
Microservice Tutorial
Slides are adopted from the Internet

2

Microservice Tutorial
Slides are adopted from the Internet

Client-Server
(Multi-tier)

Distributed
Object

Middleware

Broker-based
Architecture

SOA

Event-driven
SOA

Micro-service
Architecture

3The ultimate goal: to deliver better software faster.

Component Connector

¡ Component patterns
§ Distributed process
§ Distributed object
§ Service

§ Microservice
¡ Connector patterns

§ Remote Procedure Call（RPC)
§ REST
§ Stub/Skeleton of Distributed object
§ Middleware
§ Broker-based
§ Messaging
§ Event-driven

Distributed Software
Architecture

Micro-Service Architecture

• The Micro-service architectural style is
an approach to developing a single
application as a suite of small
services, each running in its own
process and communicating with
lightweight mechanisms, often an HTTP
resource API.

• These services are built around
business capabilities and
independently deployable by fully
automated deployment machinery.

4http://2012.33degree.org/pdf/JamesLewisMicroServices.pdf
https://www.martinfowler.com/articles/microservices.html

Industrial Microservice System:
WeChat system: 3,000 services, over 20,000 nodes
Netflix system: 500+ microservices, about two billion
API requests every day

Microservice for Train Ticket Purchasing System

Xiang Zhou, et. al. Fault Analysis and Debugging of Microservice Systems: Industrial Survey, Benchmark System, and Empirical
Study. IEEE Transactions on Software Engineering, DOI: 10.1109/TSE.2018.2887384.

https://github.com/FudanSELab/train-ticket

From Monolithic Application to Microservices

Credit: James Lewis and Martin Fowler, Microservices

Database Deployment

Credit: James Lewis and Martin Fowler, Microservices

Module Deployment

Credit: James Lewis and Martin Fowler, Microservices

Container

• Containers provide a way to package software in a format that can run ISOLATED
on a SHARED operating system.
• Libraries and settings required to make the software work
• Lightweight, self-contained, standard, secured systems
• Guarantees that software will always run the same

9

Container is an enabler of microservice

Node 1

Node 2

Node 3

Scenario

Request
(trace)

Invocation
(span)

Microservice Container

Node

Request

...
...

Credit: CodeWisdom Group @Fudan University

Micro-Service Architecture: suites of
independently deployable services

• A means to an end: enabling continuous delivery/deployment.
• Characteristics (J. Lewis and M. Fowler)
• Using services as building blocks (components) through Published Interfaces.
• Organized around business capabilities.
• Development team takes full responsibility for the software in production.
• Smart endpoints and dumb pipes
• Decentralized control of languages

11Martin FowlerJames Lewis

Micro-Service Architecture
• Decentralized database

• Each service manage its own database, either different instances of
the same database technology, or entirely different database
system – an approach called Polyglot Persistence.

• Infrastructure automation

• Design for failure
• Microservice teams would expect to see sophisticated monitoring

and logging setups for each individual service such as dashboards
showing up/down status and a variety of operation and business
relevant metrics.

• Evolutionary Design
• See service decomposition as a further tool to enable application

developers to control changes in their application without slowing
down change.

• Microservcies can have independent replacement and
upgradeability.

12

13

Kubernetes: container orchestration and scheduling

Kubernetes provides you with a framework to
run distributed systems resiliently:

• Service discovery and load balancing

• Storage orchestration

• Automated rollouts and rollbacks

• Automatic bin packing (allocate containers to
nodes)

• Automatic Scaling

• Self-healing

Four generations of
microservice architecture:

(a) Container orchestration.

(b) Service discovery and fault
tolerance.

(c) Sidecar and service mesh.

(d) Serverless architecture.

Credit: Jamshidi et al., Microservices-–
The Journey So Far and Challenges Ahead

Observability Data

15

Node 1

Service 11

Node 2

Node 3

messages

Service 12

Service 13 Service 21

Service 21

Service 31

Service 32

Tracing
Log
Metrics

Tracing server Log server Metrics server

Data Integration

Anomaly Detection:
1. On the joint representation
2. Independently à result integration

Trace data
𝑇 = {𝐸!!, 𝐸"!,…𝐸!$}

• event timestamps
• service response

time
• textual: {host,

service, project,
group}

• Other meta-data

Log data

• system states and
significant events at
various critical points to
help debug anomalies
and perform root cause
analysis

• Textual and numerical

𝐿 = (𝑘!, 𝑣! , … , (𝑘% , 𝑣%)}

• time synchronization
• Service synchronization: which trace (or events) corresponds to which

log and metric data (generated by the same action)
• Correlation between samples from each type of data
• Correlation within each type of data

Output: 𝑆 = 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑣𝑎𝑙𝑢𝑒𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 ⊆ {𝑇, 𝐿,𝑀}}

Metric data

• cross-layer system
metric data: CPU,
memory, disk,
network data etc.

• Metrics collected
on physical and
VM layer.

𝑀 = (𝑐𝑝𝑢!, 𝑚𝑒𝑚!
, … , (𝑐𝑝𝑢% , 𝑚𝑒𝑚%)}

Root Cause Analysis

Credit: Anomaly Detection from Tracing Data using Multimodal Deep Learning, IEEE Cloud 2019

Observability data: traces, logs, metrics

16

"traceId": "dbd9a634c6c6faff71d6d85191b30db0",
"name": "get",
"timestamp": 1529396975572,
"parentId": "9a8c3402add170fa",
"duration": 26238,
"binaryAnnotations": [
{"key": "host_ip", "value": "255.24.137.124"},
{"key": "http.status_code", "value": "200"},
{"key": "http.url", "value": "https://e4b74c/v2.0/vpc/9874af&448d69"},
{"key": "project", "value": "neutron"},
{"serviceName": "neutron-server-cascading", "ipv4": "30.55.50.51"}},

Defines an endpoint
(i.e., same function)

Credit: Anomaly Detection from Tracing Data using Multimodal Deep Learning, IEEE Cloud 2019

