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What is Deep Learning!?
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Deep Learning Success: Vision
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Deep Learning Success: Vision S esionLan

Detect pneumothorax in real X-Ray scans
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Deep Learning Success: Audio

Other sequences-model applications:

Music Generation

- predict stock price
- machine translation

Temporal dependence
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Deep Learning Success

And so many more...
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6.5191 Goals
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Why Deep Learning and Why Now!



Why Deep Learning!?

Hand engineered features are time consuming, brittle and not scalable in practice

Can we learn the underlying features directly from data’

Low Level Features Mid Level Features High Level Features

Lines & Edges Eyes & Nose & Ears Facial Structure
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Why Now!?

\/
1957 Stochastic Gradient
Descent
Perceptron
1958 * Learnable Weights
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1986 Backpropagation
e Multi-Layer Perceptron
1995 Deep Convolutional NN
Digit Recognition
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Neural Networks date back decades, so why the resurgence!?

|. Big Data 2. Hardware

* larger Datasets * Graphics
* FEasier Processing Units
Collection & (GPUs)
Storage ¢ Massively
Parallelizable
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WIKIPEDIA
The Free Encyelopedia

3. Software

Improved
Techniques
New Models

Toolboxes

Tensor
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The Perceptron
The structural building block of deep learning



The Perceptron: Forward Propagation

Linear combination
Output of inputs
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activation function
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The Perceptron: Forward Propagation

LLinear combination
1 Output of inputs
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activation function
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The Perceptron: Forward Propagation

Ng
l
N

where: X =

Inputs  Weights Sum  Non-Linearity Output
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The Perceptron: Forward Propagation

Activation Functions
1

g/, Z — / % * Example:sigmoid function
X2 1

0, g(iz)=0(z)=

1+e %

1-

0.5
Inputs  Weights Sum  Non-Linearity Output /
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Common Activation Functions

Sigmoid Function Hyperbolic Tangent

g{z] /’//,..--" = j .I..\ f/_. g[z)
0.8 g'(z) /./ : wl . ;/,x.. g@ | |
0.6 /"/ 1 d b ;
# 0f— - / -
0.4 s
// J
/— | -05 ¢
0.2 s Mg, &
v r
0 1
5 0 5 5 0 5
(2) = — ()=
g\z)= ——FT"—"— zZ) = —
1+e™ 7 J e+ e ?

g9'(z)=g(=)1-g(2) g'(z)=1-g(2)*

¢ tf.mn. sigmoid (z) "S” tf.nn.tanh(z)

NOTE: All activation functions are non-linear

Rectified Linear Unit (RelLU)

5
@
4 g'(z)
3 //'/
2 ///
: —~
0
-5 0 5
g(z)=max (0, z)
1 z>0
I _ )
g (z) = { 0, otherwise

"S7 tf.m.relu(z)
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Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network
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Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

09
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Linear Activation functions produce linear
decisions no matter the network size
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Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

09
08
07r
06

05

04

Linear Activation functions produce linear Non-linearities allow us to approximate
decisions no matter the network size arbitrarily complex functions
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The Perceptron: Example

We have: 8, =1 and 8 = l_32]

y=9g(0p+X76)

\ T
5 -9 (1 * [i;] [—32])
/ y =91 +3x;—-2x3)
X2 \ ~ J

This is just a line in 2D!
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The Perceptron: Example

Yy =9g(1l+3x1—2x,)
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The Perceptron: Example

&
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N
=

Yy =9g(1l+3x;—2x5)

Assume we have input: X = [_21]

g(1+ B*-D~- (2x2)

5} —
= g(—6) ~ 0.002
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The Perceptron: Example

Ng
l
\

Yy =9g(1l+3x;—2x5)

2 / X
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Building Neural Networks with Perceptrons



The Perceptron: Simplified

X1 0,
>z—-/

Om

<

Xm

Inputs  Weights Sum  Non-Linearity Output
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The Perceptron: Simplified

y =g(2)
>

z=20, +z
]1
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Multi Output Perceptron

V1= 9(21)
>

Zq

Vv, = g9(23)
>

Zy

m
zZi =0, t+ Z xj 0j i
j=1
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Single Layer Neural Network

1 2
0( ) 9( )
9(z,)
A
X1
Z2
X2
Z3
Xm
Zd
1 g(zdl)
Inputs Hidden Final Output
z; —9(1)+Z %0 §i=650 4 Z
Ji
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Dan Pei


g(    )


Single Layer Neural Network

Z1
Z3 1
Z3 V2
Zq,

Z, = 05’12) + il X; Hj(é)

1 1 1 1
= 6 + %1 059 + x5 653 + x,, 65

,2 ,2 m “m,2
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Multi Output Perceptron

Z1
X1
) Y1
xz
Z3 Y2
Xm
Zd1
Inputs Hidden Output
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Deep Neural Network

Zk,1
X1
Zk,2 V1
Zk,3 Y2
Xm
Zk,dy,
Inputs Hidden Output
dr—1
— ) (F)
Zk,i - Ho’i + ) g(Zk—l,j) Hjl
J=1 ’
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Applying Neural Networks



Example Problem

Wil | pass this class?

Let's start with a simple two feature model

x1 = Number of lectures you attend

X , = Hours spent on the final project
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Example Problem: Will | pass this class?

X, = Hours
spent on the
final project

x 1 = Number of lectures you attend
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Example Problem: Will | pass this class?

X, = Hours
spent on the
final project

x 1 = Number of lectures you attend
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Example Problem: Will | pass this class?

Z1
| *1
D = [4 ,5] Zo 91 Predicted: 0.1
L— &,
Z3
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Example Problem: Will | pass this class?

Z1
I X1 .
x(l) — [4_ ’5] 7 91 /I:A’\rcicjgeld: 0.1
I X
Z3
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Quantifying Loss

The loss of our network measures the cost incurred from incorrect predictions

Z1
| & Predicted: 0.1
1) _ N redicted: 0.
X — [4‘ :5] Z2 Y1 Actual: 1
Z3
i). l
L(f (x( ), 3), y( ))
Predicted Actual
T 4519 nroduction o Deep Leaming




Empirical Loss

The empirical loss measures the total loss over our entire dataset

— — Z1 _f (x)_ _ Y _
45 0.1 9| |
Lo |2 " 5, |08/ %] 0
5 8 06|y | |
. Xo . .
| _ 24 " R
—7_ 1S - -
Also known as: ](0) — L(f (x(l) . 8) y(l))
. o . ) )
Objective function n .
 Cost function 1=1
Empirical Risk Predicted Actual
| W mm Massachusetts 65191 Introductionto Deep Learnin
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Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between O and |

: @y
___ — 1 _ _ _ _
45| o1l sl
12 ) 08| %!l 0
X .
5§ = L oslv |
T X2 . .
R .

J(0) = %zlly(i} log (f(x(i); 9)) +(1—yW) log(l — £(x®; 9))

Actual Predicted Actual Predicted

¢ loss = tf.reduce mean( tf.nn.softmax cross entropy with logits (model.y, model.pred) )



Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers

) fo)
L 1 i R
45 30 % | 90

x= |2 ! , 5 80| 3¢ | 20
5, 8 i Y185 v |95

: X2 . :

L — ZB | * ] | N

1" . . 2 o
0) =_ (@) _ ®. g Final Grades
J@) nzi=1 (y_ f(x )) (percentage)

Actual Predicted

a, loss = tf.reduce mean( tf.square(tf.subtract(model.y, model.pred) )



Training Neural Networks



Loss Optimization
We want to find the network weights that achieve the lowest loss

n

1 . .
0" = argmin—z L(f(x®;0),yW)
6 Né&=dij=1

0" = argmin J(0)
0
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Loss Optimization

We want to find the network weights that achieve the lowest loss

1 n . .
0" = argmingz L(f(xY;0),yWD)
) .

i=1
0" = argmin J(0)
0

|

Remember:

0 = {9(0),9(1),...}
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Loss Optimization

0" = argmin J(0)
0

Remember:
Our loss is a function of
the network weights!

J(60,61) |
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Loss Optimization

Randomly pick an initial (8¢, 61)

J(60,61) L

| II Il E Massachusetts \29/18
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Loss Optimization

Compute gradient, a]a%

J(60,61) L

| II Il E Massachusetts
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Loss Optimization

Take small step in opposite direction of gradient

J(60,61) |

| II Il E Massachusetts \29/18
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Gradient Descent

Repeat until convergence

J(60,61) |

| I H B Massachusetts
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Gradient Descent

Algorithm

o

|. Initialize Welghts raﬂdomly "'N(O, 0'2) "S” weights = tf.random nommal (shape, stddev=sigma)

2. Loop until convergence:

aj(6 _
3. Compute gradient, ]6( 0) % grads = tf.gradients(ys=loss, xs=weights)
dj(o
4. Update Welghts 6 < 0 — N—-— ( ) ’ weights new = weidhts.assign(weights - 1lr * grads)
>. Return weights
III' - Fgﬁfﬁ{:gﬁem 65191 Ihttrofudctic[;ln to D:ep Learning | 19/18
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Gradient Descent

Algorithm

o

| . |ni'tia|ize We|gh‘ts random|>/ NN(O’ 0-2) (3 weights = tf.random normal (shape, stddev=sigma)

2. Loop until convergence:

. aj(o _
3. Com pu-te grachen-t’ ]a(e) ¢ grads = tf.gradients(ys=loss, xs=weights)
. aj(6
4. Update wel htS, 6 < 0 — L ¢ weights new = weichts.assign(weights - lr * grads)
e -
>. Return weights
Wi ™ e e eamine 112918




Computing Gradients: Backpropagation

X > Z1 > y < ](0)

How does a small change in one weight (ex. 85) affect the final loss J(@)?
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Computing Gradients: Backpropagation

X > Z1 > y < ](0)

a/(0)
90,

N\

Let's use the chain rule!
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Computing Gradients: Backpropagation

0, 9
. bz, — ) W O)

§(©®) _ ® 99

00, 09 90,
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Computing Gradients: Backpropagation

0, 9
. bz, — ) W O)

IO _ YO 03

/\
90, 20,
I | T
Apply chain rule! Apply chain rule!
Illil- [nassachusetts 65191 Introductionto Deep Learning | P9/18
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Computing Gradients: Backpropagation

0, 6
x—zlﬁyﬂ

0/(0) 0j(8) 0y 074

36, a8y 0z 06,

I S a | Massachusetts 6.5191 Introductionto Deep Leamning
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Computing Gradients: Backpropagation

6
X — 7, * y ﬂ

0/(0) 0j(8) 0y 074

36, 9y a8z, = 36,

Repeat this for every weight in the network using gradients from later layers
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Neural Networks in Practice:
Optimization



non-convex
local minima

Training Neural Networks is Difficult

The loss usrfaces
of Res-Net56

“Visualizing the loss landscape
of neural nets”. Dec 201 7.

Massachuseits ; i
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Loss Functions Can Be Difficult to Optimize

Remember:
Optimization through gradient descent

0] (6)
00

60 <06 —n
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Loss Functions Can Be Difficult to Optimize

Remember:
Optimization through gradient descent

0] (6)
00

6 <06 —n

|

How can we set the
learning rate?
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Setting the Learning Rate

Play video at 32:11
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Play video at 32:11


How to deal with this?

Idea |:

Try lots of different learning rates and see what works “just right”
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How to deal with this?

ldea 2:

Do something smarter!
Design an adaptive learning rate that “adapts’” to the landscape

[nassachusetts 65191 Introduction to Deep Learning
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Adaptive Learning Rates

Learning rates are no longer fixed

Can be made larger or smaller depending on:

how large gradient is

how fast learning Is happening
size of particular weights

etc...

6.5191 Introductionto Deep Learning
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Adaptive Learning Rate Algorithms

Qian et al.“On the momentum term in gradient

o~

e Momentum »  tf.train.MomentumCptimizer descent learning algorithms.” 1999,
P _ - Duchi et al.“Adaptive Subgradient Methods for Online
e Ad agl”ad ( ) ESECEierEe s o OomitActe Learning and Stochastic Optimization.” 201 1.
P : . Zeller et al. "ADADELTA: An Adaptive Learning Rate
° AC adel-ta S’ tf.train.AdadeltaOptimizer Method " 201 2.
° AC am ¢ £f .train. AdamOptimizer Kingma et al."Adam:A Method for Stochastic

Optimization.” 20 | 4.

¢ RM S PI”O p ¢ tf.train.RMSPropOptimizer

Additional details: http://ruderio/optimizing-gradient-descent/
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Neural Networks in Practice:
Mini-batches



Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, 0%)

2. Loop until convergence:

3 Compute gradient, a]a(g)
4. Update weights, 8 « 6 — na]a% 1

>. Return weights

I I I' o Massachusetts 6.5191 Introductionto Deep Learning
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Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, 0%)

2. Loop until convergence:

0](®
3 Compute gradient, ](0)
aJ (6 1
4. Update weights, 8 « 0 — 77% ”
5. Return weights N S H

Can be very
computational to
compute!

I I I' o Massachusetts 6.5191 Introductionto Deep Learning
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Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, 0%)

2. Loop until convergence:

3. Pick single data point i
4 Compute gradient, 2 a"(:) 1
S. Update weights, 8 < 8 — 1 'a]a(g ) | HH

6. Return weights

I I I' s Dassachusstis 65191 Introductionto Deep Learning
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Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, 0%)

2. Loop until convergence:

3. Pick single data point i

4 Compute gradient, 615(09) « e

S. Update weights, 8 < 8 — 1 'a]a(g ) | HH
6. Return weights

Easy to compute but
very noisy
(stochastic)!

I I I' s Dassachusstis 65191 Introductionto Deep Learning
Institute of

. . /29718
Technology introtodeeplearning.com




Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, 0%)

2. Loop until convergence:

3. Pick batch of B data points

a](6) Jr(0) .
4 ComPUte gradlent 00 _ Ezllg:l 159 ey
>. Update weights, 8 « 6 — 1 'a]a(g ) R o

6. Return weights

I I I' s Dassachusstis 65191 Introductionto Deep Learning
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Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, 0%)

2. Loop until convergence:

3. Pick batch of B data points

a](6) dJk(0) .
4 ComPUte gradlent 00 o Ezlg=1 159 ey
>. Update weights, 8 < 8 — n 'a]a(g 2] B

6. Return weights

Fast to compute and a much better
estimate of the true gradient!

I I I' o Massachusetts 6.5191 Introductionto Deep Learning
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Mini-batches while training

More accurate estimation of gradient
Smoother convergence
Allows for larger learning rates

I I I en  assarhuseiis 65191 Introductionto Deep Learning
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Mini-batches while training

Mini-batches lead to fast training!
Can parallelize computation + achieve significant speed increases on GPU's

I I I en  assarhuseiis 65191 Introductionto Deep Learning
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Neural Networks in Practice:
Overfitting



The Problem of Overfitting

T
[
o
()
a8 .
B g a B
M &
a® »
Underfitting < Ideal fit > Overfitting
Model does not have capacity Too complex, extra parameters,
to fully learn the data does not generalize well
Illil- m:zfl?f:g?etls 65191 Ihtrodudion to Deep Leaming 1129/18
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Regularization

What is it?

lechnique that constrains our optimization problem to discourage complex models

I I I' o Massachusetts 6.5191 Introductionto Deep Learning
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Regularization

Why do we need it?

Improve generdlization of our model on unseen data

I I I = o Massachusetts 6.5191 Introductionto Deep Learning
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Regularization |: Dropout

* During training, randomly set some activations to O

Z1,1 Z2,1

X1
Z1,2 Z2.2 1

X2
Z1,3 Z23 V2

X3
Zq 4 Z2,4
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Regularization |: Dropout

* During training, randomly set some activations to O
* Typically‘'drop’ 50% of activations in layer
* Forces network to not rely on any | node

? tf.nn.dropout (hiddenLayer, 1p=0.5)

Z21
X1
Z1,2 1
X2
Z23 V2
X3
Z1,4 Z2.4
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Regularization |: Dropout

* During training, randomly set some activations to O
* Typically‘'drop’ 50% of activations in layer
* Forces network to not rely on any | node

? tf.nn.dropout (hiddenLayer, 1p=0.5)

Z11
X1
Z2.2 1
X2
Z1,3 Z23 V2
X3
Z2.4

I I I' o Massachusetts 6.5191 Introductionto Deep Learning

I I Institute of _ .
Technology introtodeeplearning.com

1/29/18



Regularization 2: Early Stopping

* Stop training before we have a chance to overfit
A

| oss

Training Iterations
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit
A

Legend

Loss Testing/Validation

Training

Training Iterations
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit
A

Legend
Loss Testing/Validation
/‘ Trainin
—Q— s
—Q@
Training Iterations
1/29/18

[nassachusetts 65191 Introduction to Deep Learning
Technology introtodeeplearning.com




Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A
Legend
Loss / Testing/Validation
o Training
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit
A

Legend
Stop training Testing/Validation
here!

'g Training
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Training Iterations
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A
|
|
Under-fitting | Over-fitting

|

|

| Legend
|

Loss i Stop training Testing/Validation

: here!/‘/.

lﬁ Training
|

|

—Q— —0

Training Iterations
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Core Foundation Review

The Perceptron Neural Networks Training in Practice

 Structural building blocks * Stacking Perceptrons to * Adaptive learning
* Nonlinear activation form neural networks  Batching
backpropagation
- X1 o 2
Zy,2 %1
X, ——— % = > P o [x] ... [% x| ... [x
/ Zy 3 ¥ ) L7 e ~,
Xm *m e {
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Questions!?



