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Reinforcement Learning in a nutshell

RL is a general-purpose framework for decision-making

I RL is for an agent with the capacity to act

I Each action influences the agent’s future state

I Success is measured by a scalar reward signal

I Goal: select actions to maximise future reward



Deep Learning in a nutshell

DL is a general-purpose framework for representation learning

I Given an objective

I Learn representation that is required to achieve objective

I Directly from raw inputs

I Using minimal domain knowledge



Deep Reinforcement Learning: AI = RL + DL

We seek a single agent which can solve any human-level task

I RL defines the objective

I DL gives the mechanism

I RL + DL = general intelligence



Examples of Deep RL @DeepMind

I Play games: Atari, poker, Go, ...

I Explore worlds: 3D worlds, Labyrinth, ...

I Control physical systems: manipulate, walk, swim, ...

I Interact with users: recommend, optimise, personalise, ...
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Deep Representations

I A deep representation is a composition of many functions
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Deep Neural Network

A deep neural network is typically composed of:

I Linear transformations

hk+1 = Whk

I Non-linear activation functions

hk+2 = f (hk+1)

I A loss function on the output, e.g.
I Mean-squared error l = ||y∗ − y ||2
I Log likelihood l = logP [y∗]



Training Neural Networks by Stochastic Gradient Descent

I Sample gradient of expected loss L(w) = E [l ]
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Weight Sharing
Recurrent neural network shares weights between time-steps
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Many Faces of Reinforcement Learning

Computer Science

Economics

Mathematics

Engineering Neuroscience

Psychology

Machine 
Learning

Classical/Operant
Conditioning

Optimal 
Control

Reward
System

Operations 
Research

Rationality/
Game Theory

Reinforcement 
Learning



Agent and Environment

observation

reward

action

at

rt

ot

I At each step t the agent:
I Executes action at
I Receives observation ot
I Receives scalar reward rt

I The environment:
I Receives action at
I Emits observation ot+1

I Emits scalar reward rt+1



State

I Experience is a sequence of observations, actions, rewards

o1, r1, a1, ..., at−1, ot , rt

I The state is a summary of experience

st = f (o1, r1, a1, ..., at−1, ot , rt)

I In a fully observed environment

st = f (ot)



Major Components of an RL Agent

I An RL agent may include one or more of these components:
I Policy: agent’s behaviour function
I Value function: how good is each state and/or action
I Model: agent’s representation of the environment



Policy

I A policy is the agent’s behaviour
I It is a map from state to action:

I Deterministic policy: a = π(s)
I Stochastic policy: π(a|s) = P [a|s]



Value Function

I A value function is a prediction of future reward
I “How much reward will I get from action a in state s?”

I Q-value function gives expected total reward
I from state s and action a
I under policy π
I with discount factor γ

Qπ(s, a) = E
[
rt+1 + γrt+2 + γ2rt+3 + ... | s, a

]

I Value functions decompose into a Bellman equation

Qπ(s, a) = Es′,a′
[
r + γQπ(s ′, a′) | s, a

]
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Optimal Value Functions

I An optimal value function is the maximum achievable value

Q∗(s, a) = max
π

Qπ(s, a) = Qπ∗(s, a)

I Once we have Q∗ we can act optimally,

π∗(s) = argmax
a

Q∗(s, a)

I Optimal value maximises over all decisions. Informally:

Q∗(s, a) = rt+1 + γ max
at+1

rt+2 + γ2 max
at+2

rt+3 + ...

= rt+1 + γ max
at+1

Q∗(st+1, at+1)

I Formally, optimal values decompose into a Bellman equation

Q∗(s, a) = Es′

[
r + γ max

a′
Q∗(s ′, a′) | s, a

]
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Value Function Demo
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Model

observation

reward

action

at

rt

ot I Model is learnt from experience

I Acts as proxy for environment

I Planner interacts with model

I e.g. using lookahead search



Approaches To Reinforcement Learning

Value-based RL

I Estimate the optimal value function Q∗(s, a)

I This is the maximum value achievable under any policy

Policy-based RL

I Search directly for the optimal policy π∗

I This is the policy achieving maximum future reward

Model-based RL

I Build a model of the environment

I Plan (e.g. by lookahead) using model



Deep Reinforcement Learning

I Use deep neural networks to represent
I Value function
I Policy
I Model

I Optimise loss function by stochastic gradient descent
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Q-Networks

Represent value function by Q-network with weights w

Q(s, a,w) ≈ Q∗(s, a)

s sa

Q(s,a,w) Q(s,a1,w) Q(s,am,w)…

w w



Q-Learning

I Optimal Q-values should obey Bellman equation

Q∗(s, a) = Es′

[
r + γ max

a′
Q(s ′, a′)∗ | s, a

]
I Treat right-hand side r + γ max

a′
Q(s ′, a′,w) as a target

I Minimise MSE loss by stochastic gradient descent

l =
(
r + γ max

a
Q(s ′, a′,w)− Q(s, a,w)

)2

I Converges to Q∗ using table lookup representation
I But diverges using neural networks due to:

I Correlations between samples
I Non-stationary targets
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Deep Q-Networks (DQN): Experience Replay

To remove correlations, build data-set from agent’s own experience

s1, a1, r2, s2
s2, a2, r3, s3 → s, a, r , s ′

s3, a3, r4, s4
...

st , at , rt+1, st+1 → st , at , rt+1, st+1

Sample experiences from data-set and apply update

l =

(
r + γ max

a′
Q(s ′, a′,w−)− Q(s, a,w)

)2

To deal with non-stationarity, target parameters w− are held fixed



Deep Reinforcement Learning in Atari

state

reward

action

at

rt

st



DQN in Atari

I End-to-end learning of values Q(s, a) from pixels s

I Input state s is stack of raw pixels from last 4 frames

I Output is Q(s, a) for 18 joystick/button positions

I Reward is change in score for that step

Network architecture and hyperparameters fixed across all games



DQN Results in Atari



DQN Atari Demo

DQN paper
www.nature.com/articles/nature14236

DQN source code:
sites.google.com/a/deepmind.com/dqn/

nature.com/nature
26 February 2015 £10

Vol. 518, No. 7540
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Improvements since Nature DQN

I Double DQN: Remove upward bias caused by max
a

Q(s, a,w)

I Current Q-network w is used to select actions
I Older Q-network w− is used to evaluate actions

l =

(
r + γQ(s ′, argmax

a′
Q(s ′, a′,w),w−)− Q(s, a,w)

)2

I Prioritised replay: Weight experience according to surprise
I Store experience in priority queue according to DQN error∣∣∣r + γ max

a′
Q(s ′, a′,w−)− Q(s, a,w)

∣∣∣
I Duelling network: Split Q-network into two channels

I Action-independent value function V (s, v)
I Action-dependent advantage function A(s, a,w)

Q(s, a) = V (s, v) + A(s, a,w)

Combined algorithm: 3x mean Atari score vs Nature DQN
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Gorila (General Reinforcement Learning Architecture)

I 10x faster than Nature DQN on 38 out of 49 Atari games

I Applied to recommender systems within Google



Asynchronous Reinforcement Learning

I Exploits multithreading of standard CPU

I Execute many instances of agent in parallel

I Network parameters shared between threads
I Parallelism decorrelates data

I Viable alternative to experience replay

I Similar speedup to Gorila - on a single machine!
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Deep Policy Networks

I Represent policy by deep network with weights u

a = π(a|s,u) or a = π(s,u)

I Define objective function as total discounted reward

L(u) = E
[
r1 + γr2 + γ2r3 + ... | π(·,u)

]
I Optimise objective end-to-end by SGD

I i.e. Adjust policy parameters u to achieve more reward



Policy Gradients

How to make high-value actions more likely:

I The gradient of a stochastic policy π(a|s,u) is given by

∂L(u)

∂u
= E

[
∂log π(a|s,u)

∂u
Qπ(s, a)

]

I The gradient of a deterministic policy a = π(s) is given by

∂L(u)

∂u
= E

[
∂Qπ(s, a)

∂a

∂a

∂u

]
I if a is continuous and Q is differentiable
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Actor-Critic Algorithm

I Estimate value function Q(s, a,w) ≈ Qπ(s, a)

I Update policy parameters u by stochastic gradient ascent

∂l

∂u
=
∂log π(a|s,u)

∂u
Q(s, a,w)

or

∂l

∂u
=
∂Q(s, a,w)

∂a

∂a

∂u



Asynchronous Advantage Actor-Critic (A3C)
I Estimate state-value function

V (s, v) ≈ E [rt+1 + γrt+2 + ...|s]

I Q-value estimated by an n-step sample

qt = rt+1 + γrt+2...+ γn−1rt+n + γnV (st+n, v)

I Actor is updated towards target

∂lu
∂u

=
∂log π(at |st ,u)

∂u
(qt − V (st , v))

I Critic is updated to minimise MSE w.r.t. target

lv = (qt − V (st , v))2

I 4x mean Atari score vs Nature DQN
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Deep Reinforcement Learning in Labyrinth



A3C in Labyrinth

Deep Reinforcement Learning in LabyrinthDeep Reinforcement Learning in Labyrinth

Deep Reinforcement Learning in Labyrinthst st+1st-1

ot-1 ot ot+1

π(a|st-1) π(a|st) π(a|st+1)V(st-1) V(st) V(st-1)

I End-to-end learning of softmax policy π(a|st) from pixels

I Observations ot are raw pixels from current frame

I State st = f (o1, ..., ot) is a recurrent neural network (LSTM)

I Outputs both value V (s) and softmax over actions π(a|s)

I Task is to collect apples (+1 reward) and escape (+10 reward)



A3C Labyrinth Demo

Demo:
www.youtube.com/watch?v=nMR5mjCFZCw&feature=youtu.be

Labyrinth source code (coming soon):
sites.google.com/a/deepmind.com/labyrinth/

www.youtube.com/watch?v=nMR5mjCFZCw&feature=youtu.be
sites.google.com/a/deepmind.com/labyrinth/


Deep Reinforcement Learning with Continuous Actions

How can we deal with high-dimensional continuous action spaces?

I Can’t easily compute max
a

Q(s, a)

I Actor-critic algorithms learn without max

I Q-values are differentiable w.r.t a
I Deterministic policy gradients exploit knowledge of ∂Q

∂a



Deep DPG

DPG is the continuous analogue of DQN

I Experience replay: build data-set from agent’s experience

I Critic estimates value of current policy by DQN

lw =

(
r + γQ(s ′, π(s ′, u−),w−)− Q(s, a,w)

)2

To deal with non-stationarity, targets u−,w− are held fixed

I Actor updates policy in direction that improves Q

∂lu
∂u

=
∂Q(s, a,w)

∂a

∂a

∂u

I In other words critic provides loss function for actor



DPG in Simulated Physics
I Physics domains are simulated in MuJoCo
I End-to-end learning of control policy from raw pixels s
I Input state s is stack of raw pixels from last 4 frames
I Two separate convnets are used for Q and π
I Policy π is adjusted in direction that most improves Q

Q(s,a)

π(s)

a



DPG in Simulated Physics Demo

I Demo: DPG from pixels



A3C in Simulated Physics Demo

I Asynchronous RL is viable alternative to experience replay

I Train a hierarchical, recurrent locomotion controller

I Retrain controller on more challenging tasks



Fictitious Self-Play (FSP)

Can deep RL find Nash equilibria in multi-agent games?

I Q-network learns “best response” to opponent policies

I By applying DQN with experience replay
I c.f. fictitious play

I Policy network π(a|s,u) learns an average of best responses

∂l

∂u
=
∂log π(a|s,u)

∂u

I Actions a sample mix of policy network and best response



Neural FSP in Texas Hold’em Poker

I Heads-up limit Texas Hold’em
I NFSP with raw inputs only (no prior knowledge of Poker)
I vs SmooCT (3x medal winner 2015, handcrafted knowlege)
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(a) Win rates against SmooCT. The estimated stan-
dard error of each evaluation is less than 10 mbb/h.

Match-up NFSP
escabeche -52.1 ± 8.5
SmooCT -17.4 ± 9.0
Hyperborean -13.6 ± 9.2

(b) Win rates of NFSP’s greedy-average strategy
against the top 3 agents of the ACPC 2014.

Figure 2: Performance of NFSP in Limit Texas Hold’em.

1024, 512, 1024 and 512 neurons with rectified linear activations. The memory sizes were set to255

600k and 30m for MRL and MSL respectively. MRL functioned as a circular buffer containing a256

recent window of experience. MSL was updated with exponentially-averaged reservoir sampling257

(Osborne et al., 2014), replacing entries in MSL with minimum probability 0.25. We used vanilla258

SGD without momentum for both reinforcement and supervised learning, with learning rates set to259

0.1 and 0.01 respectively. Each agent performed 2 stochastic gradient updates of mini-batch size 256260

per network for every 256 steps in the game. The target network was refitted every 1000 updates.261

NFSP’s anticipatory parameter was set to ⌘ = 0.1. The ✏-greedy policies’ exploration started at 0.08262

and decayed to 0, more slowly than in Leduc Hold’em. In addition to NFSP’s main, average strategy263

profile we also evaluated the best response and greedy-average strategies, which deterministically264

choose actions that maximize the predicted action values or probabilities respectively.265

To provide some intuition for win rates in heads-up LHE, a player that always folds will lose 750266

mbb/h, and expert human players typically achieve expected win rates of 40-60 mbb/h at online267

high-stakes games. Similarly, the top half of computer agents in the ACPC 2014 achieved up to 50268

mbb/h between themselves. While training, we periodically evaluated NFSP’s performance against269

SmooCT from symmetric play for 25000 hands each. Figure 2a presents the learning performance of270

NFSP. NFSP’s average and greedy-average strategy profiles exhibit a stable and relatively monotonic271

performance improvement, and achieve win rates of around -50 and -20 mbb/h respectively. The272

best response strategy profile exhibited more noisy performance, mostly ranging between -50 and 0273

mbb/h. We also evaluated the final greedy-average strategy against the other top 3 competitors of274

the ACPC 2014. Table 2b presents the results. NFSP achieves winrates similar to those of the top275

half of computer agents in the ACPC 2014 and thus is competitive with superhuman compute poker276

programs.277

5 Related work278

Reliance on human expert knowledge can be expensive, prone to human biases and limiting if such279

knowledge is suboptimal. Yet many methods that have been applied to games have relied on human280

expert knowledge. Deep Blue used a human-engineered evaluation function for chess (Campbell et al.,281

2002). In computer Go, Maddison et al. (2015) and Clark and Storkey (2015) trained deep neural282

networks from data of expert human play. In computer poker, current game-theoretic approaches283

use heuristics of card strength to abstract the game to a tractable size (Zinkevich et al., 2007; Gilpin284

et al., 2007; Johanson et al., 2013). Waugh et al. (2015) recently combined one of these methods285

with function approximation. However, their full-width algorithm has to implicitly reason about all286

information states at each iteration, which is prohibitively expensive in large domains. In contrast,287

NFSP focuses on the sample-based reinforcement learning setting where the game’s states need not288

be exhaustively enumerated and the learner may not even have a model of the game’s dynamics.289

Nash equilibria are the only strategy profiles that rational agents can hope to converge on in self-290

play (Bowling and Veloso, 2001). TD-Gammon (Tesauro, 1995) is a world-class backgammon291
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Learning Models of the Environment

I Demo: generative model of Atari
I Challenging to plan due to compounding errors

I Errors in the transition model compound over the trajectory
I Planning trajectories differ from executed trajectories
I At end of long, unusual trajectory, rewards are totally wrong



Deep Reinforcement Learning in Go

What if we have a perfect model? e.g. game rules are known

AlphaGo paper:
www.nature.com/articles/nature16961

AlphaGo resources:
deepmind.com/alphago/
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Vol. 529, No. 7587
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Conclusion

I General, stable and scalable RL is now possible

I Using deep networks to represent value, policy, model

I Successful in Atari, Labyrinth, Physics, Poker, Go

I Using a variety of deep RL paradigms


