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Abstract

A proactive handling of faults requires that the risk of
upcoming failures is continuously assessed. One of the
promising approaches is online failure prediction, which
means that the current state of the system is evaluated
in order to predict the occurrence of failures in the near
future. More specifically, we focus on methods that use
event-driven sources such as errors. We use Hidden Semi-
Markov Models (HSMMs) for this purpose and demonstrate
effectiveness based on field data of a commercial telecom-
munication system. For comparative analysis we selected
three well-known failure prediction techniques: a straight-
forward method that is based on a reliability model, Dis-
persion Frame Technique by Lin and Siewiorek and the
eventset-based method introduced by Vilalta et al. We as-
sess and compare the methods in terms of precision, recall,
F-measure, false-positive rate, and computing time. The ex-
periments suggest that our HSMM approach is very effec-
tive with respect to online failure prediction.

1. Introduction

Anticipating failures before they occur and applying
preventive strategies to avoid them or reducing time-to-
repair by preparation for upcoming failures is a promis-
ing approach to further enhancement of system depend-
ability. Preventive maintenance has become over the years
an increasingly significant area in research on dependabil-
ity, as can be seen from initiatives and research efforts
on autonomic computing [15], trustworthy computing [19],
recovery-oriented computing [5], rejuvenation (e.g., [10])
and various conferences on self-*properties (see, e.g., [2]).

Proactive reaction to faults is at first glance closely cou-
pled with fault detection: A fault needs to be detected before
a system can react to it. However to be precise, not the fault
but the failure is the kind of event that should be primar-

ily avoided, which makes a big difference especially in the
case of fault-tolerant systems. Hence, efficient proactive
fault handling requires the prediction offailures, to judge
whether a faulty situation bears the risk of a failure or not.

Time-to-failure is naturally connected to reliability, since

F (t) = P [T ≤ t] = 1 − R(t) (1)

whereF (t) denotes the probability of a failure until time
t and R(t) denotes reliability. Assessment ofF (t) has
been an issue in dependable computing research for several
decades. The majority of work has analyzedF (t) based
on failure rates estimated from static characteristics of the
system or the development process, such as lines of code,
number of bug-fixes, etc. These models are in most cases
targeted at long-term predictions.

In view of ever-increasing system complexity it has be-
come necessary to turn to runtime monitoring-based meth-
ods which evaluate a current state of the system. Hence, the
focus ofonline failure predictionis to perform short-term
failure predictions based on the current runtime state of the
system.

Figure 1. Time relations in online failure pre-
diction: t – present time; ∆tl – lead time;
∆tw – warning time; ∆tp – prediction period;
∆td – data window size

Online (short-term) prediction of eventually upcoming
failures is shown in Figure 1. If a prediction is performed
at time t we would like to know whether at timet + ∆tl
a failure will occur or not. We call∆tl the lead time. ∆tl
has a lower bound calledwarning time∆tw, which is de-
termined by the time needed to perform some proactive ac-
tion, e.g., the time needed to restart a component. On the



Figure 2. Classification of failure prediction techniques. The bottom line represents exemplary ap-
proaches.

other hand, large values of∆tl will result in inaccurate pre-
dictions since the chance to anticipate an imminent failure
early is less than shortly before the failure. We used a lead
time of∆tl = 5 min. in our experiments.

The prediction period∆tp describes the length of the
time interval for which the prediction holds. If∆tp be-
comes large, the probability that a failure occurs within∆tp
increases.1 On the other hand, a large∆tp limits the use of
predictions since it cannot be determined, when exactly the
failure will occur.

As online failure prediction takes into account the cur-
rent state of the system, some prediction techniques use data
from an interval preceding present time. The length of this
data window is calleddata window sizeand is denoted by
∆td.

Failure prediction is only the first prerequisite step in
proactive fault handling. It goes without saying that pre-
diction sometimes has to be coupled with root cause anal-
ysis, i.e., diagnosis, in order to determine what causes the
imminent failure that has been predicted. However, not all
proactive techniques require a detailed analysis: for exam-
ple, setting up an additional checkpoint can be scheduled
without knowing the root cause.

This paper introduces a new method for online failure
prediction that is based on Hidden Semi-Markov Models.
The basic idea of our approach is to predict failures by rec-
ognizing patterns of error events that indicate an imminent
failure. In order to assess its capability to predict failures,
the method has been applied to field data of a commercial
telecommunication system. Results are compared to three
well-known failure prediction techniques: a straightforward
method that is based on a reliability model, the Dispersion
Frame Technique developed by Lin and Siewiorek [18] and
the eventset-based method by Vilalta et al. [31].

The paper is organized as follows: A coarse classifica-
tion of related work is provided in Section 2. Our HSMM
based failure prediction approach is presented in Section 3

1If ∆tp → ∞, predicting a failure would always be true!

while the models used for comparison are described in
Section 4. The experiment conducted to compare the ap-
proaches is characterized in Section 5 and results are pro-
vided in Section 6.

2. Related Work and Approaches

First approaches to failure prediction were developed in
combination with reliability theory and preventive mainte-
nance (See, e.g., [12] for an overview). A key input pa-
rameter of these models is the distribution of time to fail-
ure. Therefore, a lot of work exists providing methods to
fit various reliability models to data with failure time oc-
currences. There were also approaches that tried to incor-
porate several factors into the distribution. For example,
the MIL-book [21] classified, among others, the manufac-
turing process whereas several software reliability methods
incorporated code complexity, fixing of bugs, etc. into their
models (see, e.g., [9]). However, these methods are tailored
to long-term predictions and do not work appropriately for
short-term predictions needed for online failure prediction.

Methods for short-term failure prediction are typically
based on runtime monitoring as they take into account a cur-
rent state of the system. A variety of runtime monitoring-
based methods have been developed. A coarse classifica-
tion is shown in Figure 2. Failure prediction approaches can
be subdivided into methods that evaluate the occurrence of
previous failures, methods that evaluate symptoms of faults,
and methods that evaluate errors, which are manifestations
of faults. The first group —failure prediction based on the
occurrence of previous failures— is closely related to the
methods known from reliability prediction. However, since
they are runtime monitoring methods they build on failures
that have occurred during runtime rather than failure rates
determined from system properties or test-runs. Failure pre-
dictors of this category have been proposed in [6] and [22].

The majority of existing prediction techniques are
symptom-based. Symptoms are side-effects of faults such



as increasing memory consumption, increasing number of
running processes, etc. These methods evaluate periodically
measured system parameters such as the amount of memory
usage, number of processes, etc. in order to, e.g., estimatea
trend or detect deviation from normal system behavior. Ap-
proaches such as Multivariate State Estimation Technique
(MSET) [29], trend analysis techniques like the one de-
veloped in [11] or function approximation approaches like
Universal Basis Functions (UBF) [14] belong to this cate-
gory.

With respect to the third category of runtime monitoring-
based failure prediction approaches, which evaluate the oc-
currence of errors, Siewiorek and Swarz [28] state that the
first approaches have been proposed by Nassar et al. [20].
These approaches rely on systematic changes in the distri-
bution of error types and on significant increase of error
generation rates between crashes. Another method has been
developed by Lin and Siewiorek [17, 18] called Dispersion
Frame Technique (DFT). Its original purpose was to predict
failures of the Andrews distributed File System at Carnegie
Mellon University. DFT analyzes (after some preprocess-
ing) the time of error occurrence in the near past and ap-
plies heuristic rules in order to predict an imminent failure.
As systems became more and more complex, the number
of ways a system could fail continued to grow even more
rapidly. This is reflected in recently developed failure pre-
diction approaches: As it does not seem sufficient anymore
just to investigate,whenerrors have occurred, these algo-
rithms investigatewhat has happened in the system: pre-
dictions are based on thetypeof errors that have occurred.
To our knowledge, the first data mining approach to failure
prediction has been published by Hätönen et al. [13]. The
authors propose to manually set up a rule miner specify-
ing certain characteristics of episode rules. Weiss [34] in-
troduced a failure prediction technique called “timeweaver”
that is based on a genetic training algorithm. One of the
most well-known prediction algorithm of this category has
been developed at IBM T.J. Watson by Vilalta et al. (see,
e.g., [31]). The authors introduce a concept calledeventsets
and apply data-mining techniques to identify sets of events
that are indicative of the occurrence of failures. Further
methods have briefly been described by Levy et al. in [16].

Please note that failure prediction does not intend to find
the root cause of a problem. This implies that the focus is
not on an identification whether the root cause is transient /
intermittent or permanent. The goal is to evaluate the cur-
rent system state with respect to the risk that a failure occurs
within a short time interval in the future, regardless of the
fault that causes the failure. However, a classification of the
underlying fault might be helpful but is not considered in
any of the presented approaches.

Classification of our approach. Our work is focused on
the development of an error-based failure prediction tech-
nique that incorporates bothtimeof occurrence andtypeof
error events. This combination leads to the notion oferror
patterns. By this approach, the task of failure prediction is
turned into a pattern recognition problem. In 2006, we have
published results for an approach called Similar Events Pre-
diction (SEP) [26]. Although the results of SEP have been
encouraging, it did not allow for predictions longer than one
minute —which is too short time for effective preventive
actions— and its computational complexity to compute the
predictions is too high. Furthermore, SEP models are over-
fitted to the training data resulting in bad prediction results
if system behavior changes only slightly. For this reason,
we reverted to an idea presented by one of the authors at
EDCC-5 [24]: the usage of hidden Markov models. In or-
der to make this idea of practical value we had to extend the
approach to Hidden Semi-Markov Models (HSMM), which
is the approach presented in this paper. To the best of our
knowledge, SEP and HSMM are the only error-based on-
line failure prediction methods that apply pattern recogni-
tion techniques.

Selection of approaches used for comparison.In order
to evaluate quality of our HSMM approach we compare
it with other well-known event-based techniques such as
DFT by Lin and Siewiorek [18], which investigates the time
of error occurrence, and the eventset-based method by Vi-
lalta et al. [31], which investigates the type of error events
that have occurred prior to failures. We also compared
HSMM to a prediction approach that evaluates the occur-
rence of failures. However, since we neither had access to
the source code nor expert knowledge of the commercial
system from which we obtained our data, we could not ap-
ply a sophisticated reliability model. Hence, the reliability
model based prediction allows only for a general grading
of the approaches. All four models are described in more
detail in the next sections.

3. HSMM-based Failure Prediction

The basic assumption of our approach is that failure-
prone system behavior can be identified by characteristic
patterns of errors. The rationale for this assumption is
that due to dependencies within the software, a detected
fault (error) in one system component leads —under cer-
tain conditions— to errors of dependent components. Since
fault-tolerant systems can handle most of these situations
but fail under some conditions, the goal is to identify and
recognize those patterns that indicate an upcoming failure.
Hidden Markov models have successfully been applied to
various pattern recognition tasks such as speech recognition
and genetic sequence analysis. In the area of dependable



Figure 3. Two HSMMs are trained: One for failure sequences an d one for non-failure sequences.
Sequences consist of errors A, B, or C that have occurred in pr eviously recorded training data.
Failure sequences consist of errors that occurred within a t ime window of length ∆td preceding a
failure ( ▲) by lead time ∆tl. Non-failure sequences consist of errors that occurred at t imes when no
failure was imminent.

computing, hidden Markov models have been applied for
the detection of intrusion into computer systems [33], fault
diagnosis [7], or network traffic modeling [27].

Hidden Markov models have been extended to hidden
semi-Markov models by several researchers. However,
since most of these extensions have been developed for
speech recognition, they are not appropriate for our pur-
pose. An overview of previous extensions and a detailed
description of our model are presented in [25].

3.1. Approach

Error event timestamps and message IDs form an event-
driven temporal sequence, which will from now on be called
error sequence. HSMM failure prediction applies ma-
chine learning techniques in order to algorithmically iden-
tify characteristic properties indicating whether a givener-
ror sequence is failure-prone or not. More specifically, we
adjust the model’s parameters using recorded error logs for
which it is clear when failures have occurred. The trained
hidden semi-Markov models are then applied in order to
classify new error sequences as failure-prone or not failure-
prone. In machine learning, such approach is called “offline
supervised learning”.

After some data preprocessing including techniques such
as tupling [30], failure and non-failure error sequences are
extracted. Failure sequences consist of errors that have oc-
curred within a time window of length∆td preceding a fail-
ure by lead time∆tl. Non-failure sequences consist of er-
rors appearing in the log when no failures have occurred
(see Figure 3). Two HSMMs are trained: One for failure se-
quences and the other for non-failure sequences. The main
goal of training is that the failure model specifies charac-
teristics of failure sequences —the non-failure model stays
rather unspecific and is only needed for sequence classifica-
tion.

Once the two models are trained, new unknown se-
quences can be evaluated if they indicate an upcoming fail-
ure or not. To achieve this, sequence likelihood is computed
for both models and Bayes decision theory is applied in or-
der to yield a classification (see Figure 4).

Figure 4. Online failure prediction. At the oc-
currence of error A (present time), the se-
quence under investigation consists of all er-
rors that have occurred within the preceding
time window of length ∆td. Failure prediction
is performed by computing sequence likeli-
hood of the sequence using both the failure
and non-failure model. Both likelihoods are
evaluated using Bayes decision theory for
classification as failure-prone or failure-free

The key notion of this approach to failure prediction is as
follows: by training, the failure model has learned how er-
ror sequences look like if they precede a failure by lead time
∆tl. Hence, if a sequence under consideration is very sim-
ilar to failure sequences in the training data, it is assumed



Figure 5. An exemplary HSMM as it is used for failure predicti on. It consists of N-1 states that can
generate error symbols A, B, or C, plus a final absorbing state that can generate failure symbol F.
gij(t) indicate state transition distributions.

that a failure is looming which will occur at time∆tl ahead.
Of course, error sequences are rarely identical. Therefore,
a probabilistic approach is needed in order to handle simi-
larity, which in our case is achieved by use of hidden semi-
Markov models.

3.2. Hidden Semi-Markov Models

Hidden Semi-Markov Models (HSMMs) are a
continuous-time extension to hidden Markov models,
which in turn are an extension to discrete time Markov
chains (DTMC). This section sketches the basic principle
of our model, a more detailed treatment can be found
in [25].

HSMMs are determined by several quantities. Let
S = {si} denote the set of states,1 ≤ i ≤ N . Let
π = [πi] denote the vector of initial state probabilities and
G(t) = [gij(t)] anN × N matrix of cumulative state tran-
sition probability distributions over time with the following
properties:

∑

i

πi = 1 , and (2)

∀i :
∑

j

lim
t→∞

gij(t) = 1 (3)

π andG define a continuous-time semi-Markov process of
traversals through statesS. Furthermore, letO = {ok},
1 ≤ k ≤ M denote a finite set of discrete observation
symbols. Each time the stochastic process enters a state,
one such observation symbol is generated according to a
state-dependent probability distributionbi(ok). Observa-
tion probabilities for all states set up anN × M matrix
B = [bi(k)] = [bik]. In summary, an HSMM is completely
defined byλ = (π, G(t), B).

Our approach allows to use a great variety of cumulative,
parametric, continuous distributions to be used forgij(t).
Moreover, our approach allows to use mixtures of such dis-

tributions such that

gij(t) = pij

R∑

r=0

wij,r κij,r(t|θij,r) (4)

s.t.∀ i, j :
R∑

r=0

wij,r = 1 and ∀ i :
N∑

j=1

pij = 1 (5)

pij is the limiting weight for transitions from statei to state
j corresponding to transition probabilities in DTMCs. For
each transition fromi to j, wij,r denotes the weight of the
r-th kernelκij,r. Finally, κij,r(t|θij,r) denotes a cumula-
tive, continuous, parametric distribution over timet with
parametersθij,r such as mean and variance in case of nor-
mal distributions.

HSMMs are called “hidden” since it is assumed that only
the generated symbols can be observed and that the state of
the stochastic process is hidden from the observer. In the
case of failure prediction, this property can be mapped onto
the fundamental concepts of faults and errors:

• Faultsare by definition unobserved. Hence they corre-
spond to the hiddenstates.

• Errors, which are the manifestation of faults, corre-
spond to the manifestation of hidden states, which are
observation symbols.

Figure 5 shows an exemplary HSMM as used for failure
prediction. It constitutes a left-to-right structure including
“shortcut transitions” to increase flexibility of the model.
The string of hidden states ends in a special hidden state
representing a failure.

We have adapted standard HMM algorithms such as
Baum-Welch and Forward-Backward to train the models
(i.e., adjustλ from a set of training sequences) and to ef-
ficiently compute sequence likelihood. The next two sec-
tions provide more details. Although the models need to be
trained before they can be applied in order to perform on-
line failure prediction, the prediction part is described first.



The reason for this is that training shares some theory with
prediction but adds some more concepts.

3.3. Failure prediction

Assume that both the failure and non-failure model have
been trained, i.e., parametersλF andλF̄ are set. The goal
is to assess, whether a given observation temporal sequence
(an error sequence)o = [o0 . . . oL] is failure prone or not.
As shown in Figure 4, the first step is to compute sequence
likelihoods ofo for both models, on which the sequence is
subsequently classified as failure-free or failure-prone using
Bayes decision theory.

Sequence likelihood is defined as the probability that a
given modelλ can generate observation sequenceo:

P (o|λ)=
P

s
πs0 bs0(o0)

QL
k=1 P (Sk=sk, dk=tk−tk−1 |Sk−1=sk−1) bsk

(ok) (6)

wheres = [sk] denotes a sequence of states of lengthL+1
andtk are the timestamps of the sequence. The sum overs

denotes that all possible state sequences are investigated.
However as is the case for standard HMMs, due to the
sum over all possible state sequencess Equation 6 suffers
from unacceptable complexity. The so-called forward algo-
rithm solves this issue for standard HMMs by applying a
dynamic programming approach (see, e.g., [23]). A simi-
lar algorithm can be derived for our HSMM: By assuming
gii(t) = 0 and defining

vij(dk) = P (Sk = sj , dk = tk − tk−1 | Sk−1 = si)

=







gij(dk) if i 6= j

1 −

N∑

h=1

gih(dk) if i = j
(7)

to incorporate the case of remaining in the same state, the
so-called forward variableα becomes:

αk(i) = P (O0 O1 . . . Ok, Sk = si|λ)

α0(i) = πi bi(O0)

αk(j) =
N∑

i=1

αk−1(i) vij(tk − tk−1) bj(Ok)

(8)

(1 ≤ k ≤ L) and sequence likelihood can be efficiently
computed by

P (o |λ) =

N∑

i=1

αL(i) (9)

Sequence classification. Bayes decision theory proves
that the error of misclassification is minimized if a sequence
is assigned to the class of maximum posterior probability.
However, in real failure prediction applications there are
several things that have to be accounted for:

1. LikelihoodP (o |λ) gets small very quickly for long
sequences, such that limits of double-precision float-
ing point operations are reached. For this reason, a
technique called scaling andlog-likelihoodshave to be
used.

2. Misclassification error is not always a good metric to
evaluate classification. Rather, in real applications, dif-
ferent costs may be associated with classification. For
example, falsely classifying a non-failure sequence as
failure-prone might be much worse than vice versa.

These issues can also be addressed by Bayes decision theory
and the resulting classification rule is: Classify sequenceo

as failure-prone, iff

log
[
P (o |λF )

]
− log

[
P (o |λF̄ )

]
>

log

[
cF̄F − cF̄ F̄

cFF̄ − cFF

]

︸ ︷︷ ︸

∈(−∞;∞)

+ log

[
P (F̄ )

P (F )

]

︸ ︷︷ ︸

const.

(10)

wherecta denotes the associated cost for assigning a se-
quence of typet to classa, e.g., cFF̄ denotes the cost
for falsely classifying a failure-prone sequence as failure-
free. P (F ) andP (F̄ ) denote class probabilities of failure
and non-failure sequences, respectively. See, e.g., [8] for a
derivation of the formula.

The right hand side of Inequality 10 determines a
constant threshold on the difference of sequence log-
likelihoods. If the threshold is small more sequences will be
classified as failure-prone increasing the chance of detect-
ing failure-prone sequences. On the other hand, the risk of
falsely classifying a failure-free sequence as failure-prone
is also high. If the threshold increases, the behavior is in-
verse: more and more failure-prone sequences will not be
detected at a lower risk of false classification for non-failure
sequences.

3.4. Training

We have adapted the Baum-Welch expectation-
maximization algorithm [3, 23] for this purpose. The
objective of the training algorithm is to optimize the
HSMM parametersπ, G(t), andB such that the overall
training sequence likelihood is maximized. From this
approach follows, that the basic model topology (number
of states, available transitions between states, number of
observation symbols, etc.) must be pre-specified.



In analogy with the standard HMM training algorithm, a
backward variableβ is defined as:

βk(i) = P (Ok+1 . . . OL | Sk = si, λ)

βL(i) = 1

βk(i) =

N∑

j=1

vij(dk) bj(Ok+1)βk+1(j)

(11)

Usingα andβ together,ξ can be computed:

ξk(i, j) = P (Sk = si, Sk+1 = sj | o, λ) (12)

ξk(i, j) = αk(i) vij(dk+1) bj(Ok+1) βk+1(j)
PN

i=1

PN
j=1

αk(i) vij(dk+1) bj(Ot+1) βk+1(j)
(13)

which is the probability that a transition from statei to
statej takes place at timetk.

α, β andξ can be used to maximize the model parame-
ters. Re-estimation ofπ, andB is equivalent to standard
HMMs, whereas re-estimation ofpij , wij,r, and θij,r is
based on the following principle:ξk(i, j) not only assigns a
weight to thetransition from i to j, as is the case for stan-
dard HMMs, but also assigns a weight to theduration of
the transition. More precisely, each transitioni → j can
in principle account for all transition durationstk+1 − tk
in the training sequences, each weighted byξk(i, j). Hence
transition parameters can be optimized iteratively such that
they best represent the weighted durations.

The entire procedure —computation ofα, β and ξ—
and subsequent maximization of model parameters is it-
erated until convergence. It can be proven that the pro-
cedure converges at least to a local maximum. Since it
starts from a randomly initialized HSMM, the algorithm is
performed several times with different initializations and
the best model is kept for prediction. In order to avoid
overfitting, i.e., the models memorize the training data set
very well but perform badly on new, unknown data, we
use background distributions for bothB andG(t). Since
size and topology of the model are not optimized by the
Baum-Welch algorithm, several configurations of the prin-
ciple structure shown in Figure 5 have to be tried.

3.5. Computational complexity

With respect to online prediction the forward algorithm
has to be executed twice: one time for the model of failure-
prone sequences and one time for the non-failure sequence
model. Although the standard HMM forward algorithm be-
longs to complexity classO(N2L) whereN is the num-
ber of hidden states andL is the length of the symbol se-
quence, We use a left-to-right model which limits complex-
ity to O(NL), although the constant factors are larger than
for standard HMMs since cumulative distributions need to
be evaluated.

Training complexity is difficult to estimate since the
number of iterations can hardly be estimated. One iteration
has complexityO(N2L). However, training time is not as
critical as it is not performed during system runtime.

4. Models Used for Comparison

We have compared our HSMM failure prediction ap-
proach to three other approaches: Dispersion Frame Tech-
nique and eventset-based method, which also operate on the
occurrence of errors, and a straightforward reliability-based
prediction algorithm, which evaluates previous occurrences
of failures.

4.1. Reliability-based prediction

As can be seen from Equation 1, failures can be predicted
by reliability assessment during runtime. Due to the lack of
insight into the system, we had to use a rather simple re-
liability model that assumes a Poisson failure process and
hence approximates reliability by an exponential distribu-
tion:

F (t) = 1 − e−λt (14)

The distribution is fit to the short-term behavior of the sys-
tem by setting the failure rate to the inverse of mean-time-
to-failure (MTTF). We have set MTTF to the mean value
observed in the data set used to assess the predictive accu-
racy of the technique. This yields an optimistic assessment
of predictive accuracy since in a real environment, MTTF
must be estimated from the training data set. A failure is
predicted according to the median of the distribution. After
each failure that occurs in the test data set, the timer is reset
and prediction starts again. This is why this simple failure
prediction method is based on runtime monitoring.

Please note that we included such simple failure predic-
tion model only for a rough assessment of failure-based pre-
diction approaches and to get an idea what level of failure
prediction quality can be obtained with a very simple ap-
proach. On the other hand, Brocklehurst and Littlewood [4]
argue that none of the reliability models are really accurate,
which is especially true for online short-term predictions.

4.2. Dispersion Frame Technique (DFT)

DFT is a well-known heuristic approach to analyze a
trend in error occurrence frequency developed by Lin [17]
and published later by Lin and Siewiorek [18]. In their pa-
per, the authors have shown that DFT is superior to clas-
sic statistical approaches like fitting of Weibull distribution
shape parameters.

A Dispersion Frame (DF) is the interval time between
successive error events. The Error Dispersion Index (EDI)



is defined to be the number of error occurrences in the later
half of a DF. A failure is predicted if one of five heuris-
tic rules fires, which account for several system behaviors.
For example, one rule puts a threshold on error-occurrence
frequencies, another one on window-averaged occurrence
frequency. Yet another rule fires if the EDI is decreasing for
four successive DFs and at least one is half the size of its
previous frame. If the predicted failure is closer to present
time than warning time∆tw, the prediction has been elimi-
nated. In order to adjust the parameters we optimized each
parameter separately. If two choices were almost equal in
precision and recall, we took the one with fewer false posi-
tives.

4.3. Eventset-based Method

Vilalta et al. from IBM Research at T.J. Watson pro-
posed a prediction technique that is based on sets of events
preceding a target event [31, 32]. In our case events cor-
respond to errors and target events to failures. Since the
authors did not consider any lead time, we had to alter the
approach such that the events forming an eventset had to
occur at least∆tl before the failure. An eventset is formed
from all error types occurring within the time window (see
Figure 6).

Figure 6. Eventset-based method. An
eventset is the set of error types that have
occurred within a time window of length ∆td
preceding a failure ( ▲) by lead time ∆tl

The goal of the method is to set up a rule-based fail-
ure prediction system containing a database of indicative
eventsets. For prediction, each time an error occurs, the
current set of eventsZ is formed from all errors that have
occurred within∆td before present time. The databaseDB

of indicative eventsets is then checked whetherZ is a subset
of anyD ∈ DB. If so, a failure warning is raised at time
∆tl in the future.

The database DB of indicative eventsets is algorithmi-
cally built by procedures known from data mining. Go-
ing through the training dataset, two initial databases are
formed: a failure database containing all eventsets preced-
ing failures and a non-failure database with eventsets that
occurred between the failures. The database also contains
all subsets of eventsets that occurred in the training data,
which has – at least theoretically – cardinality of the power
set. However by minimum support thresholding together
with branch and bound techniques, cardinality can be lim-
ited. The goal is to reduce the database in several steps such
that only most indicative eventsets stay in it. To achieve this,
all eventsets that have support less than a minimum thresh-
old are filtered out. The remaining eventsets are checked for
their confidence, which is in this case the ratio of number of
times an eventset occurred in the failure database in compar-
ison to its overall occurrence. This step removes eventsets
that occur frequently before failures but also between fail-
ures. Additionally, a significance test is performed that re-
moves an eventset if the probability of occurrence in the
failure database is similar to the probability of occurrence in
the non-failure database. In a last filtering step all remain-
ing eventsets are sorted according to their confidence and all
eventsets that are more general and have lower confidence
are removed: an eventsetZi is said to be more general than
Zj if Zi ⊂ Zj.

5. Experiment Description

All prediction techniques presented in this paper have
been applied to data of a commercial telecommunication
system, which main purpose is to realize a so-called Service
Control Point (SCP) in an Intelligent Network (IN). An SCP
provides services2 to handle communication related man-
agement data such as billing, number translations or pre-
paid functionality for various services of mobile commu-
nication: Mobile Originated Calls (MOC), Short Message
Service (SMS), or General Packet Radio Service (GPRS).
The fact that the system is an SCP implies that the system
cooperates closely with other telecommunication systems in
the Global System for Mobile Communication (GSM), but
the system does not switch calls itself. It rather has to re-
spond to a large variety of different service requests regard-
ing accounts, billing, etc. submitted to the system over var-
ious protocols such as Remote Authentication Dial In User
Interface (RADIUS), Signaling System Number 7 (SS7), or
Internet Protocol (IP).

The system’s architecture is a multi-tier architecture em-
ploying a component based software design. At the time
when measurements were taken the system consisted of
more than 1.6 million lines of code, approximately 200

2so-called Service Control Functions (SCF)



Figure 7. Number of errors per 100 seconds in part of the test d ata. Diamonds indicate occurrence
of failures.

components realized by more than 2000 classes, running si-
multaneously in several containers, each replicated for fault
tolerance.

5.1. Failure definition and input data

According to [1], a failure is defined as the event when
a system ceases to fulfill its specification. Specifications
for the telecommunication system require that within suc-
cessive, non-overlapping five minutes intervals, the fraction
of calls having response time longer than 250ms must not
exceed 0.01%. This definition is equivalent to a required
four-nines interval service availability:

Ai =
srvc. req. w/i 5 min.,tr ≤ 250ms

total no. of srvc. req. w/i 5 min.

!
≥ 99.99% (15)

wheretr denotes response time. Hence the failures pre-
dicted in this work are performance failures that occur when
Equation 15 does not hold. System error logs have been
used as input data. The amount of log data per time unit
varies heavily, as can be seen in Figure 7. Training data con-
tained 55683 (untupled) errors and 27 failures whereas test
data had 31187 (untupled) errors and 24 failures. Figure 9
shows a histogram of time-between-failures (TBF) and au-
tocorrelation of failure occurrence for the test data.

5.2. Metrics

The models’ ability to predict failures is assessed by four
metrics that have an intuitive interpretation: precision,re-
call, false positive rate and F-measure. Although originally
defined in information retrieval these metrics are frequently
used for prediction assessment and have been used in simi-
lar studies, e.g., [34].

• Precision: fraction of correctly predicted failures in
comparison to all failure warnings

• Recall: fraction of correctly predicted failures in com-
parison to the total number of failures.

• F-Measure: harmonic mean of precision and recall

• False positive rate: fraction of false alarms in compar-
ison to all non-failures.

Consider the following two examples for clarification:
(a) A perfect failure prediction would achieve a one-to-
one matching between predicted and actual failures which
would result in precision = recall = 1 and false positive rate
= 0. (b) If a prediction algorithm achieves precision of 0.8,
the probability is 80% that any generated failure warning is
correct (refers to a true failure) and 20% are false warnings.
A recall of 0.9 expresses that 90% of all actual failures are
predicted (and 10% are missed). A false positive rate of 0.1
indicates that 10% of predictions that should not result in a
failure warning are falsely predicted as failure-prone.

Truth
Failure Non-failure

P
re

d
ic

te
d

Failure
True positive False positive

(TP) (FP)
Non- False negative True negative

Failure (FN) (TN)

(a)

Metric Formula
precision p = TP

TP+FP

recall=true positive rate r = tpr = TP
TP+FN

false positive rate fpr = FP
FP+TN

F-measure F = 2∗p∗r
p+r

(b)

Figure 8. Contingency table (a) and definition
of metrics (b)

In order to estimate the metrics, predictions have been
computed for the test data set which have then been com-
pared to the true occurrence of failures and a contingency ta-
ble has been created (c.f. Figure 8-a). The decision, whether
a predicted failure co-incidents with a true failure is based
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Figure 9. Left: Histogram of time between failures (TBF). Ri ght: autocorrelation of failure occurrence.

on prediction period: if a true failure occurs within the time-
interval of length∆tp starting at the predicted time of fail-
ure occurrence, the prediction is counted as true positive.
We used a prediction period of∆tp = 60s. All four metrics
can then be computed from the contingency table using the
formulas provided by Figure 8-b.

There is often an inverse proportionality between high
recall and high precision. Improving recall in most cases
lowers precision and vice versa. The same holds for true
positive rate (which is equal to recall) and false positive
rate: Increasing true positive rate also increases false posi-
tive rate. One of the big advantages of the HSMM method
in comparison to the other techniques presented here is that
it involves a customizable threshold for classification (c.f.,
Equation 10). By varying this threshold, the inverse propor-
tionality can be controlled. From this follows that the con-
tingency table looks different for each threshold value and
hence also the four metrics change. It is common in this
case to visualize precision and recall by a precision/recall
plot, and true positive vs. false positive rate by a so-called
ROC plot.

In order to compare computational complexity of the ap-
proaches, we measured computation times. This does not
substitute a complexity analysis but since all algorithms
have been run on the same machine processing the same
data set, the numbers can be used to compare the different
approaches. Specifically, we measured —if appropriate—
training time and testing time. Testing time refers to the
amount of time needed to process the entire test data in
batch mode, which means that the next error is processed
immediately after computations for the previous have fin-
ished, and not with the delays as they have occurred in the
original log.

6. Results

In this section, we present results based on applying the
presented failure prediction methods to real data of the in-
dustrial telecommunication system. The section is struc-
tured along the approaches ordered by complexity of the ap-
proaches. In the following the termprediction performance
is used to denote the overall ability to predict failures as ex-
pressed by precision, recall, F-measure and false positive
rate (FPR) rather than the number of predictions per time
unit.

6.1. Reliability model based prediction

The reliability model-based failure prediction approach
is rather simple and has been included to provide sort of
a “lower bound” to show what prediction performance can
be achieved with nearly no effort. Not surprisingly, pre-
diction performance is low: Precision equals 0.214, re-
call 0.154 yielding an F-measure of 0.1791. Since the
approach only issues failure warnings (there are no non-
failure-predictions), false positive rate cannot be deter-
mined, here.

The reason why this prediction method does not really
work is that the prediction method is almost periodic: after
the occurrence of a true failure, the next failure is predicted
at constant time to occur at the median of a distribution that
is not adapted during runtime. However, it can be seen from
the histogram of time-between-failures that the distribution
is wide-spread (Figure 9-a) and from the auto-correlation of
failure occurrence that there is no periodicity evident in the
data set (Figure 9-b).

Since “training” only comprises computation of the
mean of time-between-failures, we did not report “training
time”. The same holds for prediction time.



number of symbols

D
en

si
ty

20 40 60 80

0.
00

0.
01

0.
02

0.
03

0.
04

(a) (b)

Figure 10. Histogram of length of sequences (a) and histogra m of delays between errors (b).

6.2. Dispersion Frame Technique

Comparing the results of DFT with the original work by
Lin and Siewiorek, prediction performance was worse. The
main reason for that seems to be the difference of investi-
gated systems: While the original paper investigated fail-
ures in the Andrews distributed File System based on the
occurrence of host errors, our study applied the technique
to errors that had been reported by software components
in order to predict upcoming performance failures. In our
study, intervals between errors are much shorter (c.f. Fig-
ure 10-b). Since DFT predicts a failure half of the length
of the dispersion frame ahead, the method rather seldomly
predicted a failure far ahead from present time. Since initial
results for DFT were quite bad, we modified the thresholds
for tupling and for the rules to yield better results. The best
combination of parameters we could find resulted in a pre-
cision of 0.314, recall of 0.458, F-measure of 0.3729 and
FPR of 0.0027. Since there is no real “training”, we have
not reported training time. Running the algorithm on the
entire test data set resulted in a computation time of four
seconds.

6.3. Eventset-based method

Construction of the rule database for the eventset-based
method includes the choice of four parameters: length of
the data window, level of minimum support, level of con-
fidence, and significance level for the statistical test. We
have run the training algorithm for all combinations of vari-
ous values for the parameters and have selected the optimal
combination with respect to F-measure. Best results have
been achieved for a window length of 30s, confidence of

10%, support of 50% and significance level of3σ yielding
a recall of 0.917, precision of 0.242, F-measure of 0.3826,
and FPR of 0.1068. This means that the prediction algo-
rithm was able to predict almost all failures of the test data
set. However, the problem with the approach is precision:
only 24.2% of failure warnings are correct and 75.8% are
false alarms. We have also tried to set parameters such that
precision and recall become more equal but with no success:
recall has been reduced dramatically without substantial im-
provement in precision.

Training took 25s for one specific parameter setting and
training time was mainly determined by the a-priori algo-
rithm used for initial database construction. Performing rule
checking on the test database took 9s.

Our explanation for the results of the eventset-based
method is that for the data of the telecommunication system
checking solely for the occurrence of error types is not suf-
ficient. It seems as if our basic assumption holds that error
patternsneed to be considered in order to reliably identify
imminent failures.

6.4. Hidden Semi-Markov Models

For the experiments we used Hidden Semi-Markov Mod-
els with N = 100 states and shortcuts leaping up to five
states. The numberN has been determined by the length of
sequences, of which a histogram is shown in Figure 10-a.
Probabilitiesπ have been initialized in a linearly decreas-
ing way such that the first state receives maximum weight
and stateN receives no initial weight, and thenπ is adapted
by the training algorithm. In order to determine transition
duration distributions, we have investigated the distribution
of time between errors.
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Figure 11. QQ-plot of delays between error symbols. (a) plot ted against exponential distribution (b)
plotted against exponential distribution mixed with unifo rm distribution

Figure 10-b shows a histogram. Most interestingly, by
first visual impression the distribution seems to resemble
an exponential distribution. Nevertheless, we have investi-
gated various distributions by QQ plots. It turned out that
the exponential distribution really yields the best fit. How-
ever, the exponential does not fit well in the tail of the dis-
tribution. To accommodate for this we have used an expo-
nential distribution with uniform background to account for
the tail resulting in a sufficiently good fit. Due to space re-
strictions, we can only present QQ plots comparing delay
distribution with the pure exponential and exponential with
background distribution in Figure 11. Other distributions
such as lognormal resulted in significant deviations. Re-
garding observation background distributions we have cho-
sen a distribution reflecting occurrence probability within
the entire data set.

As mentioned before, one of the advantages of our
HSMM approach is that it allows to employ a customiz-
able threshold permitting to control the tradeoff between,
e.g., precision and recall. For this reason, we do not re-
port single values for the metrics but provide two plots: a
Precision-Recall plot and a ROC curve (see Figure 12). For
each point in the Precision-Recall plot, an F-value can be
computed resulting in F-measures ranging up to 0.7419.

As might have been expected from the description of
our approach, computing times for our HSMM method are
longer than for the other methods: training the two HSMM
models took 47s and predicting the data set took 15s.

7. Conclusions

We have introduced a new approach to online failure pre-
diction that forecasts the occurrence of failures by recogni-

tion of failure-prone patterns of error events. The prediction
model builds on Hidden Semi-Markov Models. In order to
compare results, we selected Dispersion Frame Technique
(DFT) by Lin and Siewiorek, which evaluates the time when
errors have occurred and the eventset-based method intro-
duced by Vilalta et al., which applies data mining tech-
niques on types of errors. As third comparison we have used
a reliability model-based failure prediction approach that
operates on the occurrence of failures only. All four models
have been applied to field data of a commercial telecommu-
nication system and results have been reported in terms of
precision, recall, F-measure, and false positive rate.

Our experiments have shown a natural correlation of the
complexity of prediction approaches and the results that can
be achieved: The reliability model based approach is sim-
plest since it analyzes the least amount of information re-
quiring almost no computation power – but it results in very
poor prediction. DFT is a bit more complex and analyzes
a little more data as only last few error messages are taken
into account when checking several heuristic rules. This
leads to better prediction results. The third method, the
eventset-based method, applies a complex analysis using
data mining techniques on a training data set. The method
investigates sets of error types that have occurred within a
time window. Hence the method builds on more detailed
information resulting in an astonishing recall of 0.91. How-
ever, the method tends to warn frequently about an upcom-
ing failure even if this is not the case: approximately three
fourth of warnings are false alarms. Therefore, precision
is rather low. Our HSMM approach is more complex in-
vestigating both time and type of error messages, which
turns them into temporal sequences of error events. We use
hidden semi-Markov models which require more complex
computations. On the other hand, our HSMM approach out-



Figure 12. Prediction performance of the HSMM approach. pre cision-recall plot (left) and ROC curve
(right). The various symbols denote different classificati on threshold values

Prediction technique Precision Recall F-Measure FPR

reliability-based 0.214 0.154 0.1791 n/a

DFT 0.314 0.458 0.3729 0.0027

Eventset 0.242 0.917 0.3826 0.1068

HSMM (max. F-measure) 0.852 0.657 0.7419 0.0145

Figure 13. Summary of prediction results

performs the other approaches significantly. For example,
for the maximum F-value of 0.7419, it achieves precision of
0.85 and recall of 0.66. Furthermore, our approach allows
to employ a customizable threshold by which the tradeoff
between, e.g., precision and recall can be controlled.
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