Tutorial: Deep Reinforcement Learning

David Silver, Google DeepMind

Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL

Reinforcement Learning in a nutshell

RL is a general-purpose framework for decision-making
» RL is for an agent with the capacity to act
» Each action influences the agent's future state
» Success is measured by a scalar reward signal

» Goal: select actions to maximise future reward

Deep Learning in a nutshell

DL is a general-purpose framework for representation learning
» Given an objective

» Learn representation that is required to achieve objective

v

Directly from raw inputs

v

Using minimal domain knowledge

Deep Reinforcement Learning: Al = RL + DL

We seek a single agent which can solve any human-level task

» RL defines the objective
» DL gives the mechanism

» RL + DL = general intelligence

Examples of Deep RL @DeepMind

v

Play games: Atari, poker, Go, ...

v

Explore worlds: 3D worlds, Labyrinth, ...

v

Control physical systems: manipulate, walk, swim, ...

v

Interact with users: recommend, optimise, personalise, ...

Outline

Introduction to Deep Learning

Deep Representations

> A deep representation is a composition of many functions

X h h, y /
wq W,

» Its gradient can be backpropagated by the chain rule

ahy ohy _Ohnp ay
8l _ox 8l Ohy Ohh—1 gy Dby 3l
Ox ohy e Ohp Oy
dhy dhn
owy dwp
ol ol

Deep Neural Network

A deep neural network is typically composed of:

» Linear transformations
hi+1 = Why
» Non-linear activation functions

hiy2 = f(hig1)

» A loss function on the output, e.g.

» Mean-squared error | = ||y* — y||?
> Log likelihood / = log P[y*]

Training Neural Networks by Stochastic Gradient Descent

» Sample gradient of expected loss L(w) = E [/]

ol E[a/] OL(w)

ow ow| ow

» Adjust w down the sampled gradient

Aw x —
w

Weight Sharing

Recurrent neural network shares weights between time-steps

Yt Yi+1
h: hty1
w Xt w Xt+1

Convolutional neural network shares weights between local regions

i

[T 111

1 N

Outline

Introduction to Reinforcement Learning

Many Faces of Reinforcement Learning

Computer Science

Engineering

et Neuroscience
earning

Optim: eward

ontrol Syste)

g
eration: sical/O|
Rese: ic
Mathematics

nf
itionin,

Gal

cory Psychology

Economics

Agent and Environment

observation

> At each step t the agent:
» Executes action a;
» Receives observation o
» Receives scalar reward r;

reward ry

» The environment:

» Receives action ay
» Emits observation o;41
» Emits scalar reward r;yq

State

» Experience is a sequence of observations, actions, rewards
Oo1,n,ar,...,dr—1,0¢, I't
» The state is a summary of experience
St = f(Ol, rn,ai,...,dt—1, Ot, rt)
> In a fully observed environment

st = f(o)

Major Components of an RL Agent

» An RL agent may include one or more of these components:
» Policy: agent’s behaviour function
» Value function: how good is each state and/or action
» Model: agent'’s representation of the environment

Policy

» A policy is the agent's behaviour
> It is a map from state to action:
» Deterministic policy: a = 7(s)
» Stochastic policy: m(als) = P[a|s]

Value Function

» A value function is a prediction of future reward
» “How much reward will | get from action a in state s?"
> (-value function gives expected total reward

» from state s and action a
» under policy 7
» with discount factor v

Q(s,a) =E [reg1 +Yres2 + Yregz+ .. | s, a

Value Function

» A value function is a prediction of future reward
» “How much reward will | get from action a in state s?"
> (-value function gives expected total reward

» from state s and action a
» under policy 7
» with discount factor v

Q(s,a) =E [reg1 +Yres2 + Yregz+ .. | s, a

» Value functions decompose into a Bellman equation

QW(57 a) = IEs’,a’ [r+’7Q7r(Sl,a,) ’ 573]

Optimal Value Functions

» An optimal value function is the maximum achievable value

Q*(s,a) = max Q"(s,a) = Q™ (s,a)

Optimal Value Functions

» An optimal value function is the maximum achievable value
Q*(s,a) = max Q™(s,a) = Q™ (s, a)
™
» Once we have Q* we can act optimally,

7*(s) = argmax Q*(s, a)

Optimal Value Functions

» An optimal value function is the maximum achievable value
Q*(s,a) = max Q™ (s,a) = Q" (s, a)
» Once we have Q* we can act optimally,
7*(s) = argmax Q*(s, a)
a
» Optimal value maximises over all decisions. Informally:
¥ _ 2
Q" (s,a) = re41+y max repo +9° max reys + ...
ar+1 at42

=rht1+7 Taf Q" (St+1,ar+1)
t+

Optimal Value Functions

» An optimal value function is the maximum achievable value
Q*(s,a) = max Q™ (s,a) = Q" (s, a)
» Once we have Q* we can act optimally,
7*(s) = argmax Q*(s, a)
a
» Optimal value maximises over all decisions. Informally:
¥ _ 2
Q" (s,a) = re41+y max repo +9° max reys + ...
ar+1 at42
*
= re41 7 Max Q7 (se+1, art1)
t+1

» Formally, optimal values decompose into a Bellman equation

Q*(s,a) =Eg |r+~ max Q*(s',d') | s5,a
a/

Value Function Demo

Model

observation

Model

observation

v

Model is learnt from experience

v

Acts as proxy for environment

Planner interacts with model

v

> e.g. using lookahead search

Approaches To Reinforcement Learning

Value-based RL

» Estimate the optimal value function Q*(s, a)

» This is the maximum value achievable under any policy
Policy-based RL

» Search directly for the optimal policy 7*

» This is the policy achieving maximum future reward
Model-based RL

» Build a model of the environment

» Plan (e.g. by lookahead) using model

Deep Reinforcement Learning

» Use deep neural networks to represent

» Value function
» Policy
» Model

» Optimise loss function by stochastic gradient descent

Outline

Value-Based Deep RL

Q-Networks

Represent value function by Q-network with weights w

Q(s,a,w) = Q%(s, a)

Q-Learning
» Optimal Q-values should obey Bellman equation
Q*(s,a) = Eg [r + max Q(s',a)* | s, a]
a/

» Treat right-hand side r + v max Q(s’, ', w) as a target
a/

» Minimise MSE loss by stochastic gradient descent

2
| = <r +7 max Q(s',d,w) — Q(s, a, w))

Q-Learning

v

Optimal Q-values should obey Bellman equation

Q*(s,a) = Eg [r + max Q(s',a)* | s, a]
a/

v

Treat right-hand side r +~ max Q(s’,a’,w) as a target
a/

v

Minimise MSE loss by stochastic gradient descent

2
| = <r +7 max Q(s',d,w) — Q(s, a, w))

v

Converges to Q* using table lookup representation

Q-Learning

» Optimal Q-values should obey Bellman equation

Q*(s,a) = Eg [r + max Q(s',a)* | s, a]
a/

v

Treat right-hand side r +~ max Q(s’,a’,w) as a target
a/

v

Minimise MSE loss by stochastic gradient descent

2
| = <r +7 max Q(s',d,w) — Q(s, a, w))

v

Converges to Q* using table lookup representation

v

But diverges using neural networks due to:

» Correlations between samples
» Non-stationary targets

Deep Q-Networks (DQN): Experience Replay

To remove correlations, build data-set from agent’s own experience

51,41, 12, 52
52,4d2,13,53 — 5,4, rvsl

53,33, 14,54

Sty dt, lt41,Se+1 — | St, dt, Mt+1, St+1

Sample experiences from data-set and apply update

2
| = <r +v max Q(s',a,w™) — Q(s, a,w))

To deal with non-stationarity, target parameters w— are held fixed

Deep Reinforcement Learning in Atari

action

a

+
|

DQN in Atari

v

End-to-end learning of values Q(s, a) from pixels s

v

Input state s is stack of raw pixels from last 4 frames
Output is Q(s, a) for 18 joystick/button positions

v

v

Reward is change in score for that step

32 4x4 filters Fully-connected linear
output layer

256 hidden units
16 8x8 filters

4x84x84

[[G

Stack of 4 previous] Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Network architecture and hyperparameters fixed across all games

DQN Results in Atari

%0001

%000€
L L)Ll

%009 %005

%00
1

%00€
1

ol

0

0Z

Jeuiee Jesur 3seg

[9AS-UBLLINY MOjOq

a£3 sjerud
sepneID
angqisasy
spioisisy
uewoed ‘S
Buimog

Fung sianoa
Jsenbeag
ainuap

uaiy

Jepiuy

pleY Jany
1S19H yueg
spadiuan
puewwo) saddoyg
4O/ 4O PIRZIN
auoz ameg
xusisy

an0qe 10 [aAs]-uBINY JB

‘OY3IH
uea.0

Aevpoy o)
umoq pue dn
Aguaq Buiysid
oinpug

10lid awi
Remazaiy
Js)sely ng-Buny)
weyyueng
Jepiy weag
siapenu) soeds
Buod

puog sawer
siuua|
oosebuey
Jauunmy peoy
Inessy

iy

aweo siyL aweN
SHOERY Uowsq
Jaydon
Jequio Azei
SHUERY
s\uEjoqoY
Jeuung Jelg
noyeaig
Buixog

Ilequid OSpIA

2abuansy sewWnzojuop

DQN Atari Demo

DQN paper

www.nature.com/articles/nature14236

DQN source code:
sites.google.com/a/deepmind. com/dqn/

www.nature.com/articles/nature14236
sites.google.com/a/deepmind.com/dqn/

Improvements since Nature DQN

» Double DQN: Remove upward bias caused by max Q(s, a, w)
a

» Current Q-network w is used to select actions
» Older Q-network w™~ is used to evaluate actions

2
| = (r +Q(s’,argmax Q(s',a',w),w™) — Q(s, a,w))

Improvements since Nature DQN

» Double DQN: Remove upward bias caused by max Q(s, a, w)
a

» Current Q-network w is used to select actions
» Older Q-network w™~ is used to evaluate actions

2
| = (r +Q(s’,argmax Q(s',a',w),w™) — Q(s, a,w))

» Prioritised replay: Weight experience according to surprise
» Store experience in priority queue according to DQN error

r+~max Q(s’,a,w™) — Q(s, a, W)‘
a/

Improvements since Nature DQN

» Double DQN: Remove upward bias caused by max Q(s, a, w)
a

» Current Q-network w is used to select actions
» Older Q-network w™~ is used to evaluate actions

2
| = (r +Q(s’,argmax Q(s',a',w),w™) — Q(s, a,w))

» Prioritised replay: Weight experience according to surprise
» Store experience in priority queue according to DQN error

r+~max Q(s’,a,w™) — Q(s, a, W)‘
a/

» Duelling network: Split Q-network into two channels

» Action-independent value function V/(s, v)
» Action-dependent advantage function A(s, a, w)

Q(s,3) = V(s.v) + A(s, 3, w)

Improvements since Nature DQN

» Double DQN: Remove upward bias caused by max Q(s, a, w)
a

» Current Q-network w is used to select actions
» Older Q-network w™~ is used to evaluate actions

2
| = (r +Q(s’,argmax Q(s',a',w),w™) — Q(s, a,w))

» Prioritised replay: Weight experience according to surprise
» Store experience in priority queue according to DQN error

r+~max Q(s’,a,w™) — Q(s, a, W)‘
a/

» Duelling network: Split Q-network into two channels

» Action-independent value function V/(s, v)
» Action-dependent advantage function A(s, a, w)

Q(s,3) = V(s.v) + A(s, 3, w)

Combined algorithm: 3x mean Atari score vs Nature DQN

Gorila (General Reinforcement Learning Architecture)

Distributed Memory

SAMPLE
PARAMETERS
PARAMETERS
GRADIENTS
Learners

Actors & Environments

Distributed Q-Networks

» 10x faster than Nature DQN on 38 out of 49 Atari games

» Applied to recommender systems within Google

Asynchronous Reinforcement Learning

v

Exploits multithreading of standard CPU

v

Execute many instances of agent in parallel

v

Network parameters shared between threads

v

Parallelism decorrelates data
» Viable alternative to experience replay

v

Similar speedup to Gorila - on a single machine!

Outline

Policy-Based Deep RL

Deep Policy Networks

v

Represent policy by deep network with weights u

a=mr(a|s,u) or a=7(s,u)

v

Define objective function as total discounted reward

L(u) =E[n +vyr+~°r+... | 7(-,u)]

v

Optimise objective end-to-end by SGD

v

i.e. Adjust policy parameters u to achieve more reward

Policy Gradients

How to make high-value actions more likely:

» The gradient of a stochastic policy 7(als, u) is given by

OL(u) _ [Ologm(als,u) .
Tou | w90

Policy Gradients

How to make high-value actions more likely:

» The gradient of a stochastic policy 7(als, u) is given by
OL(u) dlog (als,u)
ot Sl A 18 e -l Sl bt B A 3
du { a2 (s2)
» The gradient of a deterministic policy a = 7(s) is given by

IL(u) _E [BQ’T(S, a) 8‘9}

Ju Oa ou

» if ais continuous and @ is differentiable

Actor-Critic Algorithm

» Estimate value function Q(s,a,w) ~ Q™ (s, a)

» Update policy parameters u by stochastic gradient ascent

0l _ Ologm(als,u)

Ou Ou Qs, 2, w)

or

ol 0Q(s,a,w) da

ou Oa du

Asynchronous Advantage Actor-Critic (A3C)

» Estimate state-value function
V(s,v) =~ E[re41 + yreq42 + ...|9]
> Q-value estimated by an n-step sample

gr = re+1 +vre2.. + 7"71ft+n + "V (st4n,V)

Asynchronous Advantage Actor-Critic (A3C)
» Estimate state-value function
V(s,v) =~ E[re41 + yreq42 + ...|9]
> Q-value estimated by an n-step sample

gr = re+1 +vre2.. + 7"71ft+n + "V (st4n,V)

» Actor is updated towards target
Ol, _ Ologm(at|st, u)

o= ou e Vlov)

» Critic is updated to minimise MSE w.r.t. target
b= (qe = V(st,v))?

Asynchronous Advantage Actor-Critic (A3C)

» Estimate state-value function
V(s,v) =~ E[re41 + yreq42 + ...|9]

Q-value estimated by an n-step sample

v

gr = re+1 +vre2.. + 7"71ft+n + "V (st4n,V)

v

Actor is updated towards target

0l, Ologm(at|st,u)
P T— (gt — V(st,v))

v

Critic is updated to minimise MSE w.r.t. target
b= (qe = V(st,v))?

v

4x mean Atari score vs Nature DQN

Deep Reinforcement Learning in Labyrinth

A3C in Labyrinth

(@ls, ;) V(sy.q)

Ot Ot41

v

End-to-end learning of softmax policy 7(als;) from pixels

v

Observations o; are raw pixels from current frame

v

State s; = f(o1, ..., 0¢) is a recurrent neural network (LSTM)

v

Outputs both value V/(s) and softmax over actions 7(a|s)

v

Task is to collect apples (+1 reward) and escape (410 reward)

A3C Labyrinth Demo

Demo:
www.youtube.com/watch?v=nMR5mjCFZCw&feature=youtu.be

Labyrinth source code (coming soon):
sites.google.com/a/deepmind.com/labyrinth/

www.youtube.com/watch?v=nMR5mjCFZCw&feature=youtu.be
sites.google.com/a/deepmind.com/labyrinth/

Deep Reinforcement Learning with Continuous Actions

How can we deal with high-dimensional continuous action spaces?
» Can't easily compute max Q(s, a)
a
» Actor-critic algorithms learn without max

» Q-values are differentiable w.r.t a
» Deterministic policy gradients exploit knowledge of %

Deep DPG

DPG is the continuous analogue of DQN
» Experience replay: build data-set from agent's experience

» Critic estimates value of current policy by DQN

hw = <r +7Q(s', (s um),w) = Q(s, a,W)>2

To deal with non-stationarity, targets u~,w~ are held fixed

» Actor updates policy in direction that improves @
0y _ 0Q(s, a,w) da
ou Oa Ju

» In other words critic provides loss function for actor

DPG in Simulated Physics

Physics domains are simulated in MuJoCo

End-to-end learning of control policy from raw pixels s
Input state s is stack of raw pixels from last 4 frames
Two separate convnets are used for Q and 7

Policy 7 is adjusted in direction that most improves @

vV V.V vYy

Fully-connected layer
of rectified linear units

DPG in Simulated Physics Demo

» Demo: DPG from pixels

A3C in Simulated Physics Demo

» Asynchronous RL is viable alternative to experience replay

» Train a hierarchical, recurrent locomotion controller

» Retrain controller on more challenging tasks

Fictitious Self-Play (FSP)

Can deep RL find Nash equilibria in multi-agent games?
» Q-network learns “best response” to opponent policies

» By applying DQN with experience replay
» c.f. fictitious play

» Policy network 7(a|s, u) learns an average of best responses

0l Ologm(als,u)
ou Ou

» Actions a sample mix of policy network and best response

Neural FSP in Texas Hold'em Poker

» Heads-up limit Texas Hold’em
» NFSP with raw inputs only (no prior knowledge of Poker)
» vs SmooCT (3x medal winner 2015, handcrafted knowlege)

100 T T T T T T T

0

-100

-200

-300

mbb/h

-400

-500

-600 \ SmooCT a

NFESP, best response strategy ———

-700 NFSP, greedy-average strategy ——— —
NESP, average strategy ———

1 1 1 1

-800 1 1 1
0 S5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

Iterations

Outline

Model-Based Deep RL

Learning Models of the Environment

» Demo: generative model of Atari
» Challenging to plan due to compounding errors

» Errors in the transition model compound over the trajectory
» Planning trajectories differ from executed trajectories
» At end of long, unusual trajectory, rewards are totally wrong

Deep Reinforcement Learning in Go

What if we have a perfect model? e.g. game rules are known

AlphaGo paper:

www.nature.com/articles/nature16961

AlphaGo resources:

deepmind. com/alphago/ ALLSYSTEﬂﬂSGU

www.nature.com/articles/nature16961
deepmind.com/alphago/

Conclusion

v

General, stable and scalable RL is now possible

v

Using deep networks to represent value, policy, model

v

Successful in Atari, Labyrinth, Physics, Poker, Go

v

Using a variety of deep RL paradigms

