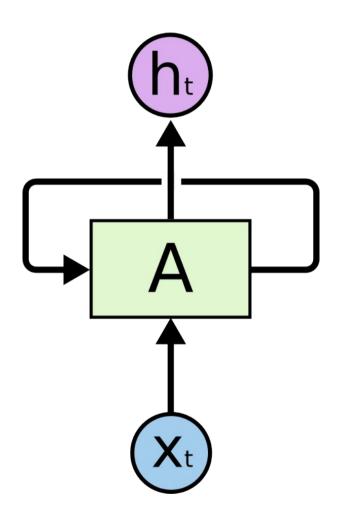
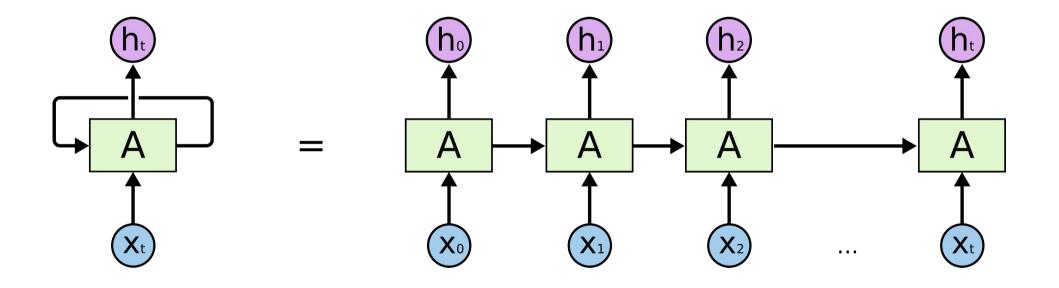
Understanding LSTM Networks

Recurrent Neural Networks



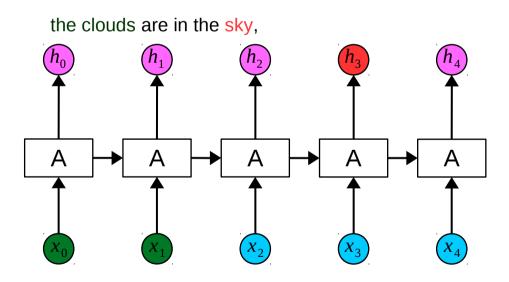
An unrolled recurrent neural network



The Problem of Long-Term Dependencies

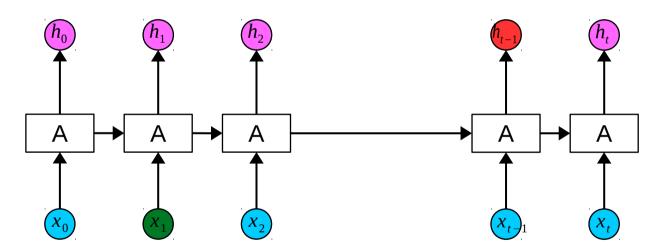
RNN short-term dependencies

Language model trying to predict the next word based on the previous ones



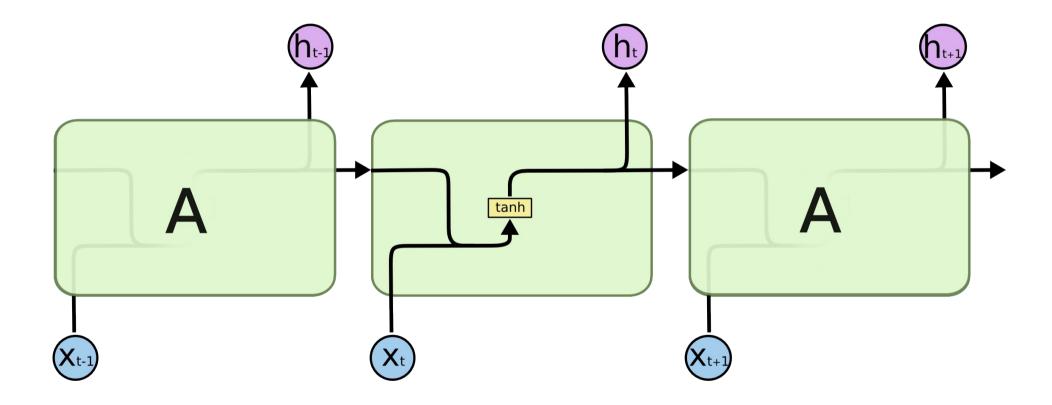
RNN long-term dependencies

Language model trying to predict the next word based on the previous ones



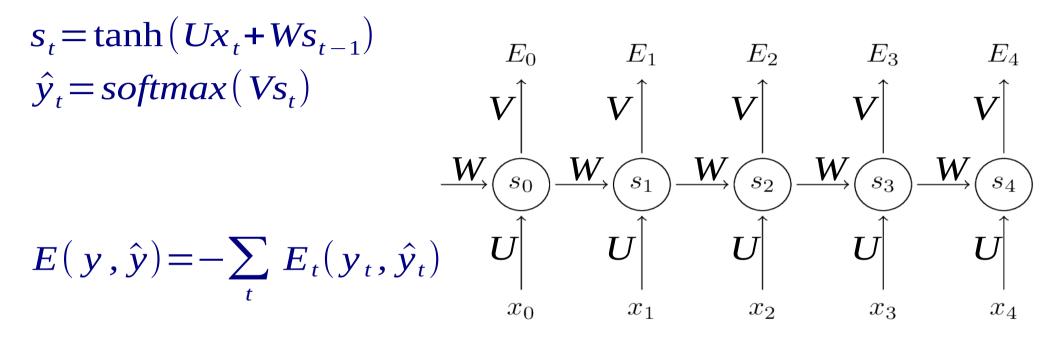
I grew up in India... I speak fluent Hindi.

Standard RNN



Backpropagation Through Time (BPTT)

RNN forward pass



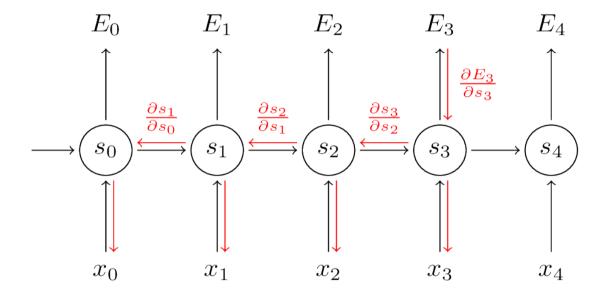
Backpropagation Through Time

 $\frac{\partial E}{\partial \mathbf{W}} = \sum_{t} \frac{\partial E_{t}}{\partial \mathbf{W}}$

 $\frac{\partial E_3}{\partial W} = \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial W}$ But $s_3 = \tanh(Ux_t + Ws_2)$

S_3 depends on s_2, which depends on W and s_1, and so on.

$$\frac{\partial E_3}{\partial W} = \sum_{k=0}^{3} \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial s_k} \frac{\partial s_k}{\partial W}$$



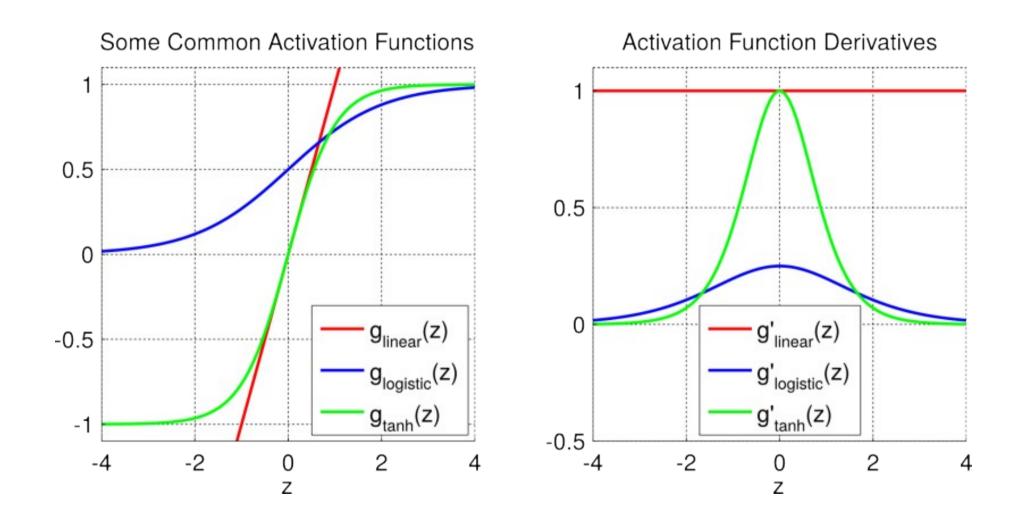
The Vanishing Gradient Problem

$$\frac{\partial E_3}{\partial W} = \sum_{k=0}^{3} \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial s_4} \frac{\partial s_k}{\partial W}$$

$$\frac{\partial E_3}{\partial W} = \sum_{k=0}^3 \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \left(\prod_{j=k+1}^3 \frac{\partial s_j}{\partial s_{j-1}} \right) \frac{\partial s_k}{\partial W}$$

- Derivative of a vector w.r.t a vector is a matrix called jacobian
- 2-norm of the above Jacobian matrix has an upper bound of 1
- tanh maps all values into a range between -1 and 1, and the derivative is bounded by 1
- With multiple matrix multiplications, gradient values **shrink exponentially**
- Gradient contributions from "far away" steps become zero
- Depending on activation functions and network parameters, gradients could explode instead of vanishing

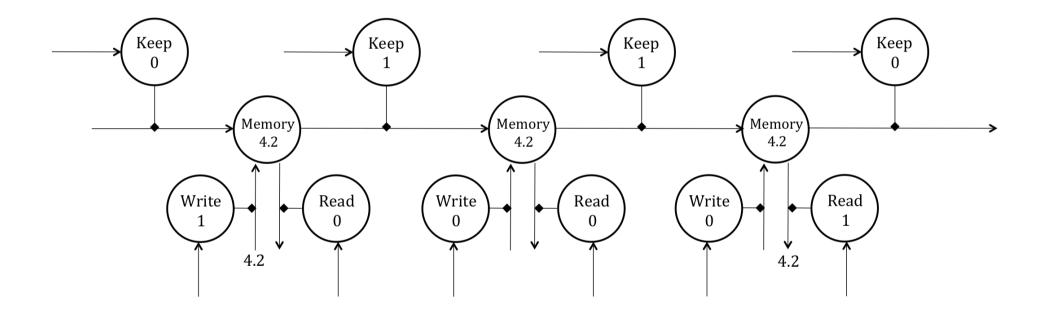
Activation function



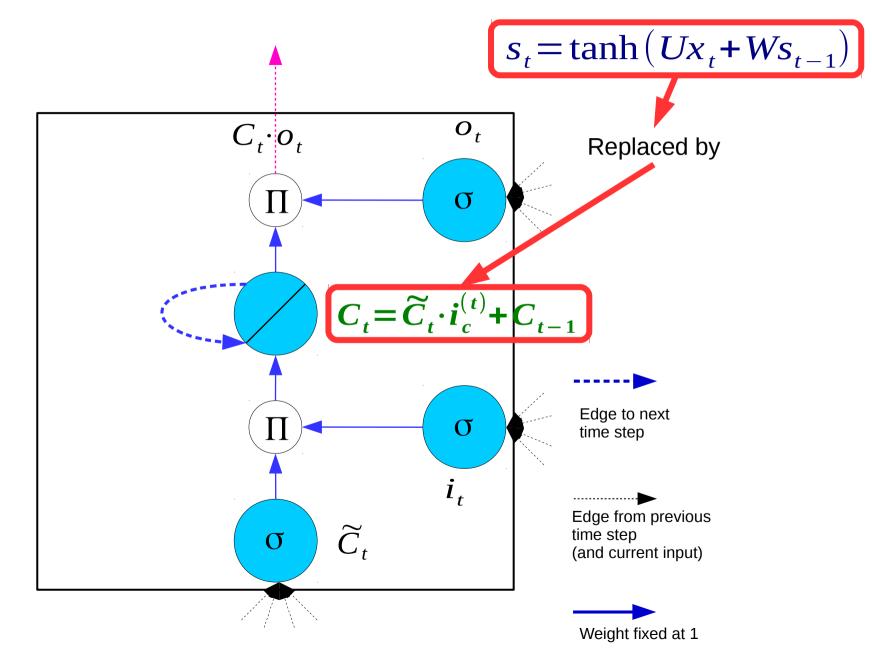
Basic LSTM

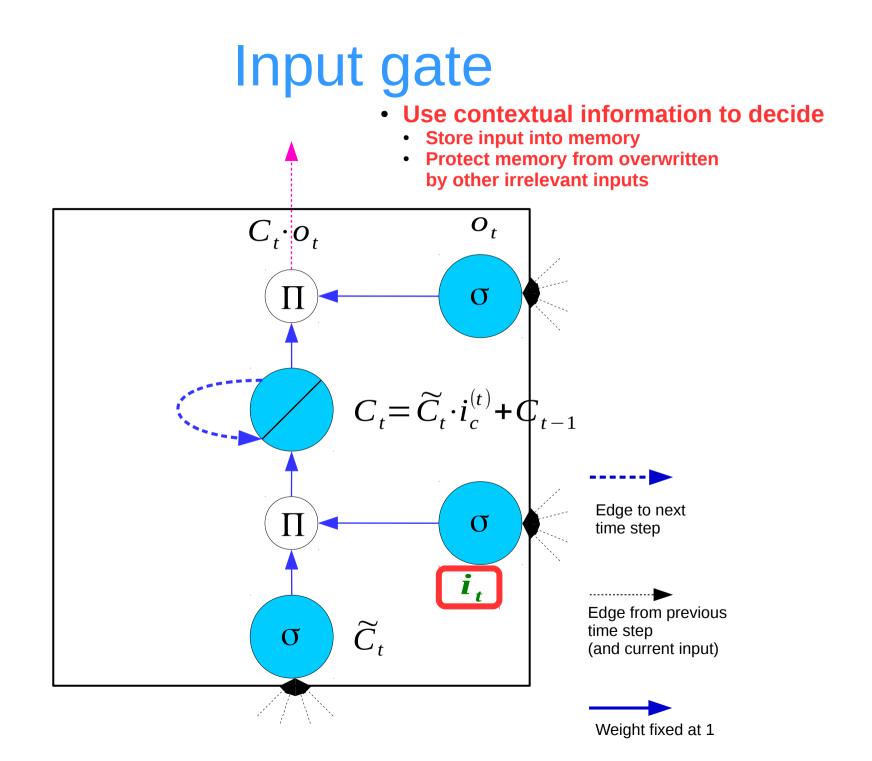


Unrolling the LSTM through time

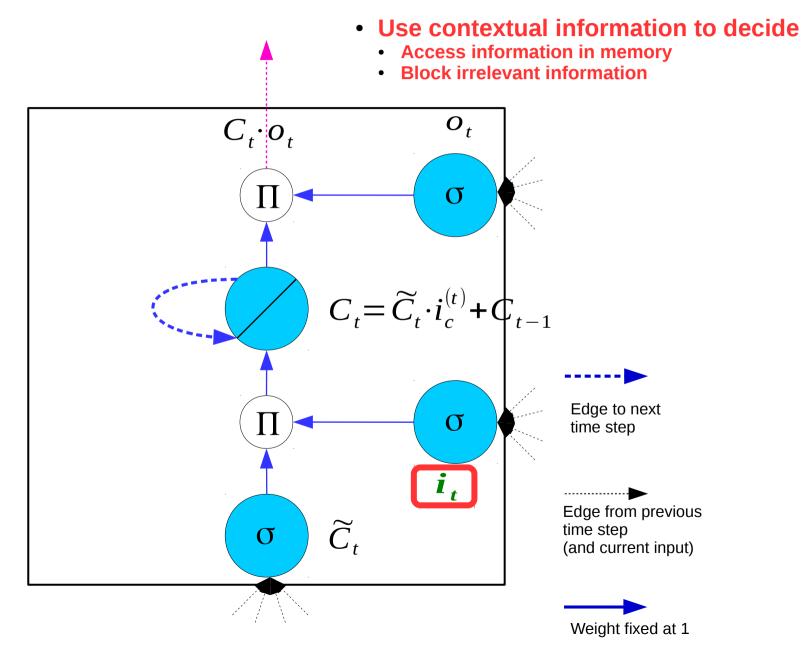


Constant error carousel

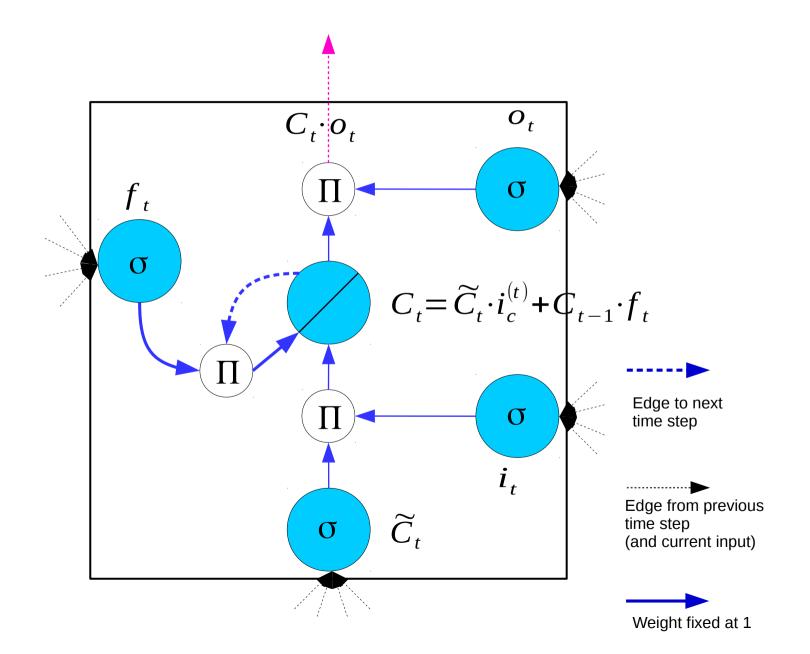




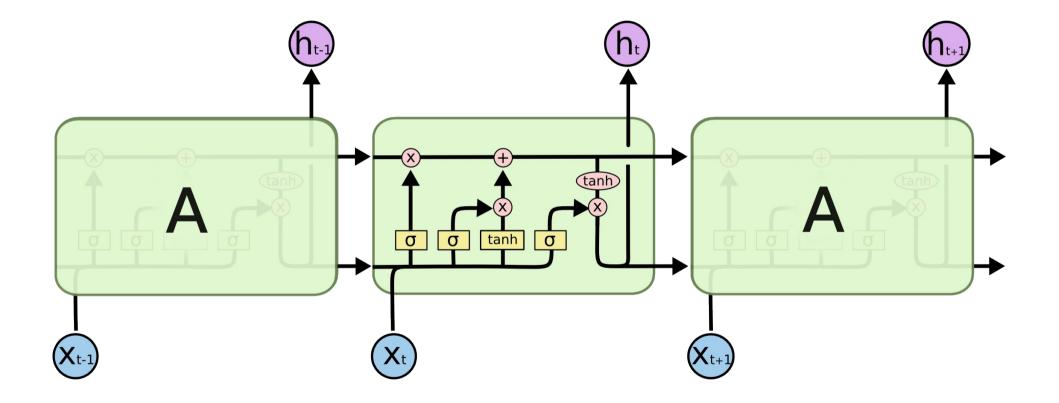
Output gate



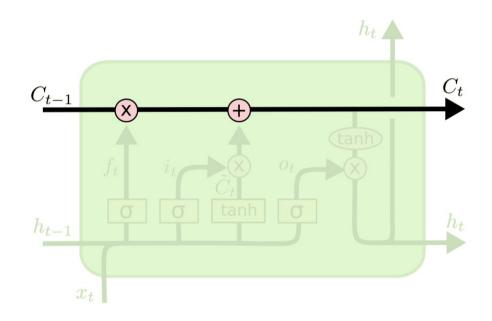
Forget or reset gate

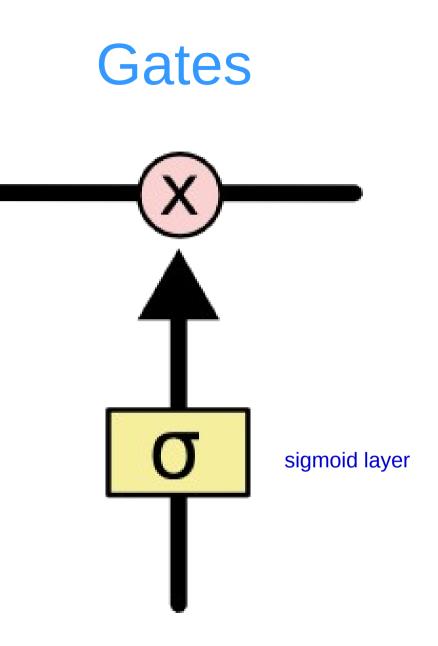


LSTM with four interacting layers



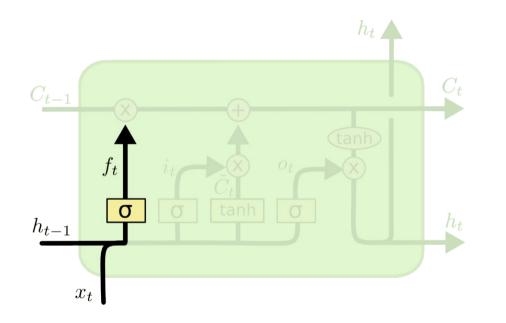
The cell state





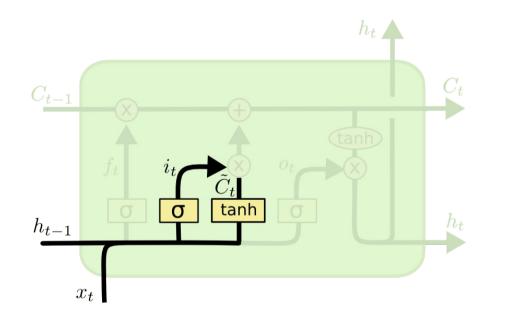
Step-by-Step LSTM Walk Through

Forget gate layer



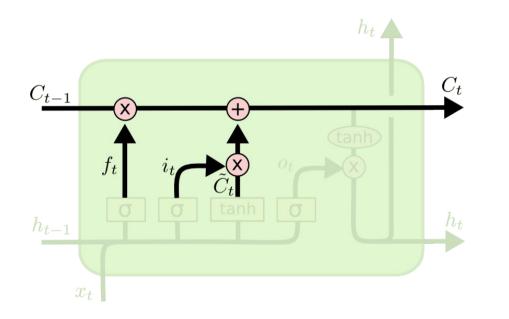
$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Input gate layer



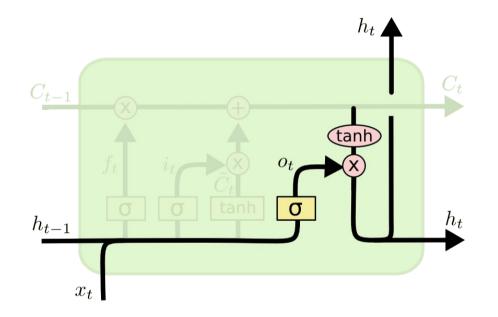
$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

The current state



 $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$

Output layer



$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

Refrence

- http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- http://www.wildml.com/
- http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-netwo rks/
- http://deeplearning.net/tutorial/lstm.html
- https://theclevermachine.files.wordpress.com/2014/09/act-funs.png
- http://blog.terminal.com/demistifying-long-short-term-memory-lstm-recurrent -neural-networks/
- A Critical Review of Recurrent Neural Networks for Sequence Learning, Zachary C. Lipton, John Berkowitz
- Long Short-Term Memory, Hochreiter, Sepp and Schmidhuber, Jurgen, 1997
- Gers, F. A.; Schmidhuber, J. & Cummins, F. A. (2000), 'Learning to Forget: Continual Prediction with LSTM.', Neural Computation 12 (10), 2451-2471.