

Understanding LSTM Networks

Recurrent Neural Networks

An unrolled recurrent neural network

The Problem of Long-Term
Dependencies

RNN short-term dependencies

A

x0

h0

A

x1

h1

A

x2

h2

A

x3

h3

A

x4

h4

Language model trying to predict the next word based on the previous ones

the clouds are in the sky,

RNN long-term dependencies

A

x0

h0

A

x1

h1

A

x2

h2

A

x t−1

ht−1

A

x t

ht

Language model trying to predict the next word based on the previous ones

I grew up in India… I speak fluent Hindi.

Standard RNN

Backpropagation Through Time
(BPTT)

RNN forward pass
s t= tanh(Ux t+Wst−1)

ŷ t=softmax(Vst)

E(y , ŷ)=−∑
t

E t(y t , ŷ t)

V

U

W

V

U

W

V

U

W

V

U

W

V

U

W

Backpropagation Through Time
∂E
∂W

=∑
t

∂E t

∂W

∂E3

∂W
=

∂E3

∂ ŷ3

∂ ŷ3

∂ s3

∂ s3

∂W

s3= tanh(Uxt +Ws2)

S_3 depends on s_2, which
depends on W and s_1, and so on.

But

∂E3

∂W
=∑

k=0

3 ∂ E3

∂ ŷ3

∂ ŷ3

∂ s3

∂ s3

∂ sk

∂ sk

∂W

The Vanishing Gradient Problem
∂E3

∂W
=∑

k=0

3 ∂ E3

∂ ŷ3

∂ ŷ3

∂ s3

∂ s3

∂ sk

∂ sk

∂W

∂E3

∂W
=∑

k=0

3 ∂ E3

∂ ŷ3

∂ ŷ3

∂ s3
(∏

j=k +1

3 ∂ s j

∂ s j−1
) ∂ sk

∂W

● Derivative of a vector w.r.t a vector is a matrix called jacobian

● 2-norm of the above Jacobian matrix has an upper bound of 1

● tanh maps all values into a range between -1 and 1, and the derivative
is bounded by 1

● With multiple matrix multiplications, gradient values shrink
exponentially

● Gradient contributions from “far away” steps become zero

● Depending on activation functions and network parameters, gradients
could explode instead of vanishing

Activation function

Basic LSTM

Unrolling the LSTM through time

Constant error carousel

Edge to next
time stepΠ

Π

σ

σ

σ

Edge from previous
time step
(and current input)

Weight fixed at 1

it

o t

~C t

C t=
~C t⋅i c

(t)
+C t− 1

C t⋅o t

s t= tanh(Ux t+Wst−1)

Replaced by

Input gate

Edge to next
time stepΠ

Π

σ

σ

σ

Edge from previous
time step
(and current input)

Weight fixed at 1

i t

o t

~C t

C t=
~Ct⋅ic

(t)
+C t−1

C t⋅o t

● Use contextual information to decide
● Store input into memory
● Protect memory from overwritten

by other irrelevant inputs

Output gate

Edge to next
time stepΠ

Π

σ

σ

σ

Edge from previous
time step
(and current input)

Weight fixed at 1

i t

o t

~C t

C t=
~Ct⋅ic

(t)
+C t−1

C t⋅o t

● Use contextual information to decide
● Access information in memory
● Block irrelevant information

Forget or reset gate

Edge to next
time stepΠ

Π

Π

σ

σ

σ

σ

Edge from previous
time step
(and current input)

Weight fixed at 1

f t

it

o t

~C t

C t=
~Ct⋅ic

(t)
+C t−1⋅f t

C t⋅o t

LSTM with four interacting layers

The cell state

Gates

sigmoid layer

Step-by-Step LSTM Walk Through

Forget gate layer

Input gate layer

The current state

Output layer

Refrence

● http://colah.github.io/posts/2015-08-Understanding-LSTMs/
● http://www.wildml.com/
● http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-netwo

rks/
● http://deeplearning.net/tutorial/lstm.html
● https://theclevermachine.files.wordpress.com/2014/09/act-funs.png
● http://blog.terminal.com/demistifying-long-short-term-memory-lstm-recurrent

-neural-networks/
● A Critical Review of Recurrent Neural Networks for Sequence Learning,

Zachary C. Lipton, John Berkowitz
● Long Short-Term Memory, Hochreiter, Sepp and Schmidhuber, Jurgen, 1997
● Gers, F. A.; Schmidhuber, J. & Cummins, F. A. (2000), 'Learning to Forget:

Continual Prediction with LSTM.', Neural Computation 12 (10) , 2451-2471 .

	Slide 1
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 34

