Dynamic Time Warping Algorithm

Slides from: Elena Tsiporkova

INTRODUCTION

• Time Series

collection of observations made sequentially in time

- Occur in Medical, business, scientific domain
- Finding out similarities between two time series is required in many time series data mining applications

CHALLENGES

- How do we define similarity ?
- Need a method that allows elastic shifting of time axis to accommodate sequences that are similar but can be out of phase
- Large Amount of data
- How do we search quickly ?

SOLUTIONS

- Euclidean distance
 - Aligned one to one
 - Cannot find similarity b/w out of phase signals

Dynamic Time Warping
 – Can be non-linearly aligned

WHAT IS TIME WARPING

DYNAMIC TIME WARPING

• $\gamma(i,j) = d(q_i,c_j) + \min\{\gamma(i-1,j-1), \gamma(i-1,j), \gamma(i,j-1)\}$

- Three Basic Constraints of Time Warping
 - Path should include beginning and ending

Path should not have any jumps

Path cannot go back in time

Shift variance

- Time series have shift variance
 - Are these two points close?

Time warp variance

- Slight changes in timing are not relevant
 - Are these two point close?

Noise/filtering variance

Small changes can look serious

- How about these two points?

A real-world case

• Spoken digits

Example data

Going from fine to coarse

- Small differences are not important
 - Find features that obscure them

A basic speech recognizer

- Collect template spoken words $T_i(t)$
- Get their DTW distances from input *x*(*t*)
 - Smallest distance wins

Clustering Time Series

How do we cluster time series?
We can't just use k-means ...

• We can use DTW for this

Matching warped series

• Represent the warping with a path

Warping Function

To find the *best alignment* between \mathcal{A} and \mathcal{B} one needs to find the path through the grid

$$P = p_1, \ldots, p_s, \ldots, p_k$$

$$\boldsymbol{p}_{s}=(\boldsymbol{i}_{s},\boldsymbol{j}_{s})$$

which *minimizes* the total distance between them.

P is called a *warping function*.

Finding the overall "distance"

• Each node will have a cost

- e.g.,
$$d(i,j) = \left\| \mathbf{r}(i) - \mathbf{t}(j) \right\|$$

• Overall path *cost* is:

$$D = \sum_{k} d(i_k, j_k)$$

 Optimal *D* path defines the "distance" between two given sequences

Optimisations to the DTW Algorithm

The number of possible warping paths through the grid is exponentially explosive!

reduction of the search space

Restrictions on the warping function:

- monotonicity
- continuity
- boundary conditions
- warping window
- slope constraint.

Bellman's optimality principle

- For an optimal path passing through (i, j):
 - $(i_0, j_0) \xrightarrow{opt} (i_f, j_f)$
- Then:

$$\begin{split} (i_0, j_0) & \xrightarrow{opt} (i_f, j_f) = \\ & \left\{ (i_0, j_0) & \xrightarrow{opt} (i, j), (i, j) & \xrightarrow{opt} (i_f, j_f) \right. \end{split}$$

Restrictions on the Warping Function

<u>Monotonicity</u>: $i_{s-1} \leq i_s$ and $j_{s-1} \leq j_s$.

The alignment path does not go back in "*time*" index.

Guarantees that features are not repeated in the alignment.

<u>Continuity</u>: $\mathbf{i}_s - \mathbf{i}_{s-1} \leq 1$ and $\mathbf{j}_s - \mathbf{j}_{s-1} \leq 1$.

The alignment path does not jump in *"time*" index.

Guarantees that the alignment does not omit important features.

Restrictions on the Warping Function

Boundary Conditions: $i_1 = 1$, $i_k = n$ and $j_1 = 1$, $j_k = m$.

The alignment path starts at the bottom left and ends at the top right.

Guarantees that the alignment does not consider partially one of the sequences.

<u>*Warping Window*</u>: $|\mathbf{i}_s - \mathbf{j}_s| \le \mathbf{r}$, where $\mathbf{r} > 0$ is the window length.

A good alignment path is unlikely to wander too far from the diagonal.

Guarantees that the alignment does not try to skip different features and gets stuck at similar features.

DTW Algorithm: Example

Time Series A →	-0.87 -0.88	-0.84 -0.91	-0.85 -0.84	-0.82 -0.82	-0.23 -0.24	1.95 1.92	1.36 1.41	0.60 0.51	0.0 0.03	-0.29 -0.18
1.94 1.97	0.51	0.51	0.49	0.49	0.35	0.17	0.21	0.33	0.41	0.49
0.77 0.74	0.27	0.27	0.26	0.25	0.16	0.18	0.23	0.25	0.31	0.68
-0.17 -0.32	0.13	0.13	0.13	0.12	0.08	0.26	0.40	0.47	0.49	0.49
-0.58 -0.63	0.08	0.08	0.08	0.08	0.10	0.31	0.47	0.57	0.62	0.65
-0.71 -0.68	0.06	0.06	0.06	0.07	0.11	0.32	0.50	0.60	0.65	0.68
-0.65 -0.62	0.04	0.04	0.06	0.08	0.11	0.32	0.49	0.59	0.64	0.66
-0.60 -0.46	0.02	0.05	0.08	0.11	0.13	0.34	0.49	0.58	0.63	0.66
↑ Time Seria	es B				— Euc	lidean	distan	ce bet	ween	vectors