The Bootstrap Sample and Bagging

Simple ideas to improve any model via ensemble

Bootstrap Samples

- > Random samples of your data with replacement that are the same size as original data.
- Some observations will not be sampled. These are called out-of-bag observations

Example: Suppose you have 10 observations, labeled 1-10

Bootstrap Sample Number	Training Observations	Out-of-Bag Observations
1	{1,3,2,8,3,6,4,2,8,7}	{5,9,10}
2	{9,1,10,9,7,6,5,9,2,6}	{3,4,8}
3	{8,10,5,3,8,9,2,3,7,6}	{1,4}

(Efron 1983) (Efron and Tibshirani 1986)

Bootstrap Samples

- ➤ Can be proven that a bootstrap sample will contain approximately 63% of the observations.
- The sample size is the same as the original data as some observations are repeated.
- Some observations left out of the sample (~37% outof-bag)
- > Uses:
 - Alternative to traditional validation/cross-validation
 - Create Ensemble Models using different training sets (Bagging)

(Bootstrap Aggregating)

- > Let k be the number of bootstrap samples
- For each bootstrap sample, create a classifier using that sample as training data
 - > Results in k different models
- > Ensemble those classifiers
 - A test instance is assigned to the class that received the highest number of votes.

Bagging Example

input	variable				ı							
	X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
	y	1	1	1	-1	-1	-1	-1	1	1	1	
target												

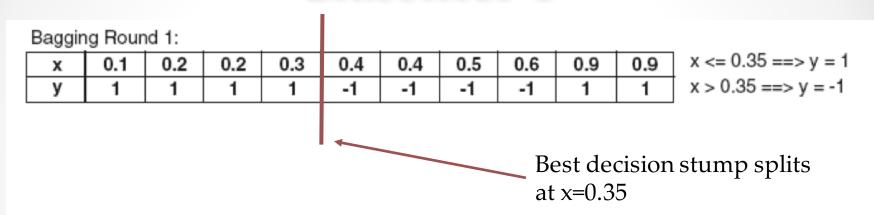
- > 10 observations in original dataset
- > Suppose we build a decision tree with only 1 split.
- The best accuracy we can get is 70%
 - \triangleright Split at x=0.35
 - \rightarrow Split at x=0.75
- > A tree with one split called a decision stump

Bagging Example

Let's see how bagging might improve this model:

- 1. Take 10 Bootstrap samples from this dataset.
- 2. Build a decision stump for each sample.
- 3. Aggregate these rules into a voting ensemble.
- 4. Test the performance of the voting ensemble on the whole dataset.

Bagging Example Classifier 1



First bootstrap sample:

Some observations chosen multiple times.

Some not chosen.

Bagging Example Classifiers 1-5

Baggin	ıg Rour	nd 1:									
х	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	x <= 0.35 ==> y = 1
У	1	1	1	1	-1	-1	-1	-1	1	1	x > 0.35 ==> y = -1
Bagging Round 2:											_
х	0.1	0.2	0.3	0.4	0.5	0.8	0.9	1	1	1	x <= 0.65 ==> y = 1
У	1	1	1	-1	-1	1	1	1	1	1	x > 0.65 ==> y = 1
Baggin	ıg Rour	nd 3:									
х	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	8.0	0.9	x <= 0.35 ==> y = 1
У	1	1	1	-1	-1	-1	-1	-1	1	1	x > 0.35 ==> y = -1
Baggin											
х	0.1	0.1	0.2	0.4	0.4	0.5	0.5	0.7	8.0	0.9	$x \le 0.3 ==> y = 1$
У	1	1	1	-1	-1	-1	-1	-1	1	1	x > 0.3 ==> y = -1
Baggin											
х	0.1	0.1	0.2	0.5	0.6	0.6	0.6	1	1	1	x <= 0.35 ==> y = 1
У	1	1	1	-1	-1	-1	-1	1	1	1	x > 0.35 ==> y = -1

Bagging Example Classifiers 6-10

Baggir	ng Rour	nd 6:									
Х	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	1	$x \le 0.75 ==> y = -1$
У	1	-1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1
Bagging Round 7:											
х	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	1	$x \le 0.75 ==> y = -1$
У	1	-1	-1	-1	-1	1	1	1	1	1	x > 0.75 ==> y = 1
Baggir	ng Rour	nd 8:									
х	0.1	0.2	0.5	0.5	0.5	0.7	0.7	0.8	0.9	1	x <= 0.75 ==> y = -1
У	1	1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1
Baggir	ng Rour	nd 9:									
Х	0.1	0.3	0.4	0.4	0.6	0.7	0.7	8.0	1	1	$x \le 0.75 ==> y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1
Baggir	g Rour	nd 10:									1 × 0.0F × 1
х	0.1	0.1	0.1	0.1	0.3	0.3	0.8	8.0	0.9	0.9	x <= 0.05 ==> y = -1
У	1	1	1	1	1	1	1	1	1	1	x > 0.05 ==> y = 1

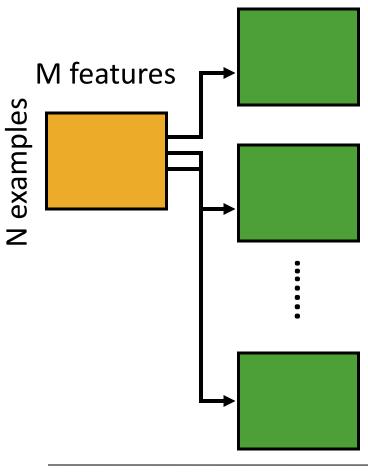
Bagging Example Predictions from each Classifier

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	- 6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1
True Class	1	1	1	-1	-1	-1	-1	1	1	1

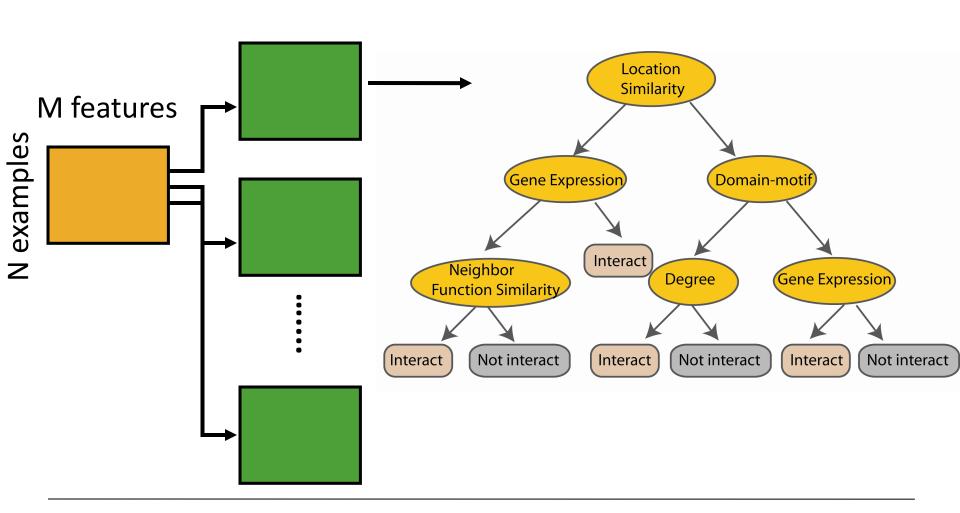
 Bagging or bootstrap aggregation a technique for reducing the variance of an estimated prediction function.

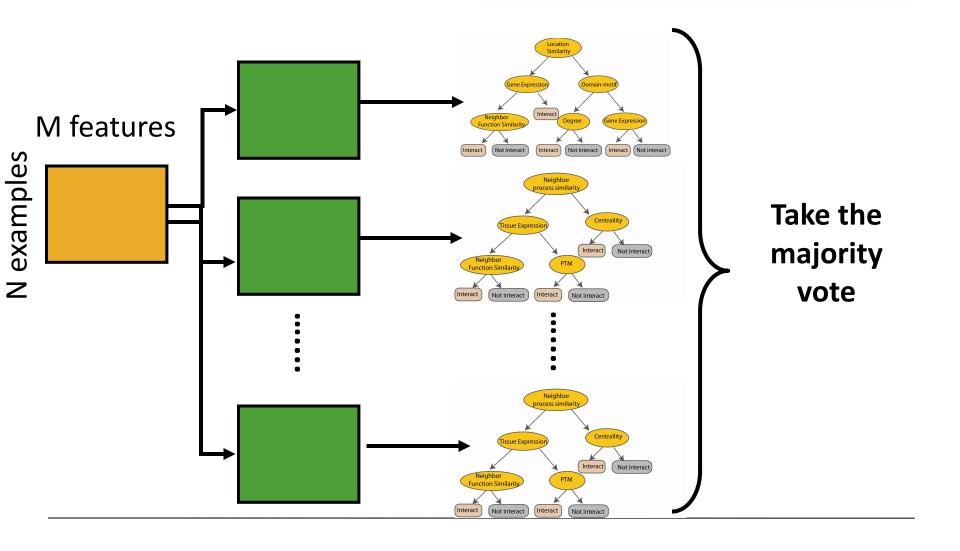
 For classification, a committee of trees each cast a vote for the predicted class.

Create bootstrap samples from the training data



Construct a decision tree





Bagging Summary

- Improves generalization error on models with high variance
- Bagging helps reduce errors associated with random fluctuations in training data (high variance)
- If base classifier is stable (not suffering from high variance), bagging can actually make it worse
- Bagging does not focus on any particular observations in the training data (unlike boosting)

Tin Kam Ho (1995, 1998) Leo Breiman (2001)

- Random Forests are ensembles of decision trees similar to the one we just saw
- Ensembles of decision trees work best when their predictions are not correlated – they each find different patterns in the data
- > <u>Problem</u>: Bagging tends to create correlated trees
- Two Solutions: (a) Randomly subset features considered for each split. (b) Use unpruned decision trees in the ensemble.

- > A collection of unpruned decision or regression trees.
- Each tree is build on a bootstrap sample of the data **and** a subset of features are considered at each split.
 - > The number of features considered for each split is a parameter called mtry.
 - \triangleright Brieman (2001) suggests $mtry = \sqrt{p}$ where p is the number of features
 - \triangleright 1'd suggest setting mtry equal to 5-10 values evenly spaced between 2 and p and choosing the parameter by validation
 - Overall, the model is relatively insensitive to values for mtry.
- The results from the trees are ensembled into one voting classifier.

Based on slides by Oznur Tastan et.al

Basic idea of Random Forests

Grow a forest of many trees.

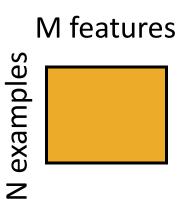
Each tree is a little different (slightly different data, different choices of predictors).

Combine the trees to get predictions for new data.

Idea: most of the trees are good for most of the data and make mistakes in different places.

Random forest classifier, an extension to bagging which uses *de-correlated* trees.

Training Data

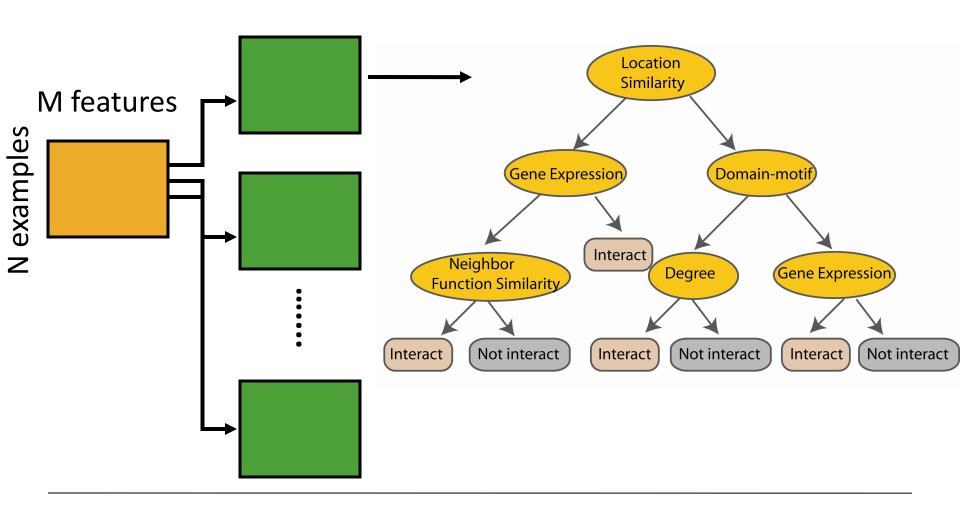


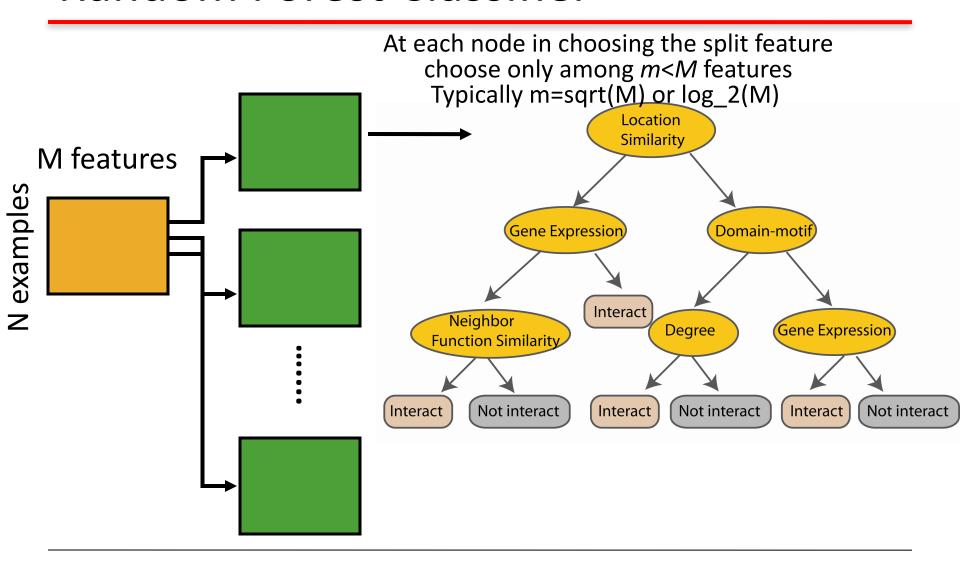
Create bootstrap samples from the training data

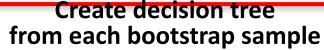
M features

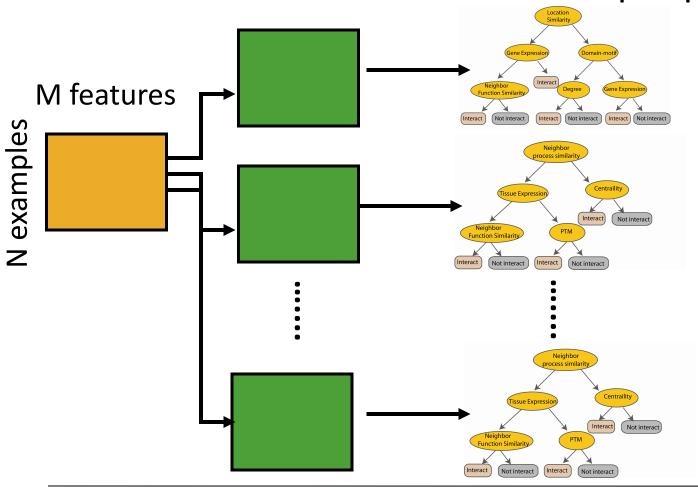
N examples

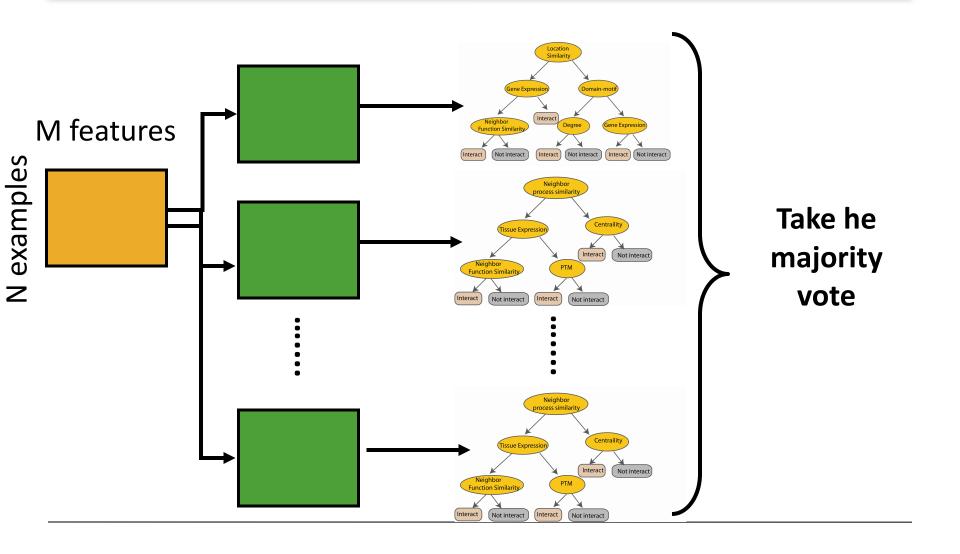
Construct a decision tree











Random Forests Summary

> Advantages

- Computationally Fast can handle thousands of input variables
- > Trees can be trained simultaneously
- > Exceptional Classifiers one of most accurate available
- Provide information on variable importance for the purposes of feature selection
- Can effectively handle missing data

Disadvantages

- > No interpretability in final model aside from variable importance
- > Prone to overfitting
- ➤ Lots of tuning parameters like the number of trees, the depth of each tree, the percentage of variables passed to each tree