
25 March 2014

James Lewis

James Lewis is a
Principal Consultant at
ThoughtWorks and
member of the
Technology Advisory

Board. James' interest in building
applications out of small collaborating
services stems from a background in
integrating enterprise systems at scale.
He's built a number of systems using
microservices and has been an active
participant in the growing community for a
couple of years.

Martin Fowler

Martin Fowler is an
author, speaker, and
general loud-mouth on
software development.
He's long been puzzled

by the problem of how to componentize
software systems, having heard more
vague claims than he's happy with. He
hopes that microservices will live up to the
early promise its advocates have found.
Translations: Japanese · Russian ·
Korean · Portuguese · Simplified
Chinese · Simplfied Chinese · Persian
Find similar articles to this by looking
at these tags: popular · application
architecture · web services ·
microservices

Contents
Characteristics of a Microservice Architecture

Componentization via Services
Organized around Business Capabilities
Products not Projects
Smart endpoints and dumb pipes
Decentralized Governance
Decentralized Data Management
Infrastructure Automation
Design for failure
Evolutionary Design

Are Microservices the Future?
Sidebars
How big is a microservice?
Microservices and SOA
Many languages, many options
Battle-tested standards and enforced standards
Make it easy to do the right thing
The circuit breaker and production ready code
Synchronous calls considered harmful

Microservices
a definition of this new architectural term

The term "Microservice Architecture" has sprung up over the last few years to describe a
particular way of designing software applications as suites of independently deployable
services. While there is no precise definition of this architectural style, there are certain
common characteristics around organization around business capability, automated
deployment, intelligence in the endpoints, and decentralized control of languages and
data.

"Microservices" - yet another new term on the crowded streets of software architecture.
Although our natural inclination is to pass such things by with a contemptuous glance,
this bit of terminology describes a style of software systems that we are finding more and
more appealing. We've seen many projects use this style in the last few years, and
results so far have been positive, so much so that for many of our colleagues this is
becoming the default style for building enterprise applications. Sadly, however, there's
not much information that outlines what the microservice style is and how to do it.

In short, the microservice architectural style [1] is an approach to developing a single
application as a suite of small services, each running in its own process and

!

https://twitter.com/boicy
https://martinfowler.com/
http://kimitok.hateblo.jp/entry/2014/11/09/211820
http://habrahabr.ru/post/249183/
http://channy.creation.net/articles/microservices-by-james_lewes-martin_fowler
http://www.pedromendes.com.br/2016/01/02/microservicos/
http://mp.weixin.qq.com/s?__biz=MjM5MjEwNTEzOQ==&mid=401500724&idx=1&sn=4e42fa2ffcd5732ae044fe6a387a1cc3#rd
http://blog.cuicc.com/blog/2015/07/22/microservices/
http://refactor.ir/2017/04/19/%D9%85%D8%A7%DB%8C%DA%A9%D8%B1%D9%88%D8%B3%D8%B1%D9%88%DB%8C%D8%B3/
https://martinfowler.com/tags/popular.html
https://martinfowler.com/tags/application%20architecture.html
https://martinfowler.com/tags/web%20services.html
https://martinfowler.com/tags/microservices.html
https://martinfowler.com/articles//microservices.html#navmenu-bottom

My Microservices Resource Guide
provides links to the best articles,
videos, books, and podcasts about
microservices.

communicating with lightweight mechanisms, often an HTTP resource API. These
services are built around business capabilities and independently deployable by fully
automated deployment machinery. There is a bare minimum of centralized management
of these services, which may be written in different programming languages and use
different data storage technologies.

To start explaining the microservice style it's useful to compare it to the monolithic
style: a monolithic application built as a single unit. Enterprise Applications are often
built in three main parts: a client-side user interface (consisting of HTML pages and
javascript running in a browser on the user's machine) a database (consisting of
many tables inserted into a common, and usually relational, database management
system), and a server-side application. The server-side application will handle HTTP
requests, execute domain logic, retrieve and update data from the database, and
select and populate HTML views to be sent to the browser. This server-side
application is a monolith - a single logical executable[2]. Any changes to the system
involve building and deploying a new version of the server-side application.

Such a monolithic server is a natural way to approach building such a system. All
your logic for handling a request runs in a single process, allowing you to use the basic
features of your language to divide up the application into classes, functions, and
namespaces. With some care, you can run and test the application on a developer's
laptop, and use a deployment pipeline to ensure that changes are properly tested and
deployed into production. You can horizontally scale the monolith by running many
instances behind a load-balancer.

Monolithic applications can be successful, but increasingly people are feeling frustrations
with them - especially as more applications are being deployed to the cloud . Change
cycles are tied together - a change made to a small part of the application, requires the
entire monolith to be rebuilt and deployed. Over time it's often hard to keep a good
modular structure, making it harder to keep changes that ought to only affect one module
within that module. Scaling requires scaling of the entire application rather than parts of it
that require greater resource.

Figure 1: Monoliths and Microservices

These frustrations have led to the microservice architectural style: building applications
as suites of services. As well as the fact that services are independently deployable and
scalable, each service also provides a firm module boundary, even allowing for different
services to be written in different programming languages. They can also be managed by
different teams .

https://martinfowler.com/microservices
https://martinfowler.com/microservices

We do not claim that the microservice style is novel or innovative, its roots go back at
least to the design principles of Unix. But we do think that not enough people consider a
microservice architecture and that many software developments would be better off if
they used it.

Characteristics of a Microservice Architecture

We cannot say there is a formal definition of the microservices architectural style, but we
can attempt to describe what we see as common characteristics for architectures that fit
the label. As with any definition that outlines common characteristics, not all microservice
architectures have all the characteristics, but we do expect that most microservice
architectures exhibit most characteristics. While we authors have been active members
of this rather loose community, our intention is to attempt a description of what we see in
our own work and in similar efforts by teams we know of. In particular we are not laying
down some definition to conform to.

Componentization via Services

For as long as we've been involved in the software industry, there's been a desire to
build systems by plugging together components, much in the way we see things are
made in the physical world. During the last couple of decades we've seen considerable
progress with large compendiums of common libraries that are part of most language
platforms.

When talking about components we run into the difficult definition of what makes a
component. Our definition is that a component is a unit of software that is independently
replaceable and upgradeable.

Microservice architectures will use libraries, but their primary way of componentizing
their own software is by breaking down into services. We define libraries as components
that are linked into a program and called using in-memory function calls, while services
are out-of-process components who communicate with a mechanism such as a web
service request, or remote procedure call. (This is a different concept to that of a service
object in many OO programs [3].)

One main reason for using services as components (rather than libraries) is that services
are independently deployable. If you have an application [4] that consists of a multiple
libraries in a single process, a change to any single component results in having to
redeploy the entire application. But if that application is decomposed into multiple
services, you can expect many single service changes to only require that service to be
redeployed. That's not an absolute, some changes will change service interfaces
resulting in some coordination, but the aim of a good microservice architecture is to
minimize these through cohesive service boundaries and evolution mechanisms in the
service contracts.

Another consequence of using services as components is a more explicit component
interface. Most languages do not have a good mechanism for defining an explicit
Published Interface. Often it's only documentation and discipline that prevents clients
breaking a component's encapsulation, leading to overly-tight coupling between
components. Services make it easier to avoid this by using explicit remote call
mechanisms.

Using services like this does have downsides. Remote calls are more expensive than in-
process calls, and thus remote APIs need to be coarser-grained, which is often more
awkward to use. If you need to change the allocation of responsibilities between
components, such movements of behavior are harder to do when you're crossing

https://martinfowler.com/bliki/PublishedInterface.html

process boundaries.

At a first approximation, we can observe that services map to runtime processes, but that
is only a first approximation. A service may consist of multiple processes that will always
be developed and deployed together, such as an application process and a database
that's only used by that service.

Organized around Business Capabilities

When looking to split a large application into parts, often management focuses on the
technology layer, leading to UI teams, server-side logic teams, and database teams.
When teams are separated along these lines, even simple changes can lead to a cross-
team project taking time and budgetary approval. A smart team will optimise around this
and plump for the lesser of two evils - just force the logic into whichever application they
have access to. Logic everywhere in other words. This is an example of Conway's
Law[5] in action.

Any organization that designs a system (defined broadly) will produce a design whose
structure is a copy of the organization's communication structure.

-- Melvyn Conway, 1967

Figure 2: Conway's Law in action

The microservice approach to division is different, splitting up into services organized
around business capability. Such services take a broad-stack implementation of
software for that business area, including user-interface, persistant storage, and any
external collaborations. Consequently the teams are cross-functional, including the full
range of skills required for the development: user-experience, database, and project
management.

How big is a microservice?

Although “microservice” has become a
popular name for this architectural
style, its name does lead to an
unfortunate focus on the size of service,
and arguments about what constitutes
“micro”. In our conversations with
microservice practitioners, we see a
range of sizes of services. The largest
sizes reported follow Amazon's notion
of the Two Pizza Team (i.e. the whole
team can be fed by two pizzas),
meaning no more than a dozen people.
On the smaller size scale we've seen
setups where a team of half-a-dozen
would support half-a-dozen services.

This leads to the question of whether
there are sufficiently large differences
within this size range that the service-
per-dozen-people and service-per-
person sizes shouldn't be lumped under
one microservices label. At the moment
we think it's better to group them
together, but it's certainly possible that
we'll change our mind as we explore
this style further.

Figure 3: Service boundaries reinforced by team boundaries

One company organised in this way is www.comparethemarket.com. Cross
functional teams are responsible for building and operating each product and each
product is split out into a number of individual services communicating via a
message bus.

Large monolithic applications can always be modularized around business
capabilities too, although that's not the common case. Certainly we would urge a
large team building a monolithic application to divide itself along business lines. The
main issue we have seen here, is that they tend to be organised around too many
contexts. If the monolith spans many of these modular boundaries it can be difficult
for individual members of a team to fit them into their short-term memory.
Additionally we see that the modular lines require a great deal of discipline to
enforce. The necessarily more explicit separation required by service components
makes it easier to keep the team boundaries clear.

Products not Projects

Most application development efforts that we see use a project model: where the
aim is to deliver some piece of software which is then considered to be completed.
On completion the software is handed over to a maintenance organization and the
project team that built it is disbanded.

Microservice proponents tend to avoid this model, preferring instead the notion that
a team should own a product over its full lifetime. A common inspiration for this is
Amazon's notion of "you build, you run it" where a development team takes full
responsibility for the software in production. This brings developers into day-to-day
contact with how their software behaves in production and increases contact with their
users, as they have to take on at least some of the support burden.

The product mentality, ties in with the linkage to business capabilities. Rather than
looking at the software as a set of functionality to be completed, there is an on-going
relationship where the question is how can software assist its users to enhance the
business capability.

There's no reason why this same approach can't be taken with monolithic applications,
but the smaller granularity of services can make it easier to create the personal
relationships between service developers and their users.

Smart endpoints and dumb pipes

http://www.comparethemarket.com/
https://queue.acm.org/detail.cfm?id=1142065

Microservices and SOA

When we've talked about microservices
a common question is whether this is
just Service Oriented Architecture
(SOA) that we saw a decade ago.
There is merit to this point, because the
microservice style is very similar to
what some advocates of SOA have
been in favor of. The problem, however,
is that SOA means too many different
things, and that most of the time that
we come across something called
"SOA" it's significantly different to the
style we're describing here, usually due
to a focus on ESBs used to integrate
monolithic applications.

In particular we have seen so many
botched implementations of service
orientation - from the tendency to hide
complexity away in ESB's [6], to failed
multi-year initiatives that cost millions
and deliver no value, to centralised
governance models that actively inhibit
change, that it is sometimes difficult to
see past these problems.

Certainly, many of the techniques in use
in the microservice community have
grown from the experiences of
developers integrating services in large
organisations. The Tolerant Reader
pattern is an example of this. Efforts to
use the web have contributed, using
simple protocols is another approach
derived from these experiences - a
reaction away from central standards
that have reached a complexity that is,
frankly, breathtaking. (Any time you
need an ontology to manage your
ontologies you know you are in deep
trouble.)

This common manifestation of SOA has
led some microservice advocates to
reject the SOA label entirely, although
others consider microservices to be one
form of SOA [7], perhaps service
orientation done right. Either way, the
fact that SOA means such different
things means it's valuable to have a
term that more crisply defines this
architectural style.

When building communication structures between different processes, we've seen many
products and approaches that stress putting significant smarts into the communication
mechanism itself. A good example of this is the Enterprise Service Bus (ESB), where
ESB products often include sophisticated facilities for message routing, choreography,
transformation, and applying business rules.

The microservice community favours an alternative approach: smart endpoints and
dumb pipes. Applications built from microservices aim to be as decoupled and as
cohesive as possible - they own their own domain logic and act more as filters in the
classical Unix sense - receiving a request, applying logic as appropriate and
producing a response. These are choreographed using simple RESTish protocols
rather than complex protocols such as WS-Choreography or BPEL or orchestration
by a central tool.

The two protocols used most commonly are HTTP request-response with resource
API's and lightweight messaging[8]. The best expression of the first is

Be of the web, not behind the web

-- Ian Robinson

Microservice teams use the principles and protocols that the world wide web (and to
a large extent, Unix) is built on. Often used resources can be cached with very little
effort on the part of developers or operations folk.

The second approach in common use is messaging over a lightweight message
bus. The infrastructure chosen is typically dumb (dumb as in acts as a message
router only) - simple implementations such as RabbitMQ or ZeroMQ don't do much
more than provide a reliable asynchronous fabric - the smarts still live in the end
points that are producing and consuming messages; in the services.

In a monolith, the components are executing in-process and communication
between them is via either method invocation or function call. The biggest issue in
changing a monolith into microservices lies in changing the communication pattern.
A naive conversion from in-memory method calls to RPC leads to chatty
communications which don't perform well. Instead you need to replace the fine-
grained communication with a coarser -grained approach.

Decentralized Governance

One of the consequences of centralised governance is the tendency to standardise
on single technology platforms. Experience shows that this approach is constricting -
not every problem is a nail and not every solution a hammer. We prefer using the
right tool for the job and while monolithic applications can take advantage of different
languages to a certain extent, it isn't that common.

Splitting the monolith's components out into services we have a choice when
building each of them. You want to use Node.js to standup a simple reports page?
Go for it. C++ for a particularly gnarly near-real-time component? Fine. You want to
swap in a different flavour of database that better suits the read behaviour of one
component? We have the technology to rebuild him.

Of course, just because you can do something, doesn't mean you should - but
partitioning your system in this way means you have the option.

Teams building microservices prefer a different approach to standards too. Rather than
use a set of defined standards written down somewhere on paper they prefer the idea of
producing useful tools that other developers can use to solve similar problems to the
ones they are facing. These tools are usually harvested from implementations and

https://martinfowler.com/bliki/ServiceOrientedAmbiguity.html
https://martinfowler.com/bliki/TolerantReader.html
http://wiki.apache.org/ws/WebServiceSpecifications
https://www.amazon.com/gp/product/0596805829?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0596805829

Battle-tested standards and
enforced standards

It's a bit of a dichotomy that
microservice teams tend to eschew the
kind of rigid enforced standards laid
down by enterprise architecture groups
but will happily use and even
evangelise the use of open standards
such as HTTP, ATOM and other
microformats.

The key difference is how the standards
are developed and how they are
enforced. Standards managed by

Many languages, many options

The growth of JVM as a platform is just
the latest example of mixing languages
within a common platform. It's been
common practice to shell-out to a
higher level language to take
advantage of higher level abstractions
for decades. As is dropping down to the
metal and writing performance sensitive
code in a lower level one. However,
many monoliths don't need this level of
performance optimisation nor are DSL's
and higher level abstractions that
common (to our dismay). Instead
monoliths are usually single language
and the tendency is to limit the number
of technologies in use [10].

shared with a wider group, sometimes, but not exclusively using an internal open source
model. Now that git and github have become the de facto version control system of
choice, open source practices are becoming more and more common in-house .

Netflix is a good example of an organisation that follows this philosophy. Sharing useful
and, above all, battle-tested code as libraries encourages other developers to solve
similar problems in similar ways yet leaves the door open to picking a different approach
if required. Shared libraries tend to be focused on common problems of data storage,
inter-process communication and as we discuss further below, infrastructure automation.

For the microservice community, overheads are particularly unattractive. That isn't to say
that the community doesn't value service contracts. Quite the opposite, since there tend
to be many more of them. It's just that they are looking at different ways of managing
those contracts. Patterns like Tolerant Reader and Consumer-Driven Contracts are often
applied to microservices. These aid service contracts in evolving independently.
Executing consumer driven contracts as part of your build increases confidence and
provides fast feedback on whether your services are functioning. Indeed we know of a
team in Australia who drive the build of new services with consumer driven contracts.
They use simple tools that allow them to define the contract for a service. This becomes
part of the automated build before code for the new service is even written. The service
is then built out only to the point where it satisfies the contract - an elegant approach to
avoid the 'YAGNI'[9] dilemma when building new software. These techniques and the
tooling growing up around them, limit the need for central contract management by
decreasing the temporal coupling between services.

Perhaps the apogee of decentralised governance is the build it / run it ethos
popularised by Amazon. Teams are responsible for all aspects of the software they
build including operating the software 24/7. Devolution of this level of responsibility
is definitely not the norm but we do see more and more companies pushing
responsibility to the development teams. Netflix is another organisation that has
adopted this ethos[11]. Being woken up at 3am every night by your pager is certainly
a powerful incentive to focus on quality when writing your code. These ideas are
about as far away from the traditional centralized governance model as it is possible
to be.

Decentralized Data Management

Decentralization of data management presents in a number of different ways. At the
most abstract level, it means that the conceptual model of the world will differ
between systems. This is a common issue when integrating across a large
enterprise, the sales view of a customer will differ from the support view. Some
things that are called customers in the sales view may not appear at all in the
support view. Those that do may have different attributes and (worse) common attributes
with subtly different semantics.

This issue is common between applications, but can also occur within applications,
particular when that application is divided into separate components. A useful way of
thinking about this is the Domain-Driven Design notion of Bounded Context. DDD
divides a complex domain up into multiple bounded contexts and maps out the
relationships between them. This process is useful for both monolithic and
microservice architectures, but there is a natural correlation between service and
context boundaries that helps clarify, and as we describe in the section on business
capabilities, reinforce the separations.

As well as decentralizing decisions about conceptual models, microservices also
decentralize data storage decisions. While monolithic applications prefer a single
logical database for persistant data, enterprises often prefer a single database
across a range of applications - many of these decisions driven through vendor's

https://martinfowler.com/bliki/TolerantReader.html
https://martinfowler.com/articles/consumerDrivenContracts.html
https://martinfowler.com/bliki/BoundedContext.html

groups such as the IETF only become
standards when there are several live
implementations of them in the wider
world and which often grow from
successful open-source projects.

These standards are a world apart from
many in a corporate world, which are
often developed by groups that have
little recent programming experience or
overly influenced by vendors.

commercial models around licensing. Microservices prefer letting each service
manage its own database, either different instances of the same database
technology, or entirely different database systems - an approach called Polyglot
Persistence. You can use polyglot persistence in a monolith, but it appears more
frequently with microservices.

Decentralizing responsibility for data across microservices has implications for managing
updates. The common approach to dealing with updates has been to use transactions to
guarantee consistency when updating multiple resources. This approach is often used
within monoliths.

Using transactions like this helps with consistency, but imposes significant temporal
coupling, which is problematic across multiple services. Distributed transactions are
notoriously difficult to implement and as a consequence microservice architectures
emphasize transactionless coordination between services, with explicit recognition that
consistency may only be eventual consistency and problems are dealt with by
compensating operations.

Choosing to manage inconsistencies in this way is a new challenge for many
development teams, but it is one that often matches business practice. Often businesses
handle a degree of inconsistency in order to respond quickly to demand, while having
some kind of reversal process to deal with mistakes. The trade-off is worth it as long as
the cost of fixing mistakes is less than the cost of lost business under greater
consistency.

Infrastructure Automation

Infrastructure automation techniques have evolved enormously over the last few years -
the evolution of the cloud and AWS in particular has reduced the operational complexity
of building, deploying and operating microservices.

Many of the products or systems being build with microservices are being built by teams
with extensive experience of Continuous Delivery and it's precursor, Continuous
Integration. Teams building software this way make extensive use of infrastructure
automation techniques. This is illustrated in the build pipeline shown below.

https://martinfowler.com/bliki/PolyglotPersistence.html
http://www.eaipatterns.com/ramblings/18_starbucks.html
https://martinfowler.com/bliki/ContinuousDelivery.html
https://martinfowler.com/articles/continuousIntegration.html

Make it easy to do the right
thing

One side effect we have found of
increased automation as a
consequence of continuous delivery
and deployment is the creation of useful
tools to help developers and operations
folk. Tooling for creating artefacts,
managing codebases, standing up
simple services or for adding standard
monitoring and logging are pretty
common now. The best example on the
web is probably Netflix's set of open
source tools, but there are others
including Dropwizard which we have
used extensively.

Figure 5: basic build pipeline

Since this isn't an article on Continuous Delivery we will call attention to just a couple of
key features here. We want as much confidence as possible that our software is working,
so we run lots of automated tests. Promotion of working software 'up' the pipeline
means we automate deployment to each new environment.

A monolithic application will be built, tested and pushed through these environments
quite happlily. It turns out that once you have invested in automating the path to
production for a monolith, then deploying more applications doesn't seem so scary
any more. Remember, one of the aims of CD is to make deployment boring, so
whether its one or three applications, as long as its still boring it doesn't matter[12].

Another area where we see teams using extensive infrastructure automation is
when managing microservices in production. In contrast to our assertion above that
as long as deployment is boring there isn't that much difference between monoliths
and microservices, the operational landscape for each can be strikingly different.

Figure 6: Module deployment often differs

Design for failure

A consequence of using services as components, is that applications need to be
designed so that they can tolerate the failure of services. Any service call could fail due
to unavailability of the supplier, the client has to respond to this as gracefully as possible.
This is a disadvantage compared to a monolithic design as it introduces additional
complexity to handle it. The consequence is that microservice teams constantly reflect
on how service failures affect the user experience. Netflix's Simian Army induces failures
of services and even datacenters during the working day to test both the application's
resilience and monitoring.

http://netflix.github.io/
http://dropwizard.codahale.com/
https://github.com/Netflix/SimianArmy

The circuit breaker and
production ready code

Circuit Breaker appears in Release It!
alongside other patterns such as
Bulkhead and Timeout. Implemented
together, these patterns are crucially
important when building communicating
applications. This Netflix blog entry
does a great job of explaining their
application of them.

Synchronous calls considered
harmful

Any time you have a number of
synchronous calls between services
you will encounter the multiplicative
effect of downtime. Simply, this is when
the downtime of your system becomes
the product of the downtimes of the
individual components. You face a
choice, making your calls asynchronous
or managing the downtime. At
www.guardian.co.uk they have
implemented a simple rule on the new
platform - one synchronous call per
user request while at Netflix, their
platform API redesign has built
asynchronicity into the API fabric.

This kind of automated testing in production would be enough to give most operation
groups the kind of shivers usually preceding a week off work. This isn't to say that
monolithic architectural styles aren't capable of sophisticated monitoring setups - it's
just less common in our experience.

Since services can fail at any time, it's important to be able to detect the failures
quickly and, if possible, automatically restore service. Microservice applications put
a lot of emphasis on real-time monitoring of the application, checking both
architectural elements (how many requests per second is the database getting) and
business relevant metrics (such as how many orders per minute are received).
Semantic monitoring can provide an early warning system of something going wrong
that triggers development teams to follow up and investigate.

This is particularly important to a microservices architecture because the microservice
preference towards choreography and event collaboration leads to emergent behavior.
While many pundits praise the value of serendipitous emergence, the truth is that
emergent behavior can sometimes be a bad thing. Monitoring is vital to spot bad
emergent behavior quickly so it can be fixed.

Monoliths can be built to be as transparent as a microservice - in fact, they should
be. The difference is that you absolutely need to know when services running in
different processes are disconnected. With libraries within the same process this
kind of transparency is less likely to be useful.

Microservice teams would expect to see sophisticated monitoring and logging
setups for each individual service such as dashboards showing up/down status and
a variety of operational and business relevant metrics. Details on circuit breaker
status, current throughput and latency are other examples we often encounter in the
wild.

Evolutionary Design

Microservice practitioners, usually have come from an evolutionary design
background and see service decomposition as a further tool to enable application
developers to control changes in their application without slowing down change.
Change control doesn't necessarily mean change reduction - with the right attitudes
and tools you can make frequent, fast, and well-controlled changes to software.

Whenever you try to break a software system into components, you're faced with the
decision of how to divide up the pieces - what are the principles on which we decide to
slice up our application? The key property of a component is the notion of independent
replacement and upgradeability[13] - which implies we look for points where we can
imagine rewriting a component without affecting its collaborators. Indeed many
microservice groups take this further by explicitly expecting many services to be
scrapped rather than evolved in the longer term.

The Guardian website is a good example of an application that was designed and built
as a monolith, but has been evolving in a microservice direction. The monolith still is the
core of the website, but they prefer to add new features by building microservices that
use the monolith's API. This approach is particularly handy for features that are
inherently temporary, such as specialized pages to handle a sporting event. Such a part
of the website can quickly be put together using rapid development languages, and
removed once the event is over. We've seen similar approaches at a financial institution
where new services are added for a market opportunity and discarded after a few
months or even weeks.

This emphasis on replaceability is a special case of a more general principle of modular
design, which is to drive modularity through the pattern of change [14]. You want to keep

https://martinfowler.com/bliki/CircuitBreaker.html
https://www.amazon.com/gp/product/B00A32NXZO?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=B00A32NXZO
http://techblog.netflix.com/2012/02/fault-tolerance-in-high-volume.html
https://martinfowler.com/eaaDev/EventCollaboration.html

Our colleague Sam Newman spent
most of 2014 working on a book that
captures our experiences with building

things that change at the same time in the same module. Parts of a system that change
rarely should be in different services to those that are currently undergoing lots of churn.
If you find yourself repeatedly changing two services together, that's a sign that they
should be merged.

Putting components into services adds an opportunity for more granular release
planning. With a monolith any changes require a full build and deployment of the entire
application. With microservices, however, you only need to redeploy the service(s) you
modified. This can simplify and speed up the release process. The downside is that you
have to worry about changes to one service breaking its consumers. The traditional
integration approach is to try to deal with this problem using versioning, but the
preference in the microservice world is to only use versioning as a last resort. We can
avoid a lot of versioning by designing services to be as tolerant as possible to changes in
their suppliers.

Are Microservices the Future?

Our main aim in writing this article is to explain the major ideas and principles of
microservices. By taking the time to do this we clearly think that the microservices
architectural style is an important idea - one worth serious consideration for enterprise
applications. We have recently built several systems using the style and know of others
who have used and favor this approach.

Those we know about who are in some way pioneering the architectural style include
Amazon, Netflix, The Guardian, the UK Government Digital Service, realestate.com.au,
Forward and comparethemarket.com. The conference circuit in 2013 was full of
examples of companies that are moving to something that would class as microservices
- including Travis CI. In addition there are plenty of organizations that have long been
doing what we would class as microservices, but without ever using the name. (Often
this is labelled as SOA - although, as we've said, SOA comes in many contradictory
forms. [15])

Despite these positive experiences, however, we aren't arguing that we are certain that
microservices are the future direction for software architectures. While our experiences
so far are positive compared to monolithic applications, we're conscious of the fact that
not enough time has passed for us to make a full judgement.

Often the true consequences of your architectural decisions are only evident several
years after you made them. We have seen projects where a good team, with a
strong desire for modularity, has built a monolithic architecture that has decayed
over the years. Many people believe that such decay is less likely with
microservices, since the service boundaries are explicit and hard to patch around.
Yet until we see enough systems with enough age, we can't truly assess how
microservice architectures mature.

There are certainly reasons why one might expect microservices to mature poorly. In
any effort at componentization, success depends on how well the software fits into
components. It's hard to figure out exactly where the component boundaries should
lie. Evolutionary design recognizes the difficulties of getting boundaries right and
thus the importance of it being easy to refactor them. But when your components
are services with remote communications, then refactoring is much harder than with
in-process libraries. Moving code is difficult across service boundaries, any interface
changes need to be coordinated between participants, layers of backwards
compatibility need to be added, and testing is made more complicated.

Another issue is If the components do not compose cleanly, then all you are doing is

https://www.amazon.com/gp/product/1491950358?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1491950358
https://www.amazon.com/gp/product/1491950358?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1491950358
https://martinfowler.com/articles/enterpriseREST.html#versioning
http://www.theguardian.com/
https://gds.blog.gov.uk/
https://martinfowler.com/articles//realestate.com.au
http://www.comparethemarket.com/

microservices. This should be your next
step if you want a deeper dive into the
topic.

Share: if you found this article useful, please share it. I
appreciate the feedback and encouragement

shifting complexity from inside a component to the connections between
components. Not just does this just move complexity around, it moves it to a place
that's less explicit and harder to control. It's easy to think things are better when you
are looking at the inside of a small, simple component, while missing messy
connections between services.

Finally, there is the factor of team skill. New techniques tend to be adopted by more
skillful teams. But a technique that is more effective for a more skillful team isn't
necessarily going to work for less skillful teams. We've seen plenty of cases of less
skillful teams building messy monolithic architectures, but it takes time to see what
happens when this kind of mess occurs with microservices. A poor team will always
create a poor system - it's very hard to tell if microservices reduce the mess in this case
or make it worse.

One reasonable argument we've heard is that you shouldn't start with a microservices
architecture. Instead begin with a monolith, keep it modular, and split it into
microservices once the monolith becomes a problem. (Although this advice isn't ideal,
since a good in-process interface is usually not a good service interface.)

So we write this with cautious optimism. So far, we've seen enough about the
microservice style to feel that it can be a worthwhile road to tread. We can't say for sure
where we'll end up, but one of the challenges of software development is that you can
only make decisions based on the imperfect information that you currently have to hand.

For articles on similar topics…
…take a look at the following tags:

popular application architecture web services

microservices

Footnotes
1: The term "microservice" was discussed at a workshop of software architects near Venice in May, 2011 to
describe what the participants saw as a common architectural style that many of them had been recently
exploring. In May 2012, the same group decided on "microservices" as the most appropriate name. James
presented some of these ideas as a case study in March 2012 at 33rd Degree in Krakow in Microservices -
Java, the Unix Way as did Fred George about the same time. Adrian Cockcroft at Netflix, describing this
approach as "fine grained SOA" was pioneering the style at web scale as were many of the others mentioned
in this article - Joe Walnes, Dan North, Evan Botcher and Graham Tackley.

2: The term monolith has been in use by the Unix community for some time. It appears in The Art of Unix
Programming to describe systems that get too big.

3: Many object-oriented designers, including ourselves, use the term service object in the Domain-Driven
Design sense for an object that carries out a significant process that isn't tied to an entity. This is a different
concept to how we're using "service" in this article. Sadly the term service has both meanings and we have to
live with the polyseme.

https://www.amazon.com/gp/product/1491950358?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1491950358
https://twitter.com/intent/tweet?url=https://martinfowler.com/articles/microservices.html&text=Microservices%20%E2%9E%99
https://facebook.com/sharer.php?u=https://martinfowler.com/articles/microservices.html
https://plus.google.com/share?url=https://martinfowler.com/articles/microservices.html
https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/articles/dont-start-monolith.html
https://martinfowler.com/microservices/
https://martinfowler.com/tags/popular.html
https://martinfowler.com/tags/application%20architecture.html
https://martinfowler.com/tags/web%20services.html
https://martinfowler.com/tags/microservices.html
http://2012.33degree.org/talk/show/67
http://www.slideshare.net/fredgeorge/micro-service-architecure
https://www.amazon.com/gp/product/B003U2T5BA?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=B003U2T5BA
https://www.amazon.com/gp/product/0321125215?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321125215

4: We consider an application to be a social construction that binds together a code base, group of
functionality, and body of funding.

5: The original paper can be found on Melvyn Conway's website here

6: We can't resist mentioning Jim Webber's statement that ESB stands for "Egregious Spaghetti Box".

7: Netflix makes the link explicit - until recently referring to their architectural style as fine-grained SOA.

8: At extremes of scale, organisations often move to binary protocols - protobufs for example. Systems using
these still exhibit the characteristic of smart endpoints, dumb pipes - and trade off transparency for scale.
Most web properties and certainly the vast majority of enterprises don't need to make this tradeoff -
transparency can be a big win.

9: "YAGNI" or "You Aren't Going To Need It" is an XP principle and exhortation to not add features until you
know you need them.

10: It's a little disengenuous of us to claim that monoliths are single language - in order to build systems on
todays web, you probably need to know JavaScript and XHTML, CSS, your server side language of choice,
SQL and an ORM dialect. Hardly single language, but you know what we mean.

11: Adrian Cockcroft specifically mentions "developer self-service" and "Developers run what they wrote"(sic)
in this excellent presentation delivered at Flowcon in November, 2013.

12: We are being a little disengenuous here. Obviously deploying more services, in more complex topologies
is more difficult than deploying a single monolith. Fortunately, patterns reduce this complexity - investment in
tooling is still a must though.

13: In fact, Dan North refers to this style as Replaceable Component Architecture rather than microservices.
Since this seems to talk to a subset of the characteristics we prefer the latter.

14: Kent Beck highlights this as one his design principles in Implementation Patterns.

15: And SOA is hardly the root of this history. I remember people saying "we've been doing this for years"
when the SOA term appeared at the beginning of the century. One argument was that this style sees its roots
as the way COBOL programs communicated via data files in the earliest days of enterprise computing. In
another direction, one could argue that microservices are the same thing as the Erlang programming model,
but applied to an enterprise application context.

References
While this is not an exhaustive list, there are a number of sources that practitioners have drawn inspiration
from or which espouse a similar philosophy to that described in this article.

Blogs and online articles

Clemens Vasters’ blog on cloud at microsoft
David Morgantini’s introduction to the topic on his blog
12 factor apps from Heroku
UK Government Digital Service design principles
Jimmy Nilsson’s blogand article on infoq about Cloud Chunk Computing
Alistair Cockburn on Hexagonal architectures

Books

Release it
Rest in practice
Web API Design (free ebook). Brian Mulloy, Apigee.
Enterprise Integration Patterns
Art of unix programming
Growing Object Oriented Software, Guided by Tests
The Modern Firm: Organizational Design for Performance and Growth
Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation
Domain-Driven Design: Tackling Complexity in the Heart of Software

Presentations

Architecture without Architects. Erik Doernenburg.
Does my bus look big in this?. Jim Webber and Martin Fowler, QCon 2008
Guerilla SOA. Jim Webber, 2006
Patterns of Effective Delivery. Dan North, 2011.
Adrian Cockcroft's slideshare channel.
Hydras and Hypermedia. Ian Robinson, JavaZone 2010
Justice will take a million intricate moves. Leonard Richardson, Qcon 2008.
Java, the UNIX way. James Lewis, JavaZone 2012
Micro services architecture. Fred George, YOW! 2012
Democratising attention data at guardian.co.uk. Graham Tackley, GOTO Aarhus 2013
Functional Reactive Programming with RxJava. Ben Christensen, GOTO Aarhus 2013 (registration
required).
Breaking the Monolith. Stefan Tilkov, May 2012.

Papers

https://martinfowler.com/bliki/ApplicationBoundary.html
http://www.melconway.com/Home/Committees_Paper.html
http://www.infoq.com/presentations/soa-without-esb
https://code.google.com/p/protobuf/
http://c2.com/cgi/wiki?YouArentGonnaNeedIt
http://www.slideshare.net/adrianco/flowcon-added-to-for-cmg-keynote-talk-on-how-speed-wins-and-how-netflix-is-doing-continuous-delivery
https://www.amazon.com/gp/product/0321413091?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321413091
http://blogs.msdn.com/b/clemensv/
http://davidmorgantini.blogspot.com/2013/08/micro-services-introduction.htm
http://12factor.net/
https://www.gov.uk/design-principles
http://jimmynilsson.com/blog/
http://www.infoq.com/articles/CCC-Jimmy-Nilsson
http://alistair.cockburn.us/Hexagonal+architecture
https://www.amazon.com/gp/product/0978739213?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0978739213
https://www.amazon.com/gp/product/0596805829?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0596805829
https://pages.apigee.com/web-api-design-ebook.html
https://www.amazon.com/gp/product/0321200683?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321200683
https://www.amazon.com/gp/product/0131429019?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0131429019
https://www.amazon.com/gp/product/0321503627?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321503627
https://www.amazon.com/gp/product/0198293755?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0198293755
https://www.amazon.com/gp/product/0321601912?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321601912
https://www.amazon.com/gp/product/0321125215?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321125215
https://www.youtube.com/watch?v=qVyt3qQ_7TA
http://www.infoq.com/presentations/soa-without-esb
http://www.infoq.com/presentations/webber-guerilla-soa
http://vimeo.com/43659070
http://www.slideshare.net/adrianco
http://vimeo.com/28608667
https://martinfowler.com/articles//microservices.html
http://vimeo.com/74452550
http://yow.eventer.com/yow-2012-1012/micro-services-architecture-by-fred-george-1286
http://gotocon.com/video#18
http://gotocon.com/video#6
http://www.infoq.com/presentations/Breaking-the-Monolith

L. Lamport, "The Implementation of Reliable Distributed Multiprocess Systems", 1978 http://
research.microsoft.com/en-us/um/people/lamport/pubs/implementation.pdf
L. Lamport, R. Shostak, M. Pease, "The Byzantine Generals Problem", 1982 (available at) http://
www.cs.cornell.edu/courses/cs614/2004sp/papers/lsp82.pdf
R.T. Fielding, "Architectural Styles and the Design of Network-based Software Architectures", 2000
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
E. A. Brewer, "Towards Robust Distributed Systems", 2000 http://www.cs.berkeley.edu/ ~brewer/cs262b-
2004/PODC-keynote.pdf
E. Brewer, "CAP Twelve Years Later: How the 'Rules' Have Changed", 2012, http://
www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

Further Reading

The above list captures the references we used when we originally wrote
this article in early 2014. For an up to date list of sources for more
information, take a look at the Microservice Resource Guide.

Significant Revisions
25 March 2014: last installment on are microservices the future?

24 March 2014: added section on evolutionary design

19 March 2014: added sections on infrastructure automation and design for failure

18 March 2014: added section on decentralized data

17 March 2014: added section on decentralized governance

14 March 2014: added section on smart endpoint and dumb pipes

13 March 2014: added section on products not projects

12 March 2014: added section on organizing around business capabilities

10 March 2014: published first installment

!
© Martin Fowler | Privacy Policy | Disclosures

https://martinfowler.com/microservices
http://www.thoughtworks.com/
http://www.thoughtworks.com/privacy-policy
https://martinfowler.com/aboutMe.html#disclosures

