Note to other teachers and users of these slides.
Andrew would be delighted if you found this source
material useful in giving your own lectures. Feel free
to use these slides verbatim, or to modify them to fit
your own needs. PowerPoint originals are available. If
you make use of a significant portion of these slides in
your own lecture, please include this message, or the
following link to the source repository of Andrew’s
tutorials: http://www.cs.cmu.edu/~awm/tutorials .
Comments and corrections gratefully received.
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Bits
You are watching a set of independent random samples of X

You see that X has four possible values

P(X=A) = 1/4 |P(X=B) = 1/4 | P(X=C) = 1/4 | P(X=D) = 1/4

So you might see: BAACBADCDADDDA...

You transmit data over a binary serial link. You can encode
each reading with two bits (e.g. A=00,B=01,C=10,D =
11)

0100001001001110110011111100...
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Fewer Bits

Someone tells you that the probabilities are not equal

P(X=A) = 1/2 | P(X=B) = 1/4 | P(X=C) = 1/8 | P(X=D) = 1/8

It's possible...

...to invent a coding for your transmission that only uses
1.75 bits on average per symbol. How?
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Fewer Bits

Someone tells you that the probabilities are not equal

P(X=A) = 1/2 | P(X=B) = 1/4 |P(X=C) = 1/8 | P(X=D) = 1/8
It's possible...

...to invent a coding for your transmission that only uses
1.75 bits on average per symbol. How?

A 0

B 10
C 110
D 111

(This is just one of several ways)
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Fewer Bits

Suppose there are three equally likely values...

P(X=A) = 1/3 | P(X=B) = 1/3 | P(X=C) = 1/3

Here’s a naive coding, costing 2 bits per symbol

A 00
B 01
C 10

Can you think of a coding that would need only 1.6 bits
per symbol on average?

In theory, it can in fact be done with 1.58496 bits per
symbol.
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General Case

Suppose X can have one of mvalues... V, V, V,

P(X=V;) =p;| P(X=V,)=p, P(X=Vy) = P,

What's the smallest possible number of bits, on average, per
symbol, needed to transmit a stream of symbols drawn from
X’s distribution? It's

H(X)=-p,log, p, - p,log, p, —...— p, 10g, p,,
:_Z pj Ing pj
j=1

H(X) = The entropy of X
e "“High Entropy” means X is from a uniform (boring) distribution
e "“Low Entropy” means X is from varied (peaks and valleys) distribution
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General Case

Suppose X can have one of mvalues... V, V, V,

P(X=V,) = p,;

P(X=V,) = p,

P(X=V.) = P,

What's the smallest possible number of
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¢ “High Entropy” means X is from a uniform (boring) distribution
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¢ “Low Entropy” means X is from varied (peaks and valleys) distribution
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General Case

Suppose X can have one of mvalues... V, V, V,

P(X=V,) =p,

P(X=V,) = p,

P(X=V.) = P,
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..and so the val

ues

sampled from it would
be all over the place

..and so the values
sampled from it would
be more predictable
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Entropy in a nut-shell

Low Entropy High Entropy
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Entropy in a nut-shell

L}? S

Low Entropy High Entropy

..the values (locations
of soup) sampled
entirely from within

the soup bowl
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..the values (locations of
soup) unpredictable...
almost uniformly sampled
throughout our dining room




Specific Conditional Entropy H(Y|X=V)

Suppose I'm trying to predict output Y and | have input X

X = College Major Let’s assume this reflects the true
Y = Likes “Gladiator” probabilities
X \% E.G. From this data we estimate
Math Yes o P(LikeG = Yes) = 0.5
History | No e P(Major = Math & LikeG = No) = 0.25
cS Yes e P(Major = Math) = 0.5
Math N . , .
a o o P(LikeG = Yes | Major = History) = 0
Math No
cs Yes Note:
History |No *HX) =15
Math Yes sH(Y) =1
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Specific Conditional Entropy H(Y|X=v)

X = College Major Definition of Specific Conditional
Y = Likes “Gladiator” ENtropy:

H(Y |X=v) = The entropy of YV

X v among only those records in which
Math Yes Xhas value v
History |[No
CS Yes
Math No
Math No
CS Yes
History |[No
Math Yes
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Specific Conditional Entropy H(Y|X=V)

X = College Major
Y = Likes “Gladiator”

X Y
Math Yes
History |No
CS Yes
Math No
Math No
CS Yes
History |No
Math Yes

Definition of Specific Conditional
Entropy:

H(Y | X=v) = The entropy of Y
among only those records in which
Xhas value v

Example:

® H(Y/X=Math) = 1
* H(Y/X=History) = 0
o H(YIX=CS)= 0
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X = College Major
Y = Likes “Gladiator”

Conditional Entropy H(Y|X)

X Y
Math Yes
History |[No
CS Yes
Math No
Math No
CS Yes
History |[No
Math Yes

Definition of Conditional
Entropy:

H(Y | X) = The average specific
conditional entropy of Y
= if you choose a record at random what

will be the conditional entropy of Y,
conditioned on that row’s value of X

= Expected number of bits to transmit Yif
both sides will know the value of X

= 3, Prob(X=v,) H(Y| X = v)
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Conditional Entropy

X = College Major Definition of Conditional Entropy:

Y = Likes “Gladiator” H(YX) = The average conditional
entropy of Y

= 5 Prob(X=v;) H(Y | X = v,)

X Y
Math | Yes Example:
History |No v Prob(X=v,) |H(Y | X =Vv)
CS Yes
Math No M.ath 0.5 1
Math  |No History [0.25 0
CS Yes CS 0.25 0
History |No
Math |Yes HNX)= 0.5%1+025%0+025%0=05
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Information Gain

X = College Major Definition of Information Gain:

Y = Likes “Gladiator” IG(Y1X) = | must transmit Y.
How many bits on average
would it save me if both ends of

” v the line knew X?
Math |Yes IGIN\X)= H(Y)-H(Y]| X)
History |[No
CS Yes Example:
Math No ° H(Y) =1
Math No _
cS Yes e H(Y]X) =0.5
History |No e ThusIG(Y]X) =1-05=0.5
Math Yes
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Information Gain Example

wizalth walues:  poor rich

gender Female 14423 1769 | N H( w=alth | gender = Female ) = 0497654
Male 22732 9915 NI Hi vealth | gender = Male ) = 0585847
Hiwrealth) = 0 7935844 Hiwealthjgender) = 0.757154
|Glwealth|gender) = 0 0366396
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Another example

wealth values:  poor rich

agegroup 10s 2507 2 | - vwealth | agegroup = 105 ) =
205 11262 743 | i wealth | agegroup = 205 ) =
30s 9468 34671 | - o=t | agegroup = 30s ) = 0 838134
40s 6738 2956 | H: vveaith | agegroup = 40s ) = 0951961
s50s 4110 2509 | Hi wealth | agegroup = 505 3= 0.957376
{ E
{ )=
{ )=
{ )=

0.0133271
0.3234906

60s 2245 g09 | - wealth | agegroup = 60s ) = 0.834049
705 868 147 | ¢ veath | agegroup = 70s ) = 0.680882
g0z 115 16 | (o2t | agegroup = 805
905 42 12 I i vwealth | agegroup = 90s
Hiwrealth) = 0 793844 Hiwesalthjagegroup) = 0 709463
|G{wealthlagegroup) = 0.0843813

0525474
0.788941
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X = College Major
Y = Likes “Gladiator”

Relative Information Gain

X Y
Math Yes
History |No
CS Yes
Math No
Math No
CS Yes
History |No
Math Yes

Definition of Relative Information
Gain:

RIG(Y] X) = 1 must transmit ¥, what
fraction of the bits on average would
it save me if both ends of the line
knew X?

RIGNIX) = H(Y) - H(Y | X)/ H(Y)

Example:
e H(YIX)=05

e Thus IG(Y|X) =(1-0.5)/1=0.5
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What is Information Gain used for?

Suppose you are trying to predict whether someone
is going live past 80 years. From historical data you

might find...

e]G(LongLife | HairColor) = 0.01
e]G(LongLife | Smoker) = 0.2
eIG(LongLife | Gender) = 0.25
*IG(LongLife | LastDigitOfSSN) = 0.00001

IG tells you how interesting a 2-d contingency table is

going to be.

Copyright © 2001, 2003, Andrew W. Moore Information Gain: Slide 20

10



