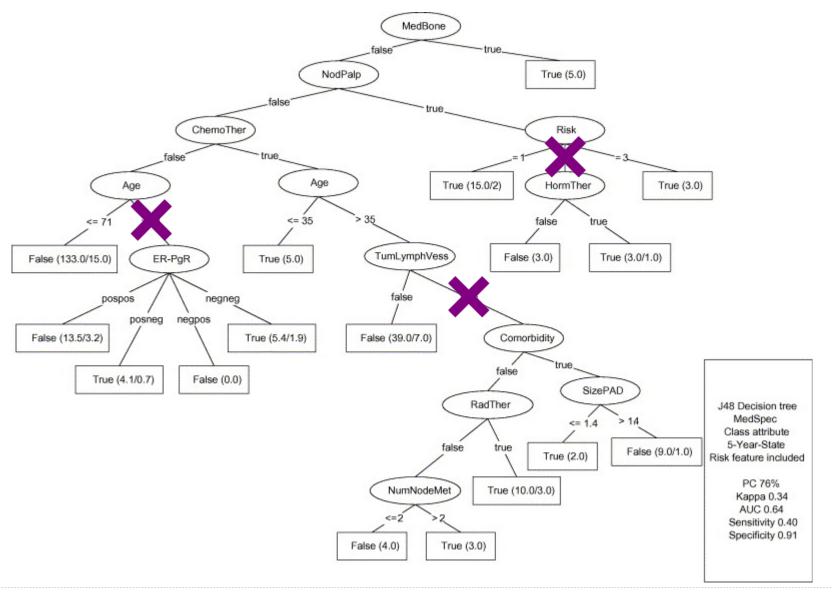
Post-pruning:

takes a fully-grown decision tree and discards unreliable parts

Pre-pruning:

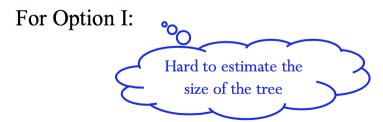
- stops growing a branch when information becomes unreliable
 - too few data points (e.g. <5% of the total) after splitting
 - Trees are too deep
- Post-pruning preferred in practice

Post-pruning a tree



Avoid over-fitting

- Two ways of avoid over-fitting for DTree
 - I. Stop growing when data split not statistically significant (pre-pruning)
 - II. Grow full tree, then post-pruning



45

Pre-Pruning: When to stop splitting (I) Number of instances

- Frequently, a node is not split further if
 - The number of training instances reaching a node is smaller than a certain percentage of the training set
 - (e.g. 5%)
 - Regardless the impurity or error.
 - Any decision based on too few instances causes variance and thus generalization error.

Pre-Pruning: When to stop splitting (2) Threshold of information gain value

- Set a small threshold value, splitting is stopped if $\Delta i(s) \le \beta$
- Benefits: Use all the training data. Leaf nodes can lie in different levels of the tree.
- Drawback: Difficult to set a good threshold

Avoid over-fitting

- Two ways of avoid over-fitting for D-Tree
 - I. Stop growing when data split not statistically significant (pre-pruning)
 - II. Grow full tree, then post-pruning

For option II:

- How to select "best" tree?
 - Measure performance over training data (statistical pruning)
 - Confidence level (will be introduced later)
 - Measure performance over separate validation data set
- MDL (Minimize Description Length 最小描述长度): minimize (*size*(tree) + *size*(misclassifications(tree)))

Post-pruning (1). Reduced-Error pruning

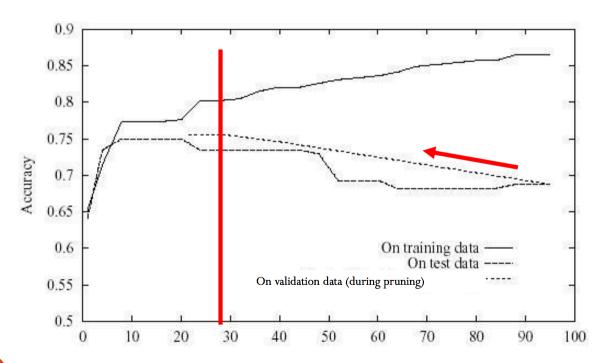
- Split data into training set and validation set
 - Validation set:
 - Known label
 - Test performance
 - No model updates during this test!
- Do until further pruning is harmful:
 - Evaluate impact on validation set of pruning each possible node (plus the subtree it roots)
 - Greedily remove the one that most improves validation set accuracy

How to assign the label of the new leaf node?

Supplement: strategies of the new leaf node label after pruning

- Assign the most common class.
- Give the node multiple-class labels
 - Each class has a support degree (based on the number of the training data with each label)
 - On test: select one class with probability, or select multiple classes
- If it is the regression tree (numeric labels), can be averaged, or weighted average.
- •

Effect of Reduced-Error pruning



51

Post-pruning (2). Rule Post-pruning

- 1, Convert tree to equivalent set of rules
 - e.g. if (outlook=sunny) \(\text{(humidity=high)} \) then playTennis = no
- 2, Prune each rule by removing any preconditions that result in improving its estimated accuracy
 - i.e. (outlook=sunny), (humidity=high)
- 3, Sort rules into desired sequence (by their estimated accuracy).
- 4, Use the final rules in the same sequence when classifying instances.

(after the rules are pruned, it may not be possible to write them back as a tree anymore.)

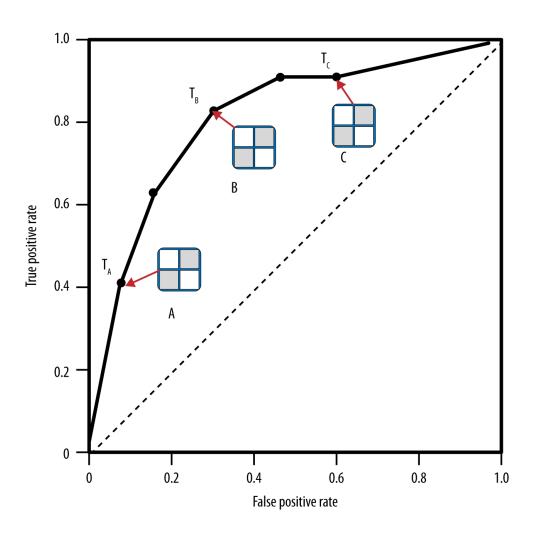
One of the most frequently used methods, e.g. in C4.5.

52

Why convert the decision tree to rule before pruning?

- Independent to contexts.
 - Otherwise, if the tree were pruned, two choices:
 - Remove the node completely, or
 - Retain it there.
- No difference between root node and leaf nodes.
- Improve readability

ROC Graphs and Curves



Generating ROC curve: Algorithm

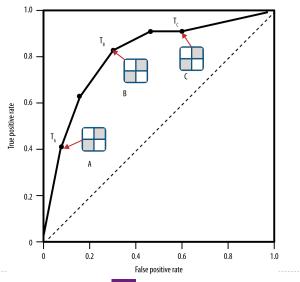
- For each test, count the number of true positives TP (positives with prediction above the cutoff) and false positives FP (negatives above the cutoff)
- Calculate TP rate (TP/P) and FP (FP/N) rate
- Plot current number of TP/P as a function of current FP/N

ROC Graphs and Curves

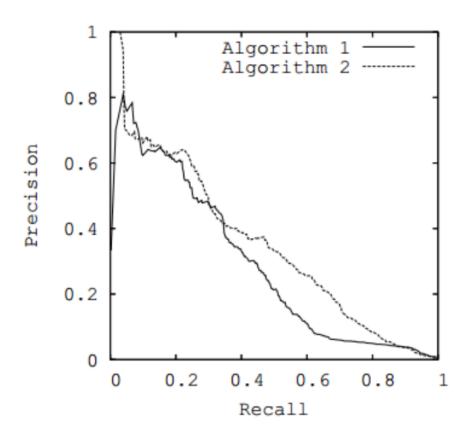
- ROC graphs decouple classifier performance from the conditions under which the classifiers will be used
- ROC graphs are independent of the class proportions as well as the costs and benefits
- Not the most intuitive visualization for many business stakeholders

Area Under the ROC Curve (AUC)

- The area under a classifier's curve expressed as a fraction of the unit square
 - Its value ranges from zero to one
- The AUC is useful when a single number is needed to summarize performance, or when nothing is known about the operating conditions
 - A ROC curve provides more information than its area



P-R Curve: Tradeoff between Precision and Recall

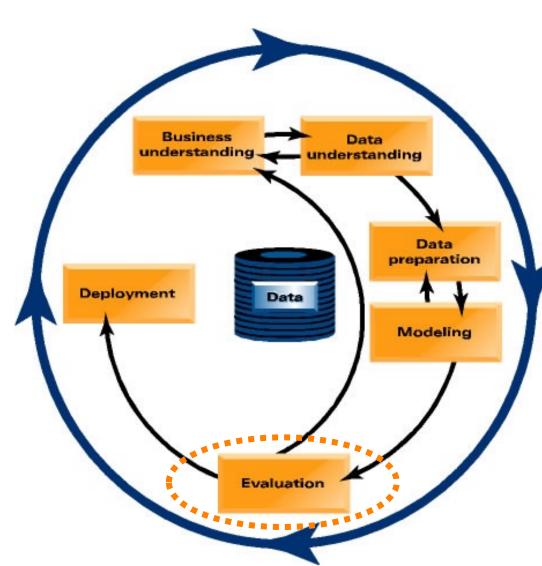


•Precision =
$$\frac{TP}{TP+FP}$$

•Recall = $\frac{TP}{TP+FN}$

AUPRC: Area under P-R Curve

Let's focus back in on actually mining the data..



Which model should TelCo select in order to target customers with a special offer, prior to contract expiration?

Performance Evaluation

Training Set:

Model	Accuracy
Classification Tree	95%
Logistic Regression	93%
k-Nearest Neighbors	100%
Naïve Bayes	76%

Test Set:

Model	Accuracy	AUC
Classification Tree	91.8%±0.0	0.614±0.014
Logistic Regression	93.0%±0.1	0.574±0.023
k-Nearest Neighbors	93.0%±0.0	0.537±0.015
Naïve Bayes	76.5%±0.6	0.632±0.019

Performance Evaluation

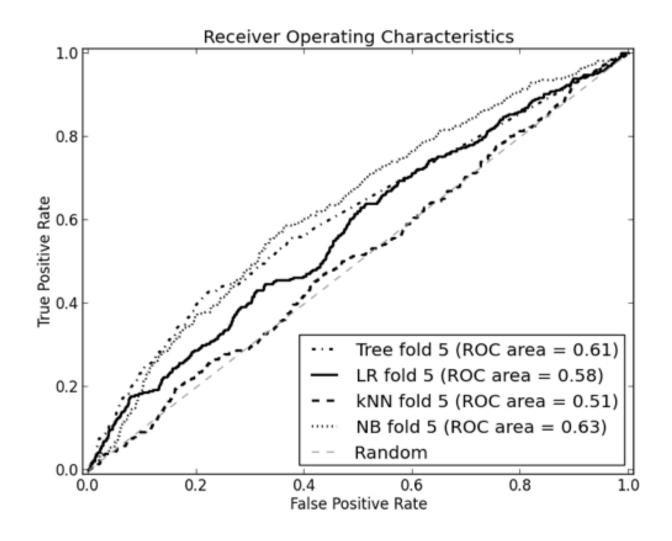
Naïve Bayes confusion matrix:

	р	n
Υ	127 (3%)	848 (18%)
N	200 (4%)	3518 (75%)

k-Nearest Neighbors confusion matrix:

	р	n
Y	3 (0%)	15 (0%)
N	324 (7%)	4351 (93%)

ROC Curve



Thanks!

Questions?