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Similarity and Distance
• For many different problems we need to quantify how close two objects
are.

• Examples:
• For an item bought by a customer, find other similar items
• Group together the customers of a site so that similar customers are shown the 

same ad.
• Group together web documents so that you can separate the ones that talk about 

politics and the ones that talk about sports.
• Find all the near-duplicate mirrored web documents.
• Find credit card transactions that are very different from previous transactions.

• To solve these problems we need a definition of similarity, or distance.
• The definition depends on the type of data that we have



Similarity
• Numerical measure of how alike two data objects are.

• A function that maps pairs of objects to real values
• Higher when objects are more alike.

• Often falls in the range [0,1], sometimes in [-1,1]

• Desirable properties for similarity
1. s(p, q) = 1 (or maximum similarity) only if p = q.  (Identity)
2. s(p, q) = s(q, p)   for all p and q. (Symmetry)



Similarity between sets
• Consider the following documents

• Which ones are more similar?

• How would you quantify their similarity?

apple 
releases 
new ipod

apple 
releases 
new ipad

new 
apple pie 
recipe



Similarity: Intersection
• Number of words in common

• Sim(D,D) = 3, Sim(D,D) = Sim(D,D)  =2
• What about this document?

• Sim(D,D) = Sim(D,D)  = 3

apple 
releases 
new ipod

apple 
releases 
new ipad

new 
apple pie 
recipe

Vefa releases new book 
with apple pie recipes
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Jaccard Similarity
• The Jaccard similarity (Jaccard coefficient) of two sets S1, S2 is the size of their 

intersection divided by the size of their union.
• JSim (S1, S2) = |S1ÇS2| / |S1ÈS2|.

• Extreme behavior:
• Jsim(X,Y) = 1, iff X = Y
• Jsim(X,Y) = 0 iff X,Y have no elements in common

• JSim is symmetric

3 in intersection.
8 in union.
Jaccard similarity = 3/8



Jaccard Similarity between sets
• The distance for the documents

• JSim(D,D) = 3/5 
• JSim(D,D) = JSim(D,D)  = 2/6
• JSim(D,D) = JSim(D,D)  = 3/9

apple 
releases 
new ipod

apple 
releases 
new ipad

new 
apple pie 
recipe

Vefa releases 
new book with 
apple pie 
recipes



Similarity between vectors

document Apple Microsoft Obama Election
D1 10 20 0 0
D2 30 60 0 0
D3 60 30 0 0
D4 0 0 10 20

Documents (and sets in general) can also be represented as vectors

How do we measure the similarity of two vectors?
• We could view them as sets of words. Jaccard Similarity will show that 

D4 is different form the rest
• But all pairs of the other three documents are equally similar

We want to capture how well the two vectors are aligned



Example

Documents D1, D2 are in the “same direction”

Document D3 is on the same plane as D1, D2

Document D4 is orthogonal to the rest

document Apple Microsoft Obama Election
D1 10 20 0 0
D2 30 60 0 0
D3 60 30 0 0
D4 0 0 10 20

apple

microsoft

{Obama, election}



Example

Documents D1, D2 are in the “same direction”

Document D3 is on the same plane as D1, D2

Document D4 is orthogonal to the rest

document Apple Microsoft Obama Election
D1 10 20 0 0
D2 30 60 0 0
D3 60 30 0 0
D4 0 0 10 20

apple

microsoft

{Obama, election}



Cosine Similarity

• Sim(X,Y) = cos(X,Y)
• The cosine of the angle between X and Y

• If the vectors are aligned (correlated) angle is zero degrees and 
cos(X,Y)=1

• If the vectors are orthogonal (no common coordinates) angle is 90 
degrees and cos(X,Y) = 0

• Cosine is commonly used for comparing documents, where we assume 
that the vectors are normalized by the document length, or words are 
weighted by tf-idf.



Cosine Similarity - math
• If d1 and d2 are two vectors, then

cos( d1, d2 ) = (d1 • d2) / ||d1|| ||d2|| ,
where • indicates vector dot product and || d || is the length of vector d.

• Example:

d1 =  3 2 0 5 0 0 0 2 0 0 
d2 =  1 0 0 0 0 0 0 1 0 2

d1 • d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481

||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5= (6) 0.5 = 2.245

cos( d1, d2 ) = .3150

Note: We only need to 
consider the non-zero 
entries of the vectors

What if we have 0/1 vectors?



Example

document Apple Microsoft Obama Election
D1 10 20 0 0
D2 30 60 0 0
D3 60 30 0 0
D4 0 0 10 20

apple

microsoft

{Obama, election}

Cos(D1,D2) = 1

Cos (D3,D1) = Cos(D3,D2) = 4/5

Cos(D4,D1) = Cos(D4,D2) = Cos(D4,D3) = 0



Correlation Coefficient
• The correlation coefficient measures correlation between two random 
variables.

• If we have observations (vectors) 𝑋 = (𝑥!, … , 𝑥") and 𝑌 = (𝑦!, … , 𝑦") is 
defined as

𝐶𝑜𝑟𝑟𝐶𝑜𝑒𝑓𝑓(𝑋, 𝑌) =
∑#(𝑥# − 𝜇$)(𝑦# − 𝜇%)

∑# 𝑥# − 𝜇$ & ∑# 𝑦# − 𝜇% &

• This is essentially the cosine similarity between the normalized vectors 
(where from each entry we remove the mean value of the vector.

• The correlation coefficient takes values in [-1,1] 
• -1 negative correlation, +1 positive correlation, 0 no correlation. 

• Most statistical packages also compute  a p-value that measures the 
statistical importance of the correlation
• Lower value – higher statistical importance



Correlation Coefficient

document Apple Microsoft Obama Election
D1 -5 +5 0 0
D2 -15 +15 0 0
D3 +15 -15 0 0
D4 0 0 -5 +5

𝐶𝑜𝑟𝑟𝐶𝑜𝑒𝑓𝑓(𝑋, 𝑌) =
∑!(𝑥! − 𝜇")(𝑦! − 𝜇#)

∑! 𝑥! − 𝜇" $ ∑! 𝑦! − 𝜇# $

Normalized vectors

CorrCoeff(D1,D2) = 1

CorrCoeff(D1,D3) = CorrCoeff(D2,D3) = -1

CorrCoeff(D1,D4) = CorrCoeff(D2,D4) = CorrCoeff(D3,D4) = 0



Distance
• Numerical measure of how different two data objects are

• A function that maps pairs of objects to real values
• Lower when objects are more alike
• Higher when two objects are different

• Minimum distance is 0, when comparing an object with itself.
• Upper limit varies



Distance Metric
• A distance function d is a distance metric if it is a function from 
pairs of objects to real numbers such that:
1. 𝑑 𝑥, 𝑦 ≥ 0. (non-negativity)
2. 𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦. (identity)
3. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). (symmetry)
4. 𝑑 𝑥, 𝑦 ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (triangle inequality ).



Triangle Inequality
• Triangle inequality guarantees that the distance function is well-
behaved.
• The direct connection is the shortest distance

• It is useful also for proving useful properties about the data.



Distances for real vectors
• Vectors 𝑥 = 𝑥!, … , 𝑥" and 𝑦 = (𝑦!, … , 𝑦")

• 𝑳𝒑-norms or Minkowski distance:
𝐿# 𝑥, 𝑦 = 𝑥! − 𝑦! # + ⋯+ 𝑥" − 𝑦" # $! #

• 𝑳𝟐-norm: Euclidean distance:
𝐿% 𝑥, 𝑦 = 𝑥! − 𝑦! % + ⋯+ 𝑥" − 𝑦" %

• 𝑳𝟏-norm: Manhattan distance:
𝐿! 𝑥, 𝑦 = 𝑥! − 𝑦! + ⋯+ |𝑥" − 𝑦"|

• 𝑳∞-norm: 
𝐿& 𝑥, 𝑦 = max 𝑥! − 𝑦! , … , |𝑥" − 𝑦"|

• The limit of 𝑳𝒑 as p goes to infinity.

Lp norms are known to be distance metrics
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Example of Distances

x = (5,5)

y = (9,8)𝐿2-norm:
𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 42+ 32 = 5

𝐿1-norm:
𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 4 + 3 = 74

35

𝐿∞-norm:
𝑑𝑖𝑠𝑡(𝑥, 𝑦) = max 3,4 = 4



Example

𝑥 = (𝑥", … , 𝑥#)

r

Green: All points y at distance 𝐿1(𝑥, 𝑦) = 𝑟 from point 𝑥

Blue: All points y at distance 𝐿2(𝑥, 𝑦) = 𝑟 from point 𝑥

Red: All points y at distance 𝐿∞(𝑥, 𝑦) = 𝑟 from point 𝑥



𝐿𝑝 distances for sets 

• We can apply all the Lp distances to the cases of sets of attributes, 
with or without counts, if we represent the sets as vectors
• E.g., a transaction is a 0/1 vector
• E.g., a document is a vector of counts.



Similarities into distances
• Jaccard distance: 

𝐽𝐷𝑖𝑠𝑡(𝑋, 𝑌) = 1 – 𝐽𝑆𝑖𝑚(𝑋, 𝑌)

• Jaccard Distance is a metric

• Cosine distance:
𝐷𝑖𝑠𝑡(𝑋, 𝑌) = 1 − cos(𝑋, 𝑌)

• Cosine distance is a metric
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Hamming Distance
• Hamming distance  is the number of positions in which bit-vectors differ.

• Example: 
• p1 = 10101
• p2 = 10011.
• 𝑑(𝑝1, 𝑝2) = 2 because the bit-vectors differ in the 3rd and 4th positions.
• The L1 norm for the binary vectors

• Hamming distance between two vectors of categorical attributes is the 
number of positions in which they differ.
• Example: 
• x = (married, low income, cheat) 
• y = (single,    low income, not cheat)
• 𝑑(𝑥, 𝑦) = 2
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Why Hamming Distance Is a Distance Metric

• d(x,x) = 0 since no positions differ.
• d(x,y) = d(y,x) by symmetry of “different from.”
• d(x,y) > 0 since strings cannot differ in a negative number of 
positions.

• Triangle inequality: changing x to z and then to y is one way to 
change x to y.

• For binary vectors if follows from the fact that L1 norm is a metric



Distance between strings
• How do we define similarity between strings?

• Important for recognizing and correcting typing errors and 
analyzing DNA sequences.

weird wierd
intelligent unintelligent
Athena Athina
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Edit Distance for strings
• The edit distance  of two strings is the number of inserts and 
deletes of characters needed to turn one into the other. 

• Example: x = abcde ; y = bcduve.
• Turn x into y by deleting a, then inserting u and v after d.
• Edit distance = 3.

• Minimum number of operations can be computed using 
dynamic programming

• Common distance measure for comparing DNA sequences
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Why Edit Distance Is a Distance Metric

• d(x,x) = 0 because 0 edits suffice.
• d(x,y) = d(y,x) because insert/delete are inverses of each other.
• d(x,y) > 0: no notion of negative edits.
• Triangle inequality: changing x to z and then to y is one way to 
change x to y. The minimum is no more than that
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Variant Edit Distances

• Allow insert, delete, and mutate.
• Change one character into another.

• Minimum number of inserts, deletes, and mutates also forms a 
distance measure.

• Same for any set of operations on strings.
• Example: substring reversal or block transposition OK for DNA sequences
• Example: character transposition is used for spelling



Distance between sets of points
How do we measure the distance between the two sets?



Distance between sets of points
How do we measure the distance between the two sets?

Minimum distance over all pairs



Distance between sets of points
How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs



Distance between sets of points
How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs



Distance between sets of points
How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages



Distance between sets of points
How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages

Hausdorff distance: 
• For each red point 𝑥 compute the distance to the closest Blue point: 𝑑 𝑥, 𝐵𝑙𝑢𝑒 = min

&∈()*+
𝑑(𝑥, 𝑦)



Distance between sets of points
How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages

Hausdorff distance: 
• For each red point 𝑥 compute the distance to the closest Blue point: 𝑑 𝑥, 𝐵𝑙𝑢𝑒 = min

&∈()*+
𝑑(𝑥, 𝑦)

• Find the maximum: this is the distance from Red to Blue: 𝑑 𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒 = max
,∈-+.

𝑑(𝑥, 𝐵𝑙𝑢𝑒)



Distance between sets of points
How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages

Hausdorff distance: 
• For each red point 𝑥 compute the distance to the closest Blue point: 𝑑 𝑥, 𝐵𝑙𝑢𝑒 = min

&∈()*+
𝑑(𝑥, 𝑦)

• Find the maximum: this is the distance from Red to Blue: 𝑑 𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒 = max
,∈-+.

𝑑(𝑥, 𝐵𝑙𝑢𝑒)
• Compute the 𝑑 𝐵𝑙𝑢𝑒, 𝑅𝑒𝑑



Distance between sets of points
How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages

Hausdorff distance: 
• For each red point 𝑥 compute the distance to the closest Blue point: 𝑑 𝑥, 𝐵𝑙𝑢𝑒 = min

&∈()*+
𝑑(𝑥, 𝑦)

• Find the maximum: this is the distance from Red to Blue: 𝑑 𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒 = max
,∈-+.

𝑑(𝑥, 𝐵𝑙𝑢𝑒)
• Compute the 𝑑 𝐵𝑙𝑢𝑒, 𝑅𝑒𝑑
• Take the maximum of the two

𝑑/ 𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒 = max max
,∈-+.

min
&∈()*+

𝑑(𝑥, 𝑦) , max
,∈-+.

min
&∈()*+

𝑑(𝑥, 𝑦)



Distances between distributions
• Some times data can be represented as a distribution (e.g., a 
document is a distribution over the words)

• How do we measure distance between distributions?

document Apple Microsoft Obama Election
D1 0.35 0.5 0.1 0.05
D2 0.4 0.4 0.1 0.1
D3 0.05 0.05 0.6 0.3



Variational distance
• Variational distance: The 𝐿& distance between the distribution vectors
document Apple Microsoft Obama Election
D1 0.35 0.5 0.1 0.05
D2 0.4 0.4 0.1 0.1

D3 0.05 0.05 0.6 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Apple Microsoft Obama Election

D1 D2 D3

Dist(D1,D2) = 0.05+0.1+0.05 = 0.2

Dist(D2,D3) = 0.35+0.35+0.5+ 0.2  = 1.4

Dist(D1,D3) = 0.3+0.45+0.5+ 0.25  = 1.5



Information theoretic distances
• KL-divergence (Kullback-Leibler) for distributions P,Q

𝐷'( 𝑃‖𝑄 =8
)

𝑝 𝑥 log
𝑝(𝑥)
𝑞(𝑥)

• KL-divergence is asymmetric. We can make it symmetric by taking the 
average of both sides

1
2
𝐷'( 𝑃‖𝑄 + 𝐷'( 𝑄‖𝑃

• JS-divergence (Jensen-Shannon) 
𝐽𝑆 𝑃, 𝑄 = &

*
𝐷'( 𝑃‖𝑀 + &

*
𝐷'( 𝑄‖𝑀

𝑀 =
1
2
(𝑃 + 𝑄)

document Apple Microsoft Obama Election

D1 0.35 0.5 0.1 0.05

D2 0.4 0.4 0.1 0.1

D3 0.05 0.05 0.6 0.3

Average distribution



Ranking distances
• The input in this case is two rankings/orderings of the same 𝑛 items. For 
example:

𝑅! = 𝑥, 𝑦, 𝑧, 𝑤
𝑅% = 𝑦,𝑤, 𝑧, 𝑥

• How do we define distance in this case?
• Kendal’s tau distance: Number of pairs of items that are in different 
order:

𝑥, 𝑦 , 𝑥, 𝑧 , 𝑥, 𝑤 , (𝑧, 𝑤) = 4
• Defines a metric. 

• Maximum: * *+!
%

when rankings are reversed.

• Spearman rank distance: 𝐿!distance between the ranks
• 𝑆𝑅 𝑅!, 𝑅% = 1 − 4 + 2 − 1 + 3 − 3 + 4 − 2 = 6

x y z w
𝑅" 1 2 3 4
𝑅0 4 1 3 2



Why is similarity important?
• We saw many definitions of similarity and distance
• How do we make use of similarity in practice?
• What issues do we have to deal with?


