
  

Understanding LSTM Networks



  

Recurrent Neural Networks



  

An unrolled recurrent neural network



  

The Problem of Long-Term 
Dependencies



  

RNN short-term dependencies
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Language model trying to predict the next word based on the previous ones

the clouds are in the sky,



  

RNN long-term dependencies
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Language model trying to predict the next word based on the previous ones

I grew up in India… I speak fluent Hindi.



  

Standard RNN



  

Backpropagation Through Time 
(BPTT)



  

RNN forward pass
s t= tanh(Ux t+Wst−1)

ŷ t=softmax(Vst)

E( y , ŷ)=−∑
t

E t( y t , ŷ t)
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Backpropagation Through Time
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s3= tanh(Uxt +Ws2)

S_3 depends on s_2, which 
depends on W  and s_1, and so on.
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∂ ŷ3

∂ ŷ3
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The Vanishing Gradient Problem
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● Derivative of a vector w.r.t a vector is a matrix called jacobian

● 2-norm of the above Jacobian matrix has an upper bound of 1

● tanh maps all values into a range between -1 and 1, and the derivative 
is bounded by 1

● With multiple matrix multiplications, gradient values shrink 
exponentially 

● Gradient contributions from “far away” steps become zero

● Depending on activation functions and network parameters, gradients 
could explode instead of vanishing



  

Activation function



  

Basic LSTM



  

Unrolling the LSTM through time



  

Constant error carousel
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s t= tanh(Ux t+Wst−1)

Replaced by



  

Input gate
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● Use contextual information to decide
● Store input into memory
● Protect memory from overwritten

by other irrelevant inputs



  

Output gate
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● Use contextual information to decide
● Access information in memory
● Block irrelevant information



  

Forget or reset gate
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LSTM with four interacting layers



  

The cell state



  

Gates

sigmoid layer



  

Step-by-Step LSTM Walk Through



  

Forget gate layer



  

Input gate layer



  

The current state



  

Output layer



  

Refrence

● http://colah.github.io/posts/2015-08-Understanding-LSTMs/
● http://www.wildml.com/
● http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-netwo

rks/
● http://deeplearning.net/tutorial/lstm.html
● https://theclevermachine.files.wordpress.com/2014/09/act-funs.png
● http://blog.terminal.com/demistifying-long-short-term-memory-lstm-recurrent

-neural-networks/
● A Critical Review of Recurrent Neural Networks for Sequence Learning, 

Zachary C. Lipton, John Berkowitz
● Long Short-Term Memory, Hochreiter, Sepp and Schmidhuber, Jurgen, 1997
● Gers, F. A.; Schmidhuber, J. & Cummins, F. A. (2000), 'Learning to Forget: 

Continual Prediction with LSTM.', Neural Computation 12 (10) , 2451-2471 .


	Slide 1
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 34

