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Abstract

Unsupervised anomaly detection on multidimensional time series data is a very important
problem due to its wide applications in many systems such as cyber-physical systems, the
Internet of Things. Some existing works use traditional variational autoencoder (VAE)
for anomaly detection. They generally assume a single-modal Gaussian distribution as
prior in the data generative procedure. However, because of the intrinsic multimodality in
time series data, previous works cannot effectively learn the complex data distribution, and
hence cannot make accurate detections. To tackle this challenge, in this paper, we propose
a GRU-based Gaussian Mixture VAE system for anomaly detection, called GGM-VAE.
In particular, Gated Recurrent Unit (GRU) cells are employed to discover the correla-
tions among time sequences. Then we use Gaussian Mixture priors in the latent space
to characterize multimodal data. The proposed detector reports an anomaly when the
reconstruction probability is below a certain threshold. We conduct extensive simulations
on real world datasets and find that our proposed scheme outperforms the state-of-the-art
anomaly detection schemes and achieves up to 5.7% and 7.2% improvements in accuracy
and F1 score, respectively, compared with existing methods.

Keywords: Anomaly detection, gated recurrent unit (GRU), Gaussian Mixture model,
variational autoencoder (VAE).

1. Introduction

Anomalies, also referred to as outliers, are defined as observations which deviate so much
from the other observations as to arise suspicions that they were generated by different
mechanisms. Anomaly detection has been a widely researched problem in machine learning
and is of paramount importance in many areas such as intrusion detection (Portnoy et al.
(2001)), fraud detection (Kou et al. (2004)), health monitoring (Chen et al. (2017)). The im-
portance of anomaly detection lies in the fact that anomalies in data translate to significant
(and often critical) information in a wide variety of application domains (Chandola et al.
(2007), Liao et al. (2017)). For instance, in computer networks, anomalous patterns can
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indicate an action of sending out sensitive information to an unauthorized destination. In
fraud detection, outliers can mean credit card theft, misuse, or unauthorized transactions.

With their widespread success in numerous machine learning tasks, there have been
quite a few deep learning approaches in the literature proposed for anomaly detection,
which, based on whether data labels are used in the training process, can be categorized
into supervised, semi-supervised, and unsupervised learning techniques. In particular, un-
supervised learning approaches are preferably used for anomaly detection compared with
semi-supervised and supervised learning approaches. The reasons are as follows. First,
training data is usually imbalanced. Anomalous instances are far fewer than normal in-
stances, which inevitably raises the issues caused by imbalanced class distributions. Second,
labeling is often conducted manually by human experts with domain knowledge. In many
cases it is prohibitively expensive and cumbersome to obtain hand-labeled data which is ac-
curate and represents all types of anomalous behaviors (Chandola et al. (2009)). Therefore,
tremendous efforts have been devoted to unsupervised anomaly detection.

In this study, we investigate the problem of unsupervised anomaly detection on multi-
modal sensory data. A common approach in the literature trains a one-class classifier with
normal data. However, many previous schemes (Park et al. (2018)) cannot well deal with
high-dimensional multimodal sensory data, because relying only on lower dimensional repre-
sentation can easily lose critical information for anomaly detection. Particularly, Chandola
et al. (2009) present some works which employ an autoencoder (AE) or a variational au-
toencoder (VAE). The idea behind this is that autoencoders can reconstruct normal data
with small errors, while the reconstruction errors of anomalous data are usually much larger.
Unfortunately, most previous works cannot well characterize the original data distribution,
especially when it is strongly multi-modal, as they generally only assume a single Gaussian
distribution as the prior in the data generative procedure.

To tackle these challenges, in this paper we propose an unsupervised GRU-based Gaus-
sian Mixture VAE, called GGM-VAE, for anomaly detection. In particular, Gated Recurrent
Unit (GRU) cells are employed to discover the correlations among time sequences. Then we
use Gaussian Mixture prior in the latent space to characterize the multimodal data. The
VAE infers the latent embedding and reconstruction probability in a variational manner by
optimizing the variational lower bound. The proposed detector reports an anomaly when
the reconstruction probability is below a certain threshold. We conduct extensive simula-
tions and find that our proposed unsupervised scheme achieves the best performance under
different metrics compared with the state-of-the-art unsupervised approaches.

Our main contributions in this paper are summarized as follows:

e We devise an unsupervised Gaussian Mixture VAE, called GGM-VAE, that can effec-
tively perform anomaly detection on multidimensional time series data.

e We leverage the Gaussian Mixture prior in the latent representation to characterize
the intrinsic multimodality in time series data.

e Gated Recurrent Unit (GRU) cells are employed under the VAE framework to discover
the correlations among the time series data.

e Experimental results on real world datasets show that the proposed scheme outper-
forms the state-of-the-art schemes.
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2. Related Work

Anomaly detection has been studied for decades. We focus on the most related works that
apply machine learning techniques to anomaly detection. Based on whether the labels are
used in the training process, they can be categorized into supervised, semi-supervised, and
unsupervised anomaly detection.

Specifically, Gaddam et al. (2007) utilize a supervised ID3 decision tree to detect anoma-
lies in computer networks. Abe et al. (2006) consider the anomaly detection problem as
a classification problem and propose a supervised active learning scheme. Besides, Ashfaq
et al. (2017) present a fuzzy theory based semi-supervised learning approach for intrusion
detection. Li et al. (2015) propose several methods for malicious code detection which
requires human interference to distinguish between the actual intrusion and false positive
ones. However, such supervised and semi-supervised learning techniques assume that labels
are available for partial or all the training dataset, which is both time and efforts consuming
and may even be impractical in many real-world problems.

On the other hand, unsupervised anomaly detection has received tremendous attention.
Depending on how anomalies are detected, unsupervised schemes can be categorized into
clustering based and reconstruction based approaches. In particular, clustering analysis,
such as k-means, Gaussian Mixture Models (GMMs), is widely applied to anomaly detec-
tion. For example, Xiong et al. (2011) categorize data clusters at both the instance level
and the cluster level so that various types of group anomalies can be detected. However,
these models cannot be directly applied to our problem because we deal with time series
data. Besides, due to very high computational complexity, clustering based approaches can
hardly be directly applied in data of high dimensionality. Reconstruction based methods
like in Zong et al. (2018) assume that anomalies are incompressible and thus cannot be
effectively reconstructed from lower-dimensional latent space projections. Zhou and Paffen-
roth (2017) propose a deep autoencoder to detect anomalies. However, the performance of
these methods is limited because they only analyze anomaly from reconstruction errors.

Related to our proposed scheme, Yamanishi et al. (2004) propose an expectation-
maximization (EM) algorithm based GMM model for online unsupervised outlier detec-
tion. The system performance is limited due to the low convergence rate when applying
EM algorithms. Johnson et al. (2016) incorporate probabilistic graphical models to im-
prove the traditional VAE sturcture. Nalisnick et al. (2016) propose an architecture that
combines VAE and GMM together. It employs a Gaussian Mixture latent space to improve
the capacity of the original VAE. Moreover, Dilokthanakul et al. (2016) further study the
Gaussian Mixture VAE to relieve the problem of over-regularization. Shu et al. (2016)
design a new system called GM-CVAE, which integrate Conditional Variational Autoen-
coder(CVAE) with Gaussian Mixture prior to model the transition images between video
frames. Note that these models are mostly intended for image clustering tasks, where each
input is an individual image, and cannot be directly employed to process time sequence
data as in this study. The main challenge here lies in discovering the temporal correlations
in time sequences. In this study, we propose to use GRU cells in both the encoder and the
decoder to discover the data correlation and dependency.
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3. Preliminaries

3.1. Autoencoder based Anomaly Detection

An autoencoder is an artificial neural network that consists of sequentially connected en-
coder and decoder networks. The encoder learns a compressed representation, i.e., latent
variables of the input data, which is fed into the decoder network to reconstruct the input.
This network tries to minimize the reconstruction error, which is defined as the difference
between the output of the decoder and the original input. The traditional autoencoder
based anomaly detection method is a deviation based anomaly detection method in a semi-
supervised learning fashion (An and Cho (2015)). The reconstruction error is set as the
anomaly score, while samples with high reconstruction errors are considered as anomalies.
In the training phase, only normal data will be used to train the autoencoder, aiming to
minimize the reconstruction error, so that the autoencoder can recognize the characteristics
of normal data. In the testing phase, the learned autoencoder will be able to reconstruct
normal data will small reconstruction errors, but fail with anomalous data which the au-
toencoder has not encountered before and thus have relatively higher reconstruction errors
compared with normal data. Thus, by comparing whether the anomaly score is above a
predefined threshold, an autoencoder can determine whether the tested data is anomalous.

3.2. Variational Autoencoder based Anomaly Detection

Variational autoencoder is a probabilistic model which combines bayesian inference with the
autoenoder framework. The main advantage of a VAE based anomaly detection model over
an autoencoder based anomaly detection model is that it provides a probabilistic measure
rather than a reconstruction error as the anomaly score. Compared with reconstruction
errors, reconstruction probabilities are more principled and objective, and do not require to
model specific thresholds for judging anomalies (An and Cho (2015)). Particularly, the idea
behind VAE is that many complex data distributions can actually be modeled by a smaller
set of latent variables whose probability density distributions are easier to model. So the
objective of VAE is to find a low dimensional representation of the latent variables of the
input data. In a traditional VAE, the latent variables follow a certain type of underlying
distribution, which is generally assumed to be the Gaussian distribution. Without loss of
generality, we denote a vector of multi-dimensional input by x € RP and the corresponding
latent vector by z € RX, where D and K are the dimension of the input and that of the
latent variables, respectively. We can present the generative process as:

p(x) = /p(X!Z)p(Z)dz,

where p(-) is the probability distribution function. However, since the search space of z is
continuous and combinatorially large, the marginalization is computationally intractable.
Kingma and Welling (2013) are the first to propose a computationally tractable method
to train this model. The main idea is as follows. z is generated from a prior distribution
p(z), e.g., a normal Gaussian distribution. The posterior distribution, denoted by g4(z|x),
is learned in the encoder network, and the likelihood distribution, i.e., pp(x|z), is learned in
the decoder network so as to reconstruct the original input, x. Note that ¢ and 6 are the
parameters of the encoder and decoder, respectively. Considering the scenario where the
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input data x is known and z is unknown, we hope that two distributions, i.e., g4(z|x) and
po(z|x), get as close as possible, then we have the following objective function:

min Dy (g4(z]x) || po(z]x)).

where Dy is Kullback-Leibler divergence of the approximate from the true posterior. By
statistical derivations, the marginal log-likelihood of the input data is obtained by:

log p(x) = DkL(q4(2|x) || po(2]%)) + Ly ar(¢,0;%),

where
£VAE(¢7 0; X) = Eqd)(z\x) [lOg p(X> Z)] - Il“--1:(](15(z|x) [lOg Q¢(Z‘X)]'

Ly ap($,0;%) is called the variational lower bound. Recall that the distribution of the input
is deterministic, and hence log p(x) is a constant. To minimize the KL divergence of the
approximate from the true posterior is equivalent to maximize the variational lower bound,
i.e., Lyar(¢,0;x). To this end, the VAE tries to optimize the parameters ¢, 6 for a new
objective function as follows:

0:x).
Iélagi Ly ag(¢,0;x)

)

With further statistical derivations, we rewrite the variational lower bound as:

Ly ap(,0;x) = —Dki(gs(2[x) || po(2)) + Eqy (a/x) [log po(z|x)]. (1)

The first term in the right hand side of (1) is the regularization term. The goal is to
minimize the difference between the posterior distribution ¢4(z|x) and the latent the prior
distribution py(z). For simplicity, the prior distribution py(z) is often set to A'(0,1). Thus,
the optimization process of the regularization term is to make g4(z|x) to be as close as pos-
sible to A/(0,1). The second term is the reconstruction term. Maximizing it is a maximum
likelihood estimation process of input data, given the sampling from latent distribution, and
can be modeled in a discriminative supervised way. If the input data is binary, binary cross
entropy between input data and reconstructed data is used to approximate the reconstruc-
tion term. On the other hand, if the input data is continuous, we can use the mean squared
error between input data and reconstructed data instead. To maximize Ly 4g, stochastic
gradient descent methods (Kingma and Welling (2013)) can be used.

Algorithm 1 describes the process of the VAE based anomaly detection in a semi-
unsupervised learning manner. The intuition of VAE based anomaly detection is to con-
struct a latent distribution space, where the distribution of normal data can be represented
in a low dimensional space while anomalous data follows an apparently different distribu-
tion. Thus, the reconstruction probabilities of normal data are relatively higher than those
of anomalous data. The same as in autoencoder based anomaly detection, only normal
data only is used in the training process. Then, in the testing phase, each data sample 2
(i =1,..., Niest) is fed into the encoder side to get the corresponding mean vector p,[i] and
standard deviation vector o,[i] in the latent space. After that, the latent vector z will be
sampled for L times by following a Gaussian distribution N (u.[i], 0.[i]). For each sample
2D which represents the [th generated latent vector for input data 2, it will be fed
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Algorithm 1 Varational auto encoder based anomaly detection

Input : Xgpain = {2, ..., aWeran)} Koo = {2, 2(Neest)} | Reconstruction proba-
bility threshold «
Output: Sequence of anomaly predictiosn S

0, ¢ < Initialize parameters
fo, 94, < Train the Variational Autoencoder network using training data Xgrain
for i = 1 to Nyest do
palil, oali] = fo(z]2®)
Draw L samples from Z ~ N (p,[i], 0[i])
for I =1to L do
‘ ,U/f[i? l]7 Ui"[iv l] = g(b(l"Z[i’”)
end
Reconstruction Probability RP(z|#)[i] = + S0 N (2|, 1], 04[i, 1))
if RP(z|2)[i] < o then

| @ is an anomaly, S[i] = “Anomalous”
end
else

| ¥ is not an anomaly, S[i] = “Normal”
end

end

into the decoder side to get the corresponding reconstructed mean vector uz[i,[] and stan-
dard deviation vector o3[i,l]. By fitting the input data sample () into the the Gaussian
distribution with the reconstructed mean vector and the reconstructed standard deviation
vector, we can get the corresponding reconstruction probability N (z(®|uz(i,1), 03(i,1)) of
the Ith generated latent vector. After averaging over the L reconstruction probabilities, we
can obtain the final reconstruction probability RP(x|Z)[4] for the input 2(?). By comparing
whether the reconstruction probability is smaller than a given threshold «, the system can
determine whether the input data sample is anomalous.

4. A GRU-based Gaussian Mixture Variational Autoencoder

Traditional VAE uses single-modal Gaussian distribution as the prior in the latent space
because this allows easy inference and learning. However, such an assumption is over-
simplified because usually a single-modal latent distribution cannot approximate the original
data distribution well, especially when input data distributions are strongly multimodal.
Compared with traditional VAE, Gaussian Mixture VAE uses a mixture of Gaussians as
prior in the latent space. In so doing, Gaussian Mixture VAE could learn complex and
informative hidden distributions and better approximate the original data distribution. In
this section, we first present a novel model for anomaly detection by integrating GRU
cells with Gaussian Mixture VAE, which is called GGM-VAE. Then, the analysis on the
variational lower bound of Gaussian Mixture VAE and the description of the GGM-VAE
based anomaly detection algorithm are demonstrated subsequently.
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4.1. System architecture

We consider a system with D sensors. The system status at time ¢ is denoted by x®*) =
[azgt),a;g), .. .,xgt), . ,xg)], where xgt) represents the value of sensor s (s = 1,2,..., D) at
time t. In practice, the reading of a sensor can be a scalar or a vector. Without loss of
generality, we consider :cgt) as a scalar in the following, and the proposed system can be
easily extended to vector-valued sensors. We group the time series system statuses into time
windows of size T and each group of time series data, say the ith, is a D x T" matrix denoted
as X0 =[x, x02);  xOD]p p where x(08) = x((=D)xT+8)  Figure 1 shows the
system architecture, where GRU cells are introduced in both the encoder and the decoder
of a Gaussian Mixture VAE to mine the data dependency in the time domain and among
different sensors. Long Short Term Memory (LSTM) Network, a representative of Recurrent
Neural Networks, has been shown to be capable of discovering long-term dependency among
sequence data (Gers et al. (1999)), while GRU network is a variation on the LSTM Network
(Cho et al. (2014)). Chung et al. (2014) have demonstrated that GRU network can achieve
better performance in discovering the correlations among sequence data over traditional
LSTM network with even smaller datasets due to its fewer parameters. Therefore, in our
system we utilize GRU cells in both the encoder and the decoder.

The system works as follows. We first feed X into the GRU-based encoder, where the

internal equations of GRU cell are:

2" = 6(W,, x4 4 U, h D)

P00 = (W, x4+ U, R4

h = tanh(W x4+ U,y (208 @ nG1))
() = (1 — 200) @ ht+D 4 700 g {61

it) w(ist)

where o is the sigmoid function, ® is an element-wise multiplication operator, z(®), r(it)

h( . and h( are the update gate, reset gate, candidate activation and output vectors,
respectively, at the ¢t hidden state of the ith input sebsequence, and W,,, Wy, Wyp, Up,,
Uy, and U, are the learned weight matrices.

Afterwards, the output of the GRU-based encoder will be mapped to the Gaussian Mix-
ture latent space. The corresponding output will be further transported to the GRU-based
decoder part to reconstruct the original input. The loss function measures the difference of
the reconstructed data from the original input.

4.2. Analysis of variational lower bound of Gaussian Mixture VAE

Next, we conduct theoretical analysis of variational lower bound of Gaussian Mixture VAE.
Specifically, in the Gaussian Mixture VAE, a mixture of Gaussian distributions are used as
the prior in the latent space. Suppose there exist K components in the Gaussian Mixture,
following a categorical prior distribution Cat(7r) where 7 represents the distribution param-
eters. Particularly, wl(:) is the prior probability of the kth component (k =1,2,...,K). As
we will see later in Algorithm 2, for each data sample, we first select one component based
on the categorical prior distribution among K components. Then, once the component is
determined, the corresponding latent Gaussian distribution is determined as well. In the
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Figure 1: System architecture for GRU-based Gaussian Mixture VAE on anomaly detection

following, we use w(®) instead of w,(:), p(-) instead of pg(-), and g(-) instead of g4(-), for

simplicity. Then, we can caculate the Kullback-Leibler divergence of the approximate from
the true posterior as:

Drcrlq(z®, w(t)]x(t))]\p(z(t),w(t)\x(t))]
®) p(®
-y ®, O x®) log q(z", w|x("
( w®|x®

o p(z®)

)
)
(t) 4p®)
_ (2, 1® () 1og L2 ‘X )dz )+ / 0, w®|x0) log p(xD)dz®
Z/Zm ) tog &2 ) 4 Y x) log p(x")

w® w® w*

p(z®),w®), X(t))

= — E 0 u0x0) 108 o + log p(x®)

z(0) | w® |x®)
= — Liap +logp(x®).

To minimize the KL divergence, we need to maximize the variational lower bound L3, 4
under Gaussian Mixture VAE. We assume that ¢(z®, w®|x®) follows a mean-field distri-
bution, i.e., the variables can be partitioned and they are independent. Thus, we get

(2, wx9) = (20 x D) (wx0) )
Then the variational lower bound L3, 4 can be calculated as:

Var = By o o log p(z, 0, x0) — log (2, w®)x1)

D5 [ w0 ) 105 x10) + ol
w(®)

+ log p(w®) — log ¢z x®) — log g(w® |x<”>} dz'").

(t)

(3)

To maximize L3, 4, we may follow a similar process to that in regular VAE. Thus, we can
rewrite equation (3) like the following:

148 = By oo log p(xP[zM)] — Dip (q(z®, w® |xD)|p(z®,w™)).  (4)
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The first term in (4) is the reconstruction term which helps reconstruct the input by con-
sidering both w® and z(!), while the second term is the regularization term that makes the
mixture of Gaussian prior as close to the variational posterior as possible. However, we find
that we cannot maximize (4) directly because it is hard to have the analytical expression
due to the involvement of the Gaussian mixture. Let us take a closer look at (3). In fact,
the only unknown distribution is log ¢(w®[x(®)). To find this distribution, we can rewrite
(3) as follows:

®)|z® ) ®) |z
_ w® )1 (t) p(xV[z'")p(z"") p(wz) ]
Lyap = E(t) / () x()q(zx")) | log (z0[xD) + log < dz

®) |4 () (t)
_ O 1w 1.0 PEV[20)p(2) 5
_/(t) q(zMx®) log OO dz (5)

/1 §j Ox) D e (q(w D [x®) | [p(w® 2)))dz?.
(f)

As the first term in (5) is not relevant to w®, in order to maximize Lj, 5, we only need
to minimize the second term. Therefore, if Dgr (q(w' |x(t))| Ip(w®|z")) = 0 always holds,
then L3, 4 achieves its maximum with regard to g(w () ]x t). Consequently, by having

p(w)p(z"|w")
> w@ p(w®)p(zHw®)’

we can get an analytical expression for L£j, 4, and hence maximize it using methods like
Stochastic Gradient Descent (Kingma and Welling (2013)).

(wx) = pluV]20) =

4.3. GGM-VAE based anomaly detection algorithm

In this section, we demonstrate how our GGM-VAE model can be used to detect anomalies
with anomaly detection algorithm in detail. Algorithm 2 describes the GGM-VAE based
anomaly detection algorithm in an unsupervised learning fashion.

Specifically, we first train the GGM-VAE model with unlabeled training data, which can
include both normal and abnormal data samples. After the training process, the system will
learn the parameters in the encoder and the decoder, and the reconstruction probabilities
corresponding to the training data. Let the anomaly ratio of the training data, which can be
collected after the training process, be denoted by r (r € [0, 1]). We choose the (100*r)-th
percentile as the threshold « for testing by ranking the reconstruction probabilities of the
training samples in descending order!.

Then, in the testing phase, each data sample x(*!) is fed into the encoder to get the
corresponding mean and standard deviation vectors in the latent space. Different from reg-
ular VAE where there is only one set of mean and standard deviation vectors, in Gaussian
Mixture VAE, there are K sets of mean and standard deviation vectors, i.e., fiz)y, [i,t] and

1. In the literatures, there are a few works like An and Cho (2015) and Malhotra et al. (2016), discussing
how to determine the reconstruction probability threshold, which is out of the scope of this paper.
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Algorithm 2 GGM-VAE based anomaly detection algorithm

Input : Xgain = {xGY, 0 xGD) 0 xWeremsD) - x(Nerains Y X0 =
{x(l’l), co,x@®D) (Nt 1) ,x(Nt“f’T)}, Time window 7T, Number of
components K, Weight prior distribution W ~ Cat()

Output: Sequence of anomaly prediction S

0, ¢ + Initialize parameters

fo, 94, o <= Train the Gaussian Mixture VAE network using the raining sequence Xgrain
for i =1 to Ny do

fort=1to T do

ozl 8 ] Oy [15 ] = fo(z|x0) wy,) for each component k (k=1,...,K)
for =1 to L do

Sample a component k* based on prior distribution W
Draw a sample from z ~ N (tizju,. [i, t], 0w, [1; t])
Pz e [0t 15 Oz [15 5 1] = g(b(x]z(i’t’l), wg+) for the component k*
end
Reconstruction Probability
RP(x|R)[i,1] = 7 302y N (xO pig g [ 8 1), Ok [1: 1, 1))
if RP(x|x)[i,t] < o« then

| x(!) is an anomaly, S[i,t] = “Anomalous”
end
else
‘ x(4) is not an anomaly, S [i,t] = “Normal”
end
end
end

O2jwy (3, t] (k € [K]) in the latent space. The system chooses certain set of mean and the cor-
responding standard deviation vector, say the k*-th, by following the categorical prior distri-
bution W ~ Cat(m). After that, the latent vector z will be sampled on the Gaussian distri-
bution with the selected mean and standard deviation vectors, i.e., fyju,. [1; t] and o, [1, t].
This process repeats L times to generate L samples. Each sample z(0tD  which represents
the Ith latent vector for input data x(4). is fed into the decoder to get the correspond-
ing reconstructed mean vector fig|, u, . [i,t,1] and reconstructed standard deviation vector
O%|z,wy [i,,1]. By fitting the input data x (1) into the the multivariate Gaussian distribution
with the learned reconstructed mean vector and reconstructed standard deviation vector, we
can get the corresponding reconstruction probability ./\/'(X(i’t)m;dszk* [i, 8, 1], 0%iz,w,. 115 1, 1])
for the Ith generated latent vector. After averaging over all the L reconstruction proba-
bilities, we can get the final reconstruction probability RP(x|%)[i,t] for each input x(*?).
Therefore, the system can determine whether the data sample is anomalous by checking if
the reconstruction probability is smaller than the learned threshold «.
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5. Experiments
5.1. Case Study I: Intel Berkeley Research Lab Dataset
5.1.1. DATASET DESCRIPTION

This dataset is collected from 54 sensors deployed in the Intel Berkeley Research lab be-
tween Feb. 28th and Apr. 5th, 2004 (int). It contains timestamped topology information,
humidity, temperature, light and voltage values in every 31 seconds. Figure 2(a) shows
the physical location for each sensor at the lab. Here, we focus on temperature recordings
between March 1st and March 20th for our case study.

I r @
\‘ﬁ o @
- |2 3@%

B, @@Ea
r&rﬂ#mng 6@3@9 i@@ . D}jT‘me -

(a) Physical map of physical loca— (b) Heat map of temperature
tion for each sensor at the lab recordings on each sensor

¥ &

Figure 2: Physical map and heat map of the sensory data

5.1.2. DATA PRE-PROCESSING

There exist some missing values at certain timestamps for different sensors. First, we use
the linear interpretation method to fill the missing entries. Afterwards, we downsample
it every 20 minutes and use the average as inputs. Figure 2(b) depicts a heat map of
temperature recordings on each sensor after downsampling. In order to avoid outlier values
influencing the system performance, we drop the data of sensor 15 and 18. Meanwhile, we
normalize the input data. After preprocessing, the sequence length is 1440 timestamps. For
each timestamp, the system status is composed of 52 sensory values.

5.1.3. QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART

Considering that there is no ground truth for this dataset, we need to manually label the
data for performance evaluation purpose. Particularly, we consider that if the entry value
does not lie between the mean minus three times of standard deviation and the mean plus
three times of standard deviation for any sensor, it is labeled as anomalous data. The
dataset is split into training data and testing data. In the training phase, we use the first
70% training data without labels to train a latent representation in the form of Gaussian
Mixture. In the testing phase, we use the rest 30% data to fit the learned Gaussian Mixture
model for unsupervised clustering. The time window is set to 3. We compare our proposed
GGM-VAE with EM-GMM (Dempster et al. (1977)), GRU (Chung et al. (2014)), GRU-
AE (Malhotra et al. (2016)), and GRU-VAE (An and Cho (2015)). Table 1 presents the
performance comparison regarding accuracy, precision, recall, F1, and AUC (area under
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ROC curve). We find that the proposed method GGM-VAE outperforms the state-of-the-
art methods. In particular, compared with the best existing method, our scheme achieves
improvement of 5.7% and 7.2% in accuracy and F1 score, respectively.

Performance Evaluation
Accuracy Precision Recall F1 AUC

EM-GMM 0.5659 0.5627 0.5910 0.5765  0.5659
GRU 0.7835 0.8481 0.6907 0.7614  0.7835
GRU-AE 0.8190 0.9982 0.6392 0.7794  0.8190
GRU-VAE 0.8883 0.9986  0.7778 0.8744  0.8883
GGM-VAE 0.9387 0.9592  0.9164 0.9373 0.9387

Methods

Table 1: Performance evaluation on different models for Case Study I.

5.2. Case Study II: Yahoo anomaly detection dataset
5.2.1. DATASET DESCRIPTION

Yahoo dataset consists of real and synthetic time-series with tagged anomaly points. In
particular, the dataset includes the real traffic to some of the Yahoo’s properties. It consists
of time-series with varying trend, noise and seasonality, representing the metrics of various
Yahoo services (yah). Besides, the dataset is collected from 100 sensors in a traffic network
and hourly marked by UNIX timestamp, which contains 1,680 hourly data samples from
2014-11-23 to 2015-02-01. There are various anomaly types including outliers and change-
points. Here, we only test the outlier anomaly.

5.2.2. DATA PRE-PROCESSING

We collect data by extracting the values and the corresponding labels from each sensor’s
records and concatenate them into a feature table and a label table. In the feature table,
each column represents a certain sensor’s time series while each row represents all the
sensors’ records at a certain timestamp. Each row has a corresponding label in the label
table. We normalize the original data in each column by using the centering and standard
deviation techniques.

5.2.3. QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART

With the ground truth label for this dataset, we select all the anomalous time sequences
and the same amount of normal time sequences as the testing data, while use rest normal
time sequence as the training data. The time window is set to 3. We compare the proposed
method GGM-VAE with the same existing methods as in Case Study L. Table 2 demonstrates
the performance comparison in accuracy, precision, recall, F1, and AUC (area under ROC
curve). We find that the proposed GGU-VAE reaches the best performance.

5.2.4. SENSITIVITY ANALYSIS OF HYPERPARAMETERS

Two factors in sensitivity analysis deserve our significant attention: the number of compo-
nents in the Gaussian Mixture and the dimension of latent vectors. For the first factor, we
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Performance Evaluation
Accuracy Precision Recall F1 AUC

EM-GMM 0.4603 0.0036 0.3333  0.0072  0.3972
GRU 0.5976 0.0293 0.6667  0.0561  0.6315
GRU-AE 0.6752 0.6062  1.0000 0.7548 0.6752
GRU-VAE 0.8077 0.7432 0.9402 0.8302 0.8077
GGU-VAE 0.8396 0.8125  0.8845 0.8470 0.8396

Methods

Table 2: Performance evaluation on different models for Case Study II.

use the number of nature clusters as the metric to determine the number of components in
Gaussian Mixture. Particularly, in anomaly detection, samples are either from normal and
anomalous, thus we set the number of component to two. When it comes to the second
factor, Table 3 shows the performance of the proposed GGU-VAE with different dimension
of latent vectors. We can find that the F1 score remains stable with different dimension of
latent vectors, and achieves the peak when the latent variables’ dimension is 8.

Dimensionality | Precision Recall F1
2 0.7650  0.9287 0.8389
4 0.7903 0.9011  0.8421
8 0.8125 0.8845 0.8470
16 0.7916 0.9073  0.8421
32 0.7765 0.9129  0.8392

Table 3: Sensitivity analysis with different dimension of latent vectors.

5.3. Visualization of the learned latent representation

In order to further verify the effectiveness of our model, we would demonstrate the advantage
of leveraging Gaussian Mixture prior over a single Gaussian prior on separating the anoma-
lies from normal data through the learned latent low-dimensional representation. Figure 3
shows the learned low-dimensional representation on two datasets with unit Gaussian prior
and Gaussian Mixture prior, respectively. Particularly, we use the Principal Component
Analysis (PCA) to reduce the original high dimension of latent vectors to three dimension
by taking the top three components’ eigenvectors and visualize the latent space in Figure 3.
For the Intel dataset, by comparing Figure 3(a) and Figure 3(b), we can easily find that the
model with Gaussian Mixture prior can better separate anomalous samples from normal
samples in the 3D latent space. For the Yahoo dataset, it is obvious that a large portion
of anomalous samples cannot be clearly separated from normal samples with unit Gaussian
prior in Figure 3(¢). In contrast, by leveraging Gaussian Mixture prior, the majority of
anomalous samples can be separated from the normal samples as shown in Figure 3(d).
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Figure 3: Visualization of the learned latent representation

6. Conclusions

In this paper, we have proposed an unsupervised GRU-based Gaussian Mixture VAE called
GGU-VAE for anomaly detection on multidimensional time-series data. Specifically, we
have trained a GRU based deep latent embedding to capture the correlations among time
sequences. Instead of assuming single Gaussian distribution as prior in the data generative
procedure, we employ the Gaussian Mixture model to better describe the latent space
with a series of Gaussian distributions. Experiment results show that the proposed scheme

GGM-VAE achieves obvious improvements compared with existing methods.
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