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The ultimate goal: to deliver better software faster.



Micro-Service Architecture

Industrial Microservice System:

* The Micro-service archit.ectura_l style IS WeChat system: 3,000 services, over 20,000 nodes
an approach to developing a single Netflix system: 500+ microservices, about two billion

application as a suite of small API requests every day

services, each running in its own
process and communicating with
lightweight mechanisms, often an HTTP
resource API.

*» These services are built around
business capabilities and
independently deployable by fully
automated deployment machinery.

https://www.martinfowler.com/articles/microservices.html
http://2012.33degree.org/pdf/JamesLewisMicroServices.pdf



Microservice for Train Ticket Purchasing System
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Xiang Zhou, et. al. Fault Analysis and Debugging of Microservice Systems: Industrial Survey, Benchmark System, and Empirical
Study. /IEEE Transactions on Software Engineering, DOI: 10.1109/TSE.2018.2887384.

https://github.com/FudanSELab/train-ticket



From Monolithic Application to Microservices

A monolithic application puts all its -'
functionality into a single process... ® A microservices architecture puts 9 '
‘ v each element of functionality into a
separate service...
[}

... and scales by replicating the o _
monolith on multiple servers ... and scales by distributing these services
across servers, replicating as needed.
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Credit: James Lewis and Martin Fowler, Microservices



Database Deployment
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Credit: James Lewis and Martin Fowler, Microservices



Module Deployment
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microservices - modules running in different processes

monolith - multiple modules in the same process

Credit: James Lewis and Martin Fowler, Microservices



Container

* Containers provide a way to package software in a format that can run ISOLATED
on a SHARED operating system.
e Libraries and settings required to make the software work
e Lightweight, self-contained, standard, secured systems
* Guarantees that software will always run the same
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Virtual Machine Virtual Machine Container Container Container
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Traditional Deployment Virtualized Deployment Container Deployment



Container is an enabler of microservice
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Credit: CodeWisdom Group @Fudan University



Micro-Service Architecture: suites of
independently deployable services

* A means to an end: enabling continuous delivery/deployment.

e Characteristics (J. Lewis and M. Fowler)
» Using services as building blocks (components) through Published Interfaces.
* Organized around business capabilities.
* Development team takes full responsibility for the software in production.
* Smart endpoints and dumb pipes
* Decentralized control of languages

James Lewis Martin Fowler 11



Micro-Service Architecture

Decentralized database

* Each service manage its own database, either different instances of
the same database technology, or entirely different database
system — an approach called Polyglot Persistence.

Infrastructure automation

Design for failure

* Microservice teams would expect to see sophisticated monitoring
and logging setups for each individual service such as dashboards
showing up/down status and a variety of operation and business
relevant metrics.

EVO I UtIO na ry DESlgn Small, agile, autonomous,

cross functional teams

* See service decomposition as a further tool to enable application
developers to control changes in their application without slowing
down change.

* Microservcies can have independent replacement and
upgradeability.

Enables

Process:
Continuous delivery/deployment

Successful
Software
Development

Enables

Organization:

Enables

Microservice architecture

Architecture:

12



Kubernetes: container orchestration and scheduling

Kubernetes provides you with a framework to

KUberneteS run distributed systems resiliently:

Service discovery and load balancing

API| Server

Storage orchestration

 Automated rollouts and rollbacks

Proxy

* Automatic bin packing (allocate containers to
nodes)

e Automatic Scaling
e Self-healing

13



Four generations of
microservice architecture:

(a) Container orchestration.

(b) Service discovery and fault
tolerance.

(c) Sidecar and service mesh.

(d) Serverless architecture.

Credit: Jamshidi et al., Microservices-—
The Journey So Far and Challenges Ahead
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FIGURE 2. Four generations of microservice architecture. (a) Container orchestration. (b) Service
(c) Sidecar and serv

discovery and fault tolerance.
ice mesh. (d) Serverless architecture.




Anomaly Detection:
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Credit: Anomaly Detection from Tracing Data using Multimodal Deep Learning, IEEE Cloud 2019



Logical time

Trace t1

Observability data: traces, logs, metrics

T ; Warning A
!

"traceld": "dbd9a634c6c6faff71d6d85191b30db0",

"name": "get",

"timestamp": 1529396975572,

"parentld": "9a8c3402add170fa",

"duration": 26238,

"binaryAnnotations": [

{"key": "host_ip", "value": "255.24.137.124"},

{"key": "http.status_code", "value": "200"},

{"key": "http.url", "value": "https://e4b74c/v2.0/vpc/9874af&448d69"

{"key": "project", "value": "neutron"},
{"serviceName": "neutron-server-cascading", "ipv4": "30.55.50.51"}},

A B C C B ...... Z
Sequence of spans

Credit: Anomaly Detection from Tracing Data using Multimodal Deep Learning, IEEE Cloud 2019

Defines an endpoint
(i.e., same function)
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