Tutorial: Deep Reinforcement Learning

David Silver, Google DeepMind

(ロ)、(型)、(E)、(E)、 E) の(の)

Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL

Reinforcement Learning in a nutshell

RL is a general-purpose framework for decision-making

- RL is for an agent with the capacity to act
- Each action influences the agent's future state
- Success is measured by a scalar reward signal
- Goal: select actions to maximise future reward

Deep Learning in a nutshell

DL is a general-purpose framework for representation learning

- Given an objective
- Learn representation that is required to achieve objective

- Directly from raw inputs
- Using minimal domain knowledge

Deep Reinforcement Learning: AI = RL + DL

We seek a single agent which can solve any human-level task

- RL defines the objective
- DL gives the mechanism
- RL + DL = general intelligence

Examples of Deep RL @DeepMind

- Play games: Atari, poker, Go, …
- Explore worlds: 3D worlds, Labyrinth, ...
- Control physical systems: manipulate, walk, swim, ...
- Interact with users: recommend, optimise, personalise, ...

Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

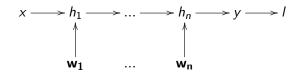
Value-Based Deep RL

Policy-Based Deep RL

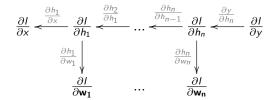
Model-Based Deep RL

Deep Representations

A deep representation is a composition of many functions



Its gradient can be backpropagated by the chain rule



Deep Neural Network

A deep neural network is typically composed of:

Linear transformations

$$h_{k+1} = Wh_k$$

Non-linear activation functions

$$h_{k+2} = f(h_{k+1})$$

- A loss function on the output, e.g.
 - Mean-squared error $I = ||y^* y||^2$
 - Log likelihood $I = \log \mathbb{P}[y^*]$

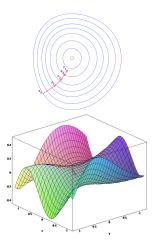
Training Neural Networks by Stochastic Gradient Descent

▶ Sample gradient of expected loss $L(\mathbf{w}) = \mathbb{E}\left[l\right]$

$$\frac{\partial I}{\partial \mathbf{w}} \sim \mathbb{E}\left[\frac{\partial I}{\partial \mathbf{w}}\right] = \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$$

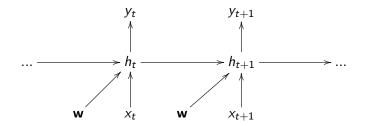
Adjust w down the sampled gradient

$$\Delta w \propto rac{\partial l}{\partial \mathbf{w}}$$

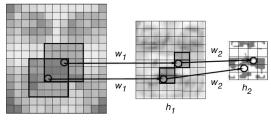


Weight Sharing

Recurrent neural network shares weights between time-steps



Convolutional neural network shares weights between local regions



_▶ ◀ ≣ ▶ ≡ ∽ ९ ୯ ୧

х

Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

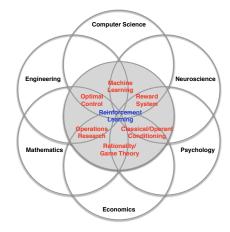
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Value-Based Deep RL

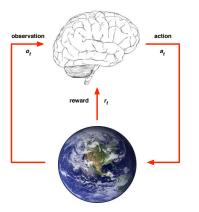
Policy-Based Deep RL

Model-Based Deep RL

Many Faces of Reinforcement Learning



Agent and Environment



- At each step t the agent:
 - Executes action a_t
 - Receives observation o_t
 - Receives scalar reward r_t
- The environment:
 - Receives action a_t
 - Emits observation o_{t+1}
 - Emits scalar reward r_{t+1}

State

> Experience is a sequence of observations, actions, rewards

$$o_1, r_1, a_1, \dots, a_{t-1}, o_t, r_t$$

► The state is a summary of experience

$$s_t = f(o_1, r_1, a_1, ..., a_{t-1}, o_t, r_t)$$

In a fully observed environment

$$s_t = f(o_t)$$

Major Components of an RL Agent

- An RL agent may include one or more of these components:
 - Policy: agent's behaviour function
 - Value function: how good is each state and/or action

Model: agent's representation of the environment

Policy

- A policy is the agent's behaviour
- It is a map from state to action:
 - Deterministic policy: $a = \pi(s)$
 - Stochastic policy: $\pi(a|s) = \mathbb{P}[a|s]$

Value Function

A value function is a prediction of future reward

- "How much reward will I get from action a in state s?"
- Q-value function gives expected total reward
 - from state s and action a
 - under policy π
 - \blacktriangleright with discount factor γ

$$Q^{\pi}(s,a) = \mathbb{E}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s,a\right]$$

Value Function

A value function is a prediction of future reward

- "How much reward will I get from action a in state s?"
- Q-value function gives expected total reward
 - from state s and action a
 - under policy π
 - with discount factor γ

$$Q^{\pi}(s,a) = \mathbb{E}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s,a\right]$$

Value functions decompose into a Bellman equation

$$Q^{\pi}(s,a) = \mathbb{E}_{s',a'}\left[r + \gamma Q^{\pi}(s',a') \mid s,a\right]$$

An optimal value function is the maximum achievable value

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) = Q^{\pi^*}(s,a)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

An optimal value function is the maximum achievable value

$$Q^*(s,a)=\max_\pi Q^\pi(s,a)=Q^{\pi^*}(s,a)$$

Once we have Q^{*} we can act optimally,

$$\pi^*(s) = \operatorname*{argmax}_{a} Q^*(s, a)$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

An optimal value function is the maximum achievable value

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) = Q^{\pi^*}(s,a)$$

Once we have Q^{*} we can act optimally,

$$\pi^*(s) = rgmax_a Q^*(s,a)$$

Optimal value maximises over all decisions. Informally:

$$Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \dots$$
$$= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An optimal value function is the maximum achievable value

$$Q^*(s,a)=\max_\pi \,Q^\pi(s,a)=Q^{\pi^*}(s,a)$$

Once we have Q* we can act optimally,

$$\pi^*(s) = rgmax_a Q^*(s,a)$$

Optimal value maximises over all decisions. Informally:

$$Q^{*}(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^{2} \max_{a_{t+2}} r_{t+3} + \dots$$
$$= r_{t+1} + \gamma \max_{a_{t+1}} Q^{*}(s_{t+1}, a_{t+1})$$

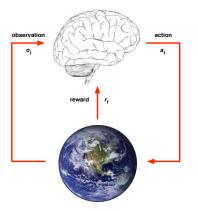
Formally, optimal values decompose into a Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s',a') \mid s,a \right]$$

Value Function Demo

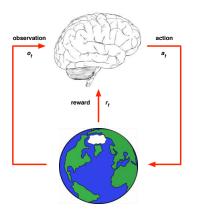
・ロト・雪ト・雪ト・雪・ うんの

Model



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Model



- Model is learnt from experience
- Acts as proxy for environment
- Planner interacts with model
- e.g. using lookahead search

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Approaches To Reinforcement Learning

Value-based RL

- Estimate the optimal value function $Q^*(s, a)$
- This is the maximum value achievable under any policy
 Policy-based RL
 - Search directly for the optimal policy π^*
- This is the policy achieving maximum future reward
 Model-based RL

- Build a model of the environment
- Plan (e.g. by lookahead) using model

Deep Reinforcement Learning

- Use deep neural networks to represent
 - Value function
 - Policy
 - Model
- Optimise loss function by stochastic gradient descent

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Value-Based Deep RL

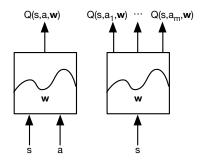
Policy-Based Deep RL

Model-Based Deep RL

Q-Networks

Represent value function by Q-network with weights w

 $Q(s,a,\mathbf{w})pprox Q^*(s,a)$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Q-Learning

Optimal Q-values should obey Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q(s',a')^* \mid s,a\right]$$

- ► Treat right-hand side $r + \gamma \max_{a'} Q(s', a', \mathbf{w})$ as a target
- Minimise MSE loss by stochastic gradient descent

$$I = \left(r + \gamma \max_{a} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w})\right)^{2}$$

Q-Learning

Optimal Q-values should obey Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q(s',a')^* \mid s,a\right]$$

- ► Treat right-hand side $r + \gamma \max_{a'} Q(s', a', \mathbf{w})$ as a target
- Minimise MSE loss by stochastic gradient descent

$$I = \left(r + \gamma \max_{a} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w})\right)^{2}$$

Converges to Q^{*} using table lookup representation

Q-Learning

Optimal Q-values should obey Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q(s',a')^* \mid s,a\right]$$

- ► Treat right-hand side $r + \gamma \max_{a'} Q(s', a', \mathbf{w})$ as a target
- Minimise MSE loss by stochastic gradient descent

$$I = \left(r + \gamma \max_{a} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w})\right)^{2}$$

- Converges to Q^{*} using table lookup representation
- But diverges using neural networks due to:
 - Correlations between samples
 - Non-stationary targets

Deep Q-Networks (DQN): Experience Replay

To remove correlations, build data-set from agent's own experience

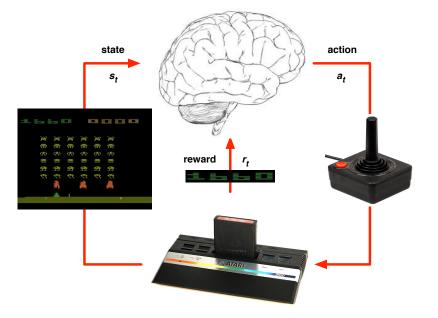
$$\begin{array}{c|c} \hline s_1, a_1, r_2, s_2 \\ \hline s_2, a_2, r_3, s_3 \\ \hline s_3, a_3, r_4, s_4 \\ \hline \\ \hline \\ s_t, a_t, r_{t+1}, s_{t+1} \end{array} \rightarrow \begin{array}{c} s_t, a_t, r_{t+1}, s_{t+1} \end{array} \rightarrow \begin{array}{c} s, a, r, s' \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \\ \end{array}$$

Sample experiences from data-set and apply update

$$I = \left(r + \gamma \max_{a'} Q(s', a', \mathbf{w}^{-}) - Q(s, a, \mathbf{w})\right)^{2}$$

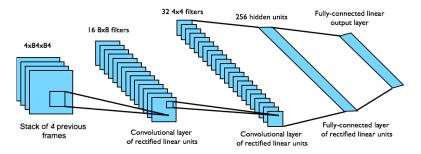
To deal with non-stationarity, target parameters \mathbf{w}^- are held fixed

Deep Reinforcement Learning in Atari



DQN in Atari

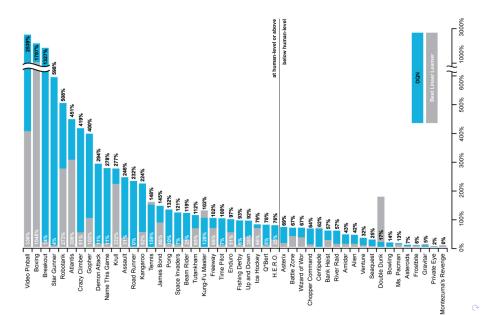
- End-to-end learning of values Q(s, a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step



Network architecture and hyperparameters fixed across all games

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

DQN Results in Atari



DQN Atari Demo

DQN paper www.nature.com/articles/nature14236

DQN source code: sites.google.com/a/deepmind.com/dqn/

Double DQN: Remove upward bias caused by max $Q(s, a, \mathbf{w})$

- Current Q-network w is used to select actions
- Older Q-network w⁻ is used to evaluate actions

$$I = \left(r + \gamma Q(s', \operatorname{argmax}_{a'} Q(s', a', \mathbf{w}), \mathbf{w}^{-}) - Q(s, a, \mathbf{w})\right)^{2}$$

- **Double DQN**: Remove upward bias caused by max $Q(s, a, \mathbf{w})$
 - Current Q-network w is used to select actions
 - Older Q-network w⁻ is used to evaluate actions

$$I = \left(r + \gamma Q(s', \operatorname{argmax}_{a'} Q(s', a', \mathbf{w}), \mathbf{w}^{-}) - Q(s, a, \mathbf{w})\right)^{2}$$

- Prioritised replay: Weight experience according to surprise
 - Store experience in priority queue according to DQN error

$$\left| \mathbf{r} + \gamma \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}', \mathbf{w}^{-}) - Q(\mathbf{s}, \mathbf{a}, \mathbf{w}) \right|$$

- **Double DQN**: Remove upward bias caused by max $Q(s, a, \mathbf{w})$
 - Current Q-network w is used to select actions
 - Older Q-network w⁻ is used to evaluate actions

$$I = \left(r + \gamma Q(s', \operatorname{argmax}_{a'} Q(s', a', \mathbf{w}), \mathbf{w}^{-}) - Q(s, a, \mathbf{w})\right)^{2}$$

- Prioritised replay: Weight experience according to surprise
 - Store experience in priority queue according to DQN error

$$r + \gamma \max_{a'} Q(s', a', \mathbf{w}^{-}) - Q(s, a, \mathbf{w})$$

Duelling network: Split Q-network into two channels

- Action-independent value function V(s, v)
- Action-dependent advantage function A(s, a, w)

$$Q(s,a) = V(s,v) + A(s,a,\mathbf{w})$$

- **Double DQN**: Remove upward bias caused by max $Q(s, a, \mathbf{w})$
 - Current Q-network w is used to select actions
 - Older Q-network w⁻ is used to evaluate actions

$$I = \left(r + \gamma Q(s', \operatorname{argmax}_{a'} Q(s', a', \mathbf{w}), \mathbf{w}^{-}) - Q(s, a, \mathbf{w})\right)^{2}$$

- Prioritised replay: Weight experience according to surprise
 - Store experience in priority queue according to DQN error

$$r + \gamma \max_{a'} Q(s', a', \mathbf{w}^{-}) - Q(s, a, \mathbf{w})$$

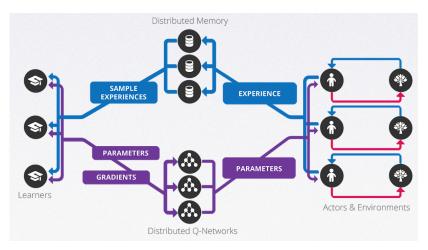
Duelling network: Split Q-network into two channels

- Action-independent value function V(s, v)
- Action-dependent advantage function A(s, a, w)

$$Q(s,a) = V(s,v) + A(s,a,\mathbf{w})$$

Combined algorithm: 3x mean Atari score vs Nature DQN

Gorila (General Reinforcement Learning Architecture)



- 10x faster than Nature DQN on 38 out of 49 Atari games
- Applied to recommender systems within Google

Asynchronous Reinforcement Learning

- Exploits multithreading of standard CPU
- Execute many instances of agent in parallel
- Network parameters shared between threads
- Parallelism decorrelates data
 - Viable alternative to experience replay
- Similar speedup to Gorila on a single machine!

Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL

Deep Policy Networks

Represent policy by deep network with weights u

$$a = \pi(a|s, \mathbf{u})$$
 or $a = \pi(s, \mathbf{u})$

Define objective function as total discounted reward

$$L(\mathbf{u}) = \mathbb{E}\left[r_1 + \gamma r_2 + \gamma^2 r_3 + \dots \mid \pi(\cdot, \mathbf{u})\right]$$

- Optimise objective end-to-end by SGD
- ▶ i.e. Adjust policy parameters **u** to achieve more reward

Policy Gradients

How to make high-value actions more likely:

• The gradient of a stochastic policy $\pi(a|s, \mathbf{u})$ is given by

$$rac{\partial L(\mathbf{u})}{\partial u} = \mathbb{E}\left[rac{\partial \log \pi(a|s,\mathbf{u})}{\partial \mathbf{u}}Q^{\pi}(s,a)
ight]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Policy Gradients

How to make high-value actions more likely:

• The gradient of a stochastic policy $\pi(a|s, \mathbf{u})$ is given by

$$\frac{\partial L(\mathbf{u})}{\partial u} = \mathbb{E}\left[\frac{\partial \log \pi(a|s,\mathbf{u})}{\partial \mathbf{u}}Q^{\pi}(s,a)\right]$$

• The gradient of a deterministic policy $a = \pi(s)$ is given by

$$\frac{\partial L(\mathbf{u})}{\partial \mathbf{u}} = \mathbb{E}\left[\frac{\partial Q^{\pi}(s,a)}{\partial a}\frac{\partial a}{\partial \mathbf{u}}\right]$$

if a is continuous and Q is differentiable

Actor-Critic Algorithm

- Estimate value function $Q(s, a, \mathbf{w}) \approx Q^{\pi}(s, a)$
- Update policy parameters u by stochastic gradient ascent

$$\frac{\partial l}{\partial \mathbf{u}} = \frac{\partial \log \pi(a|s, \mathbf{u})}{\partial \mathbf{u}} Q(s, a, \mathbf{w})$$

or

$$\frac{\partial I}{\partial \mathbf{u}} = \frac{\partial Q(s, a, \mathbf{w})}{\partial a} \frac{\partial a}{\partial \mathbf{u}}$$

Asynchronous Advantage Actor-Critic (A3C)

Estimate state-value function

$$V(s, \mathbf{v}) \approx \mathbb{E}[r_{t+1} + \gamma r_{t+2} + ... | s]$$

Q-value estimated by an *n*-step sample

$$q_t = r_{t+1} + \gamma r_{t+2} \dots + \gamma^{n-1} r_{t+n} + \gamma^n V(s_{t+n}, \mathbf{v})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Asynchronous Advantage Actor-Critic (A3C)

Estimate state-value function

$$V(s, \mathbf{v}) \approx \mathbb{E}[r_{t+1} + \gamma r_{t+2} + ... | s]$$

Q-value estimated by an *n*-step sample

$$q_t = r_{t+1} + \gamma r_{t+2} \dots + \gamma^{n-1} r_{t+n} + \gamma^n V(s_{t+n}, \mathbf{v})$$

Actor is updated towards target

$$\frac{\partial l_u}{\partial \mathbf{u}} = \frac{\partial \log \pi(a_t | s_t, \mathbf{u})}{\partial \mathbf{u}} (q_t - V(s_t, \mathbf{v}))$$

Critic is updated to minimise MSE w.r.t. target

$$l_v = (q_t - V(s_t, \mathbf{v}))^2$$

Asynchronous Advantage Actor-Critic (A3C)

Estimate state-value function

$$V(s, \mathbf{v}) \approx \mathbb{E}[r_{t+1} + \gamma r_{t+2} + ... | s]$$

Q-value estimated by an *n*-step sample

$$q_t = r_{t+1} + \gamma r_{t+2} \dots + \gamma^{n-1} r_{t+n} + \gamma^n V(s_{t+n}, \mathbf{v})$$

Actor is updated towards target

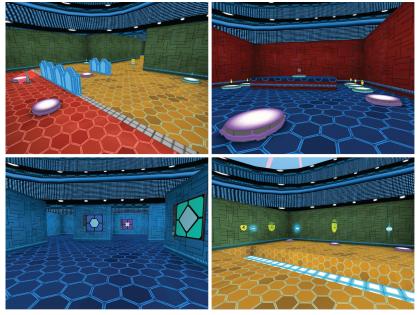
$$\frac{\partial l_u}{\partial \mathbf{u}} = \frac{\partial \log \pi(a_t | s_t, \mathbf{u})}{\partial \mathbf{u}} (q_t - V(s_t, \mathbf{v}))$$

Critic is updated to minimise MSE w.r.t. target

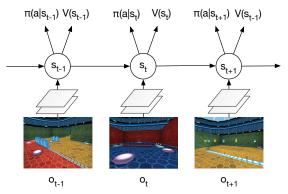
$$l_v = (q_t - V(s_t, \mathbf{v}))^2$$

4x mean Atari score vs Nature DQN

Deep Reinforcement Learning in Labyrinth



A3C in Labyrinth



- End-to-end learning of softmax policy $\pi(a|s_t)$ from pixels
- Observations o_t are raw pixels from current frame
- State $s_t = f(o_1, ..., o_t)$ is a recurrent neural network (LSTM)
- Outputs both value V(s) and softmax over actions $\pi(a|s)$
- ▶ Task is to collect apples (+1 reward) and escape (+10 reward)

A3C Labyrinth Demo

Demo:

www.youtube.com/watch?v=nMR5mjCFZCw&feature=youtu.be

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Labyrinth source code (coming soon): sites.google.com/a/deepmind.com/labyrinth/

Deep Reinforcement Learning with Continuous Actions

How can we deal with high-dimensional continuous action spaces?

- Can't easily compute max Q(s, a)
 - Actor-critic algorithms learn without max
- Q-values are differentiable w.r.t a
 - Deterministic policy gradients exploit knowledge of $\frac{\partial Q}{\partial a}$

Deep DPG

DPG is the continuous analogue of DQN

- Experience replay: build data-set from agent's experience
- Critic estimates value of current policy by DQN

$$I_{w} = \left(r + \gamma Q(s', \pi(s', u^{-}), \mathbf{w}^{-}) - Q(s, a, \mathbf{w})\right)^{2}$$

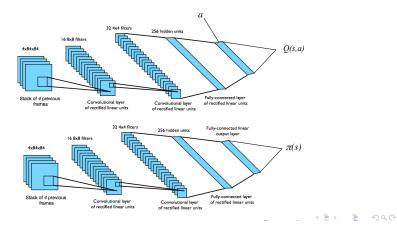
To deal with non-stationarity, targets u[−], w[−] are held fixed
Actor updates policy in direction that improves Q

$$\frac{\partial I_u}{\partial \mathbf{u}} = \frac{\partial Q(s, a, \mathbf{w})}{\partial a} \frac{\partial a}{\partial \mathbf{u}}$$

In other words critic provides loss function for actor

DPG in Simulated Physics

- Physics domains are simulated in MuJoCo
- End-to-end learning of control policy from raw pixels s
- Input state s is stack of raw pixels from last 4 frames
- Two separate convnets are used for Q and π
- Policy π is adjusted in direction that most improves Q

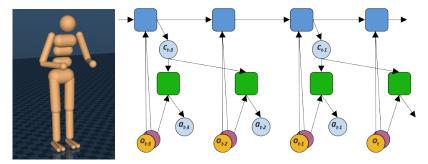


DPG in Simulated Physics Demo

Demo: DPG from pixels

A3C in Simulated Physics Demo

- Asynchronous RL is viable alternative to experience replay
- Train a hierarchical, recurrent locomotion controller
- Retrain controller on more challenging tasks



Fictitious Self-Play (FSP)

Can deep RL find Nash equilibria in multi-agent games?

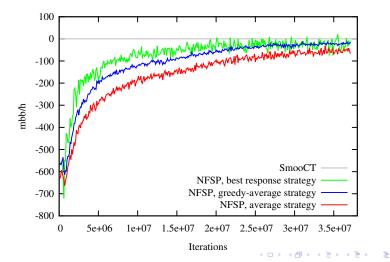
- Q-network learns "best response" to opponent policies
 - By applying DQN with experience replay
 - c.f. fictitious play
- ▶ Policy network $\pi(a|s, \mathbf{u})$ learns an average of best responses

$$\frac{\partial l}{\partial \mathbf{u}} = \frac{\partial \log \pi(\mathbf{a}|\mathbf{s}, \mathbf{u})}{\partial \mathbf{u}}$$

Actions a sample mix of policy network and best response

Neural FSP in Texas Hold'em Poker

- Heads-up limit Texas Hold'em
- NFSP with raw inputs only (no prior knowledge of Poker)
- vs SmooCT (3x medal winner 2015, handcrafted knowlege)



SAC

Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL

Learning Models of the Environment

- Demo: generative model of Atari
- Challenging to plan due to compounding errors
 - Errors in the transition model compound over the trajectory
 - Planning trajectories differ from executed trajectories
 - ► At end of long, unusual trajectory, rewards are totally wrong

Deep Reinforcement Learning in Go

What if we have a perfect model? e.g. game rules are known

AlphaGo paper: www.nature.com/articles/nature16961

AlphaGo resources: deepmind.com/alphago/

Conclusion

- General, stable and scalable RL is now possible
- Using deep networks to represent value, policy, model

- Successful in Atari, Labyrinth, Physics, Poker, Go
- Using a variety of deep RL paradigms