Microservice Tutorial

Slides are adopted from the Internet

Microservice Tutorial

Slides are adopted from the Internet

Component Jt W Comector

3 8
‘ P Micro-service

5| @@ Architecture = Component patterns
Distributed Software _ " | Distributed process
Architecture ﬂ%_ oA o Distributed object
; Service
S oo Microservice

= Connector patterns
Remote Procedure Call (RPC)

__ Broker-based

Architecture REST
Stub/Skeleton of Distributed object
| o Mliddleware Middleware
%JJ E Broker-based
5 a w <2 Distributed]
5 \Q\ Cee®® ® = Object Messaging
2)
\ :\ * Client-Server Event-driven
(Multi-tier)

The ultimate goal: to deliver better software faster.

Micro-Service Architecture

Industrial Microservice System:

* The Micro-service archit.ectura_l style IS WeChat system: 3,000 services, over 20,000 nodes
an approach to developing a single Netflix system: 500+ microservices, about two billion

application as a suite of small API requests every day

services, each running in its own
process and communicating with
lightweight mechanisms, often an HTTP
resource API.

*» These services are built around
business capabilities and
independently deployable by fully
automated deployment machinery.

https://www.martinfowler.com/articles/microservices.html
http://2012.33degree.org/pdf/JamesLewisMicroServices.pdf

Microservice for Train Ticket Purchasing System

Gateway

[)
Service Advanced travel Trac;/el adrrlln ket /
. (order, route < news
Discove ry route InfO + ticket statlon) reserve, >
(k8s)
route plan tic k t insid hgt};avi ed travel cecurity < consign >
prlce change, tlme eeeee explore
< > > < kEt\ > order> énmgn price
< Route) seat voucher \

< Food service > < notlfy> < : > @
Load
Balance
< Food map > <conf|g> <stat|or> <tra|n> @ <pr|ce> > <s, n_o,>

Traffic Management(istio) Monitoring & Metrics]

Service
Registry

Xiang Zhou, et. al. Fault Analysis and Debugging of Microservice Systems: Industrial Survey, Benchmark System, and Empirical
Study. /IEEE Transactions on Software Engineering, DOI: 10.1109/TSE.2018.2887384.

https://github.com/FudanSELab/train-ticket

From Monolithic Application to Microservices

A monolithic application puts all its -'
functionality into a single process... ® A microservices architecture puts 9 '
‘ v each element of functionality into a
separate service...
[}

... and scales by replicating the o _
monolith on multiple servers ... and scales by distributing these services
across servers, replicating as needed.

yd yd
-’. -’. IQ 9 I' o
oV oV |0 e ®lle
Y V Y/ %
= = I
oV oV jo||fe
L L L

Credit: James Lewis and Martin Fowler, Microservices

Database Deployment

*58 *38

Credit: James Lewis and Martin Fowler, Microservices

Module Deployment

\
/

4

%‘8

]
=
4
4

microservices - modules running in different processes

monolith - multiple modules in the same process

Credit: James Lewis and Martin Fowler, Microservices

Container

* Containers provide a way to package software in a format that can run ISOLATED
on a SHARED operating system.
e Libraries and settings required to make the software work
e Lightweight, self-contained, standard, secured systems
* Guarantees that software will always run the same

App App

App App App

App App

Virtual Machine Virtual Machine Container Container Container

App App App

Traditional Deployment Virtualized Deployment Container Deployment

Container is an enabler of microservice

Microservice

Request
>

Request
(trace)
PV an)
E— ‘ / Node 3
Gateway. / g /

Credit: CodeWisdom Group @Fudan University

Micro-Service Architecture: suites of
independently deployable services

* A means to an end: enabling continuous delivery/deployment.

e Characteristics (J. Lewis and M. Fowler)
» Using services as building blocks (components) through Published Interfaces.
* Organized around business capabilities.
* Development team takes full responsibility for the software in production.
* Smart endpoints and dumb pipes
* Decentralized control of languages

James Lewis Martin Fowler 11

Micro-Service Architecture

Decentralized database

* Each service manage its own database, either different instances of
the same database technology, or entirely different database
system — an approach called Polyglot Persistence.

Infrastructure automation

Design for failure

* Microservice teams would expect to see sophisticated monitoring
and logging setups for each individual service such as dashboards
showing up/down status and a variety of operation and business
relevant metrics.

EVO I UtIO na ry DESlgn Small, agile, autonomous,

cross functional teams

* See service decomposition as a further tool to enable application
developers to control changes in their application without slowing
down change.

* Microservcies can have independent replacement and
upgradeability.

Enables

Process:
Continuous delivery/deployment

Successful
Software
Development

Enables

Organization:

Enables

Microservice architecture

Architecture:

12

Kubernetes: container orchestration and scheduling

Kubernetes provides you with a framework to

KUberneteS run distributed systems resiliently:

Service discovery and load balancing

API| Server

Storage orchestration

 Automated rollouts and rollbacks

Proxy

* Automatic bin packing (allocate containers to
nodes)

e Automatic Scaling
e Self-healing

13

Four generations of
microservice architecture:

(a) Container orchestration.

(b) Service discovery and fault
tolerance.

(c) Sidecar and service mesh.

(d) Serverless architecture.

Credit: Jamshidi et al., Microservices-—
The Journey So Far and Challenges Ahead

Service A Service B [Discovery service j
Business Business ,—l ,—T—
log logic Service A Service B
--- Business Business
Contai A Container B bg Iog
--- Discovery and Discovery and
(a) fault toleranc fault toleranc

Sidecar
) ' || Discovery and Discovery and i
Service A || fault tolerance > | fault tolerance Service B
Business Traffic Traffic Business
logic management management logic
N J -
‘ - p—
' Container A Container B
(c)
[Discovery service J
Sidecar
: Discovery and
Function A ' fault tolerance Function B
Business Traffic Business
logic management logic
[Function as a service]
(d)

FIGURE 2. Four generations of microservice architecture. (a) Container orchestration. (b) Service
(c) Sidecar and serv

discovery and fault tolerance.
ice mesh. (d) Serverless architecture.

Anomaly Detection:

O bS e rva b i I ity D ata ; agggzg?ji::\tﬁ;p;e ?:QS?ttiicr)l?egration

Node 1 Node 3
Service 11 || Service 31 |
—| messages
v
Service 12 Node 2 ‘ Service 32

. | .
Service 13 LSGNICG 21 |
[Tracingl

| Service 21 E | og
. \etricd
I

|k

I<_-_

Credit: Anomaly Detection from Tracing Data using Multimodal Deep Learning, IEEE Cloud 2019

Logical time

Trace t1

Observability data: traces, logs, metrics

T ; Warning A
!

"traceld": "dbd9a634c6c6faff71d6d85191b30db0",

"name": "get",

"timestamp": 1529396975572,

"parentld": "9a8c3402add170fa",

"duration": 26238,

"binaryAnnotations": [

{"key": "host_ip", "value": "255.24.137.124"},

{"key": "http.status_code", "value": "200"},

{"key": "http.url", "value": "https://e4b74c/v2.0/vpc/9874af&448d69"

{"key": "project", "value": "neutron"},
{"serviceName": "neutron-server-cascading", "ipv4": "30.55.50.51"}},

A B C C B Z
Sequence of spans

Credit: Anomaly Detection from Tracing Data using Multimodal Deep Learning, IEEE Cloud 2019

Defines an endpoint
(i.e., same function)

16

