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ABSTRACT

Video streaming on mobile devices is prone to a multi-
tude of faults and although well established video Qual-
ity of Experience (QoE) metrics such as stall frequency
are a good indicator of the problems perceived by the
user, they do not provide any insights about the nature
of the problem nor where it has occurred. Quantifying
the correlation between the aforementioned faults and
the users’ experience is a challenging task due the large
number of variables and the numerous points-of-failure.

To address this problem, we developed a framework
for diagnosing the root cause of mobile video QoE is-
sues with the aid of machine learning. Our solution
can take advantage of information collected at multiple
vantage points between the video server and the mobile
device to pinpoint the source of the problem. More-
over, our design works for different video types (e.g.,
bitrate, duration, ..) and contexts (e.g., wireless tech-
nology, encryption, ..) After training the system with
a series of simulated faults in the lab, we analyzed the
performance of each vantage point separately and when
combined, in controlled and real world deployments. In
both cases we find that the involved entities can inde-
pendently detect QoE issues and that only a few vantage
points are required to identify a problem’s location and
nature.
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eNetworks — Network performance analysis;
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1. INTRODUCTION

The use of mobile devices for streaming video is be-
coming increasingly popular. According to Cisco, mo-
bile video traffic is estimated to increase 14 times be-
tween 2013 and 2018, resulting in 69% of the total mo-
bile data [1]. Moreover, YouTube reports that currently
mobile makes up for 50% of its global watch time [2].

However, due to the heterogeneity of the devices and
networks between the content server and the client, it
is often difficult to detect whether the user is experienc-
ing video QoE issues and to identify the root cause of
any problem. Apart from typical network-related prob-
lems such as delay, congestion or limited bandwidth,
video streaming on mobile devices may also suffer from
the device’s hardware limitations, high load on the end-
points and problems in the wireless medium.

Our goal is to design a system that not only detects
the existence of video QoE problems, but also identi-
fies their root cause, e.g., the nature of the problem
and where it is located along the data delivery path.
To achieve this, we propose to i) place measurement
probes at few, key vantage points (VPs) along the path,
ii) collect and construct a set of performance features
that are agnostic to the noisy and heterogeneous video
delivery mechanisms and iii) build a machine learning
model to associate these features with poor QoE and
perform root cause analysis (RCA).

We initially train and test our system in a controlled
environment where we induce common faults. Next, we
evaluate whether the trained model is effective in the
real world through in-the-wild experiments on YouTube
and other video services over the public Internet. Our
results indicate that each of the involved parties (users,
ISPs, content delivery networks and content providers)
can independently identify the existence of poor QoE.
Furthermore, only a few vantage points are required in
order to pinpoint the exact nature and location of the
problem. Finally, the results emphasize the importance
of instrumenting end-devices, as metrics collected at the



mobile devices can already identify the vast majority of
the faults.
This paper makes the following contributions:

o We designed and implemented a diagnostic tool for
video streaming. The system can use a wide vari-
ety of network and hardware measurements col-
lected at one or more vantage points along the
video path to identify and pinpoint the root cause
of detected QoE problems.

o We designed a supervised-machine learning model
that uses feature construction and selection to
make the diagnostic system both general and prac-
tical in real world environments, e.g., where differ-
ent types of videos and streaming techniques, and
wireless technologies are used.

e We combine controlled and in-the-wild measure-
ments to show how much metrics and vantage
points contribute to identifying and locating the
cause of QoE problems.

e More surprisingly, we show that training our RCA
model in the lab is sufficient to lead to more than
80% diagnosis accuracy in the wild, with users ac-
cessing video content hosted by us or commercial
services like YouTube, and through both cellular
and WiFi networks.

The remainder of the paper is organized as follows.
Sections 2 and 3 motivate and describe our design. We
present the results of controlled and in-the-wild experi-
ments in Sections 4 through 6. Finally, we discuss prac-
tical implications, related work and our conclusions.

2. APPROACH AND CHALLENGES

System model - In a typical video streaming ses-
sion on a mobile device from a popular service such as
YouTube, the video data is downloaded from a content
server in a Content Distribution Network (CDN). As
shown in Figure 1, the video stream is first transferred
through Internet Backbone links to the client’s ISP.
Next, the data is downloaded to the mobile device over
a broadband link connected to a home gateway/Access
Point or a cell tower depending on the client’s connec-
tion type.

Each hop in the path may suffer from impairments
that can affect the smooth delivery of the video and
therefore the user’s experience. Congestion or band-
width bottlenecks in the local or remote network seg-
ments, high load on the endpoints and problems in the
wireless medium are some of the most significant is-
sues that cumber the performance of video streaming
services and contribute in the user’s QoE degradation.
The goal of the project is to develop a tool that not only
identifies the existence of a video QoE problem, but is
able to identify its location and its root cause.
Approach - Machine learning has been widely used
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Figure 1: Video data path in the real world.

to help solve complex problems, including fault diagno-
sis and analyzing the QoE of video, so it is a natural
starting point for our work. However, ML alone is not
sufficient. For example, based on data collected on the
mobile phone, it may be possible to learn that poor
QoE is caused by “low bandwidth”, but it will not be
possible to identify what network is at fault, e.g., the
wireless link versus the Internet backbone.

To help both identify and pinpoint failures that may

cause QoE issues during playback, we propose to place
measurement probes at multiple vantage points (VPs)
along the path. Collecting data at multiple points will
provide a system-wide view that can help us isolate per-
formance metrics for different segments and devices. In
an ideal world, we would be able to collect measure-
ments on every device, but this is not practical so we
focus on a scenario with three VPs, the two endpoints
and the wireless AP.
Challenges - While there has been some research on
diagnosing video QoE, as discussed in Section 8, we
are not aware of any work that uses a combination of
network and hardware metrics collected across multi-
ple VPs. This novel approach introduces a number of
challenges.

First, the amount of data that can be collected across
the vantage points is overwhelming. We use feature
construction and selection to identify the most useful
features (Section 3.2).

Second, providers offer video with different quality,
encoding, and duration, and also use a variety of video
delivery mechanisms such as static or adaptive stream-
ing, pacing and so on. Hence, the system needs to be
agnostic to the details of both the video itself but also
how it is delivered. Our solution to this problem is to
normalize the metrics we collect (Section 4).

Third, while we found that a multiple vantage point
solution is very effective, it may not always be possible
to obtain data from all vantage points of interest for
reasons such as security or privacy concerns. To ad-
dress this challenge, we designed our system so it can
also diagnose problems, albeit with lower accuracy, if
it lacks data from some vantage points. We also iden-



tify for each vantage point how much its measurements
contribute to the diagnosis (Section 5).

Finally, there is a growing demand for encrypted con-
tent delivery, even for video. This poses a challenge for
systems that rely on packet inspection or HT'TP traffic
analysis. Our design avoids such analysis so it can be
compatible with encrypted traffic. We similarly avoid
dependencies on any particular wireless technology to
ensure wide applicability.

3. SYSTEM DESIGN

The proposed framework consists of one or more
probes along the data delivery path that provide a num-
ber of performance metrics, and a QoE detection system
that constructs the necessary features from these met-
rics and applies machine learning algorithms in order to
extract the root cause.

3.1 Probes and Metrics

Ideally, each network device along the data path may
provide performance indicators. However in practice
this is not feasible as it involves the cooperation of too
many parties and hardware vendors. Therefore, in our
approach we focus on three key vantage points: ) the
mobile device, ii) the connection gateway (e.g., wireless
router) and iii) the content server. These three points
can capture issues at the boundaries of each of the three
segments in the video delivery path: the user, the ISP
and the content provider.

The probes collect performance metrics from all rel-
evant layers:

e Application layer: At the mobile probe, we cap-
ture statistics concerning the QoE of video play-
back from the mobile OS irrespectively of the video
application (our implementation is done on An-
droid). These metrics include the video startup
delay, video stalls, frame skips, the status of the
buffer, video bit-rates, etc. These are used to
construct an estimated Mean Opinion Score ( [3])
that represents the QoE ground-truth. Notice that
while these metrics can indicate the existence of
poor QoE, we are not including them as features
in the classifier, i.e., they are only used to provide
the labeled QoE ground-truth.

e OS/Hardware Layer: The hardware metrics
provide information about the available resources
and the connectivity state at each of the three VPs.
For that purpose, we monitor the percentage of
load, CPU utilization, the amount of free system
memory and so on. At the end of a video flow,
aggregated information about each feature is re-
turned (e.g., average, minimum, maximum, stan-
dard deviation of CPU usage).

e Transport layer: A set of 113 network metrics
are collected per flow, including RTT, number of
packets, flow duration, window size, out-of-order
and re-transmitted packets, etc. These metrics are
collected on all probes for each of network interface
using tstat [4]. Extensive documentation of these
metrics can be found in [5].

e Link/Physical layer: For each of the available
network interfaces (NICs) the probes extract in-
formation about the utilization, bandwidth, and
dropped or retransmitted packets. In addition,
for wireless links (WiFi/3G), the radio technology,
the advertised rate and signal strength information
(RSSI) for each of the connected devices is moni-
tored.

Similarly to the OS/hardware metrics, an aggre-
gated set is calculated for the conditions of each
NIC during a video flow. For instance, the aver-
age/minimum RSST or the number of disconnec-
tions/handovers during the flow is returned.

Our proposed multi-VP approach enables each entity
with a deployed probe to diagnose problems within its
own proximity, separately without requiring informa-
tion from other contributors. This way, providers or
users are not limited by common privacy concerns or
collaboration restrictions. However, combining infor-
mation from all three entities can improve root cause
analysis accuracy.

3.2 Detection System

Our system uses machine learning to learn the cor-
relations between performance and QoE metrics and to
create a model for detecting and characterizing the root
cause of playback problems. Before applying the ML
tools, we employ two techniques, Feature Construction
(FC) and Feature Selection (F'S) that help improve the
classifier’s performance.

Feature Construction aims in making the system
more agnostic to the specifics of each scenario, i.e., video
type, streaming techniques and network technology in
our case. With this method, our objective is to make
the prediction model as generalizable as possible so that
it can be successfully applied for different devices, video
players and video services but also for different network
conditions.

To achieve this task, we normalize the features that
depend on any of the aforementioned variables. Specif-
ically, we normalize all the parameters which are ex-
pressed in bytes or packets with the respective total
number of bytes or packets of the entire session. The list
of normalized features includes among others, the num-
ber of data packets, data bytes, re-transmitted packets,
re-transmitted bytes and out of order packets [5]. The
same approach is applied for the video duration which is



normalized with the total duration of the video session.

Furthermore, we calculate the uplink and downlink
utilization of each device’s NIC by dividing the average
transfer rate of a video session by the maximum transfer
rate observed for this NIC in the entire dataset. In this
way, the utilization takes values between zero and one.

The RSSI is collected in one second intervals and then
the average, maximum and minimum values are calcu-
lated for the entire session. For our analysis we keep
the average value only as we observed that it has bet-
ter predictive capabilities as compared to the maximum
and minimum.

Feature Selection: To increase the performance of
the algorithm in terms of both accuracy and execution
time, it is important to significantly reduce the feature
space size. The reduction of the number of features used
to train the algorithm, minimizes the over-fitting prob-
lem that is either caused by multiple features with little
or no predictive power, or by features that contribute
the same information to the prediction. After experi-
menting with different F'S algorithms, we find that the
Fast Correlation-Based Filter algorithm is the most ef-
ficient in identifying a minimal set of features with high
predictive power.

After applying F'S, the number of features is reduced
from 354 to 22 (Table 1). Among the remaining fea-
tures, those with higher weights were the utilization of
the interfaces, the 3 hardware metrics from the mobile
device: the free memory, the CPU utilization and the
RSSI. In section 5.4 we discuss how much each of these
features contributes to identifying individual problems
and the improvements resulting from both FS and FC.

mobile CPU utilization

mobile bytes retransmitted

mobile free memory

router out-of-order pkts

mobile RSSI

server avg RTT

mobile downlink utilization

mobile first packet arrival

router downlink utilization

router first packet arrival

server uplink utilization

server max window size

mobile pkts retransmitted

mobile min MSS

server min MSS

mobile max RTT

server video data pkts

router video data pkts

mobile max window size

router reordered pkts

router avg RTT

router max RTT

Table 1: Features after Feature Selection.

Machine Learning: For the data processing and
analysis we use version 3.6.10 of Weka. Our classifier of
choice for the data analysis is J48 which is an implemen-
tation of the popular C4.5 algorithm. The training and
testing of the algorithm is performed using the 10-fold
cross-validation method.

C4.5 and Decision Trees in general, are known to per-
form well with noisy data. Therefore, they are a suitable
solution for building our predictive model since we in-
tent to train and test it on network data where noise is
induced by background variations. We further discuss

background variations in Section 4.2.

Decision Trees outperformed other algorithms like
Naive Bayes and Support Vector Machines which we
also evaluated with our datasets. Given that the
datasets from our experiments consist of a large number
of features that often have a non-linear relation between
them, decision trees are well suited for our predictive
model since their performance is not affected by such
non-linear relations, while their hierarchical structure
fits well with our troubleshooting approach.

Moreover, data collected from real networks can be
noisy due to background variations generated by multi-
ple sources. For that reason, Decision Trees are a good
solution since they cope well with noisy data.

Finally, another advantage of using C4.5 is that con-
trary to algorithms such as SVNs, the model is not a
black box. The constructed tree can be visualized and
interpreted. This can greatly simplify and improve the
feature selection process and help optimize the perfor-
mance of the model.

4. COLLECTING
TRUTH

In order to build and train our ML model, we need to
collect the ground-truth: a set of labeled good and prob-
lematic video instances with a known root-cause. This
data set will be used to train our model and also for
controlled experiments. Finally, we will use our model
in real-world experiments to evaluate how well it can
cope with the added noise and complexity of the Inter-
net. To achieve this, we implemented a testbed infras-
tructure with four components i) a realistic hardware
setup with multiple simulated mobile devices and back-
bone connections, ii) background workloads for gener-
ating constant variations, iii) induced impairments that
will simulate a specific scenario/label and iv) associate
mean opinion score to the collected measurements. To
make the generated model as realistic as possible, the
settings of each component (e.g., loss rate, link speeds,
load, etc) is based on distributions that were derived
from traces that were acquired from a network within
a large European ISP.

4.1 Setup
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Figure 2: Device setup in the testbed.

We set-up a simple testbed with a video server, a
router/AP (Access Point) and three different Android



Simulated Problem Tools/Method Settings/Comments
LAN Shaping tc, netem LAN: BW cap=1-7T0Mb/s, 1ms delay, 0% loss
WAN Sahping tc, netem DSL: BW cap=7.8Mb/s, 50ms delay, 0.75% loss
Mobile: BW cap=>5.22Mb/s, 100ms delay, 1.4% loss
LAN Congestion iperf UDP traffic from wired client to the router
WAN Congestion iperf UDP traffic from wired client to the server
Mobile Load stress CPU, memory, 10, disk workloads
Poor Signal Reception distance, attenuation Reduced SNR and data rate
WiFi Interference | external interference source | Transmission on the same frequency

Table 2: List of simulated problems, used tools and configurations

devices. The phones are connected to the Wireless LAN
of the AP and the server is connected via an Ethernet
cable to the router. In addition to the devices that are
necessary to deliver the video, other wired and wireless
devices are available in order to generate background
traffic on the network segments and interference on the
wireless link (Figure 2).

We use an Apache server to deliver the video. We
downloaded the videos from the top 100 most viewed
list [6] from YouTube to the server in either Standard
or High Definition to ensure the diversity of the video
collection. A Netgear WNDR3800 running OpenWRT
was used as a router/AP. It was configured to oper-
ate at 5GHz after verifying that there are no surround-
ing sources of interference. Three types of Android de-
vices were used as mobile clients: Samsung Galaxy S II,
Nexus S, and Nexus 5. The devices are instrumented
with our developed application, which is responsible
for performing HTTP video requests to the server and
opening the returned video stream using the default An-
droid media player.

BW delay loss
DSL | 7.8Mbit/s | 50+20ms | 0.75+0.5%
Mobile | 5.22Mbit/s | 100+30ms 1.4+1%

Table 3: Configuration of simulated links

In order to make the generated model as realistic as
possible, tc and netem are used to simulate a DSL and
a mobile link with the settings shown in Table 3. The
delay and loss for both configurations follow a normal
distribution within the indicated ranges. As mentioned
in the previous part, these settings were obtained by
analyzing traces from a real deployment in a large ISP.

4.2 Background Variations

To recreate realistic network conditions, we introduce
synthetic competing traffic workloads of different pat-
terns. These background variations are based on real
world network traces and will aid in training the algo-
rithm for successful deployment in the real world. This

is done using the D-ITG generator [7], which supports
traffic generation based on different applications such
as Telnet, FTP, gaming, VoIP and more. We also use
ApacheBench to create a realistic load on the server.

4.3 Simulated Problems

In order to generate the dataset that contains vari-
ous levels of QoE, we iterate through a set of scenarios
in which we stream a randomly picked video and arti-
ficially induce a problem with varied intensity. Apart
from background variations, we use problems in three
categories: networking, device hardware and wireless
medium issues. The list of simulated problems, the
used methodology, and the specific configurations can
be found in Table 2.

Shaping and Congestion. To simulate LAN con-
gestion, we use multiple iperf instances to transmit
UDP traffic between the wired LAN client and the
router; for WAN congestion we generate traffic with the
same method but between the server and the router.

For traffic shaping, different bandwidth, delay and
loss restrictions are applied to the corresponding link.
The LAN is shaped based on the data rates offered by
common 802.11 standards such as a, b, g and n that
are capable of providing rates per stream ranging from
1 up to 70Mbit/s. For the WAN shaping we set different
restrictions for mobile and DSL connections (Table 2).

Mobile Load. This category examines cases where
the high load on the device hardware does not allow the
proper decoding and playback of the video. The load
simulation is performed with the workload generator
tool stress that allows CPU, I/O, memory and disk
workload generation.

Poor Wireless Signal Reception. We simulate
poor signal reception by placing the phone far from the
AP and by attenuating the transmitted signal at the
AP. As a result, there is degradation in the wireless
link’s SNR and the available data rate.

WiFi Interference. This scenario, involves creat-
ing interference on the wireless channel from external
sources. In real use cases, interference can be caused by
near-by devices transmitting or receiving on the same



frequency range. In our experiments interference is cre-
ated by generating large traffic workloads on an adja-
cent second WLAN operating on the same channel as
the AP we use for measurements.

4.4 MOS-based Labeling

Before performing the analysis, the instances in the
dataset need to be labeled with the QoE ground truth
so they can be used for training and evaluation of the
classifier. QoE labeling has to express the quality of the
video session in terms of user satisfaction so that we can
correlate problematic videos with the QoE.

For that purpose, we convert application performance
metrics such as startup delay and the frequency and du-
ration of stalls to Mean Opinion Score (MOS) ratings
based on the work of Mok et al. [8] who derived an equa-
tion for calculating the MOS from performance metrics
by means of regression analysis. Based on the obtained
scores, we label instances with MOS greater than 3 as
‘good’, instances with scores between 2 and 3 as ‘mild’
and those with MOS lower than 2 are labeled as ‘severe’.

For the detection of the location of the problem, we
create six new labels based on the combination of the
segment that the issue occurs and its severity. For the
evaluation of the algorithm when detecting the exact
problem, we label problematic instances according to
the type of the fault.

5. EVALUATION

In this section, we evaluate the system’s performance
in the controlled environment described in Section 4 for
detecting the existence of problems, detecting the prob-
lem’s location and for identifying the exact problem.
Later we will examine if the resulting model is robust
enough to detect problems in the real deployment.

The training and testing of the algorithm in all the
evaluation scenarios is performed using 10-fold cross-
validation. We present the system’s performance in
terms of overall accuracy, defined as the percentage of
correctly predicted instances, i.e., the number of True
Positives (TP) and True Negatives (TN) over the total
number of instances. In addition, we also use the Pre-
cision and Recall metrics. Precision is expressed by the
ratio of TP over TP and False Positives (FP) and rep-
resents the accuracy a certain class is predicted. Recall
is the ratio of TP divided by the total instances in this
class and it measures the classifier’s ability to correctly
identify the desired classes from the data set. In simple
terms, for a root-cause ¢ (e.g., low RSSI), high precision
means that the framework did not miss-classify other
problems as ¢, while high recall means that it found
most of the instances that exhibited ¢ and, therefore,
has a high probability of detecting this issue.

The collected dataset consists of 354 metrics includ-
ing network metrics, the total number of rebuffering

Precision

events, device CPU and memory utilization and the
RSSI. Note that the rebuffering events are only used
for labeling the instances and not as a feature. Overall,
there are 3919 instances in total out of which 3125 are
labeled as good, 450 as mild and 344 as severe.

5.1 Who Can Detect the Existence of a
Problem?

First, we examine which of the VPs (or which com-
bination of them) is performing better when identifying
the eristence of a problematic video flow. For that rea-
son, we aggregate all labels into three categories: ‘good’,
‘mild’ or ‘severe’, as discussed in section 4.

As observed in Fig 3, each one of the vantage
points can independently discover problematic sessions
with similar accuracy: for the mobile it is 88.1%, for
the router 86.4% and for the server 85.6%. Finally,
when combining the measurements from all the van-
tage points, the performance slightly improves to 88.8%.
We observe that the mobile phone achieves performance
that is as good as the combination of all three vantage
points as it is in the position to measure both local (e.g.,
CPU/RSSI) and remote (e.g., server load, network) is-
sues.

Moreover, although the other two VPs achieve more
than 85% accuracy in detecting good instances, they
have significant problems to discern between mild and
severe problems. In more detail, the system’s poor per-
formance for mild problem detection is correlated to the
high number of false negatives where the problems are
identified as severe and the false negatives where they
are labeled as healthy.
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Figure 3: Precision (left) and Recall (right) for
problem detection in controlled experiments.

Takeaway: The existence of healthy sessions can
be identified with high accuracy from each entity in-
dependently. ISPs and content providers can identify
that there was a problem but they cannot be certain
about its severity in terms of impact on the users’ QoE.
Moreover, we find that instrumentation closer to the
mobile terminals where the majority of the problems
occur yields higher performance.



5.2 Who Can Detect a Problem’s Loca-
tion?

Apart from the existence of a problem, it is important
for each entity to understand if the fault is within their
network or who is to blame when there is an issue. For
that reason, we aggregate labels into three categories
based on the location of the problem: mobile device,
LAN and WAN.

What is interesting however, is the ability of the
server VP to localize problems in the LAN segment.
Specifically, the server shows almost equal performance
to the router VP for detecting LAN problems. To better
understand why this is the case, we inspect the features
that contribute most to detecting LAN problems. We
find that for both VPs the same features, RTT, first
packet arrival delay and the number of retransmissions,
are ranked highest for LAN problem detection.

We also evaluated the benefits of using VP pairs for
location detection. However, we did not observe any
significant improvement in accuracy nor any intriguing
result.

Takeaway: Content providers who deploy such a
system have the ability to identify if a problem has oc-
curred on the ISP’s network. This information is useful
to content providers for spotting congested or under-
provisioned ISP networks and pursue better peering
agreements with ISPs in order to minimize bottlenecks.
ISPs can also identify whether the issue has originated
within their own network or the user’s LAN if the home
router is instrumented.

Finally, an instrumented application or an instru-
mented phone can provide valuable information to the
users to identify whether their home network, their ISP
or the content provider is to blame for poor QoE and
it can significantly improve the accuracy of the other
entities if the measurements are shared.

5.3 Who Can Detect the Exact Problem?

Next, we trained and evaluated the algorithm using
all the labels of problematic scenarios that are available
in our dataset, allowing us to assess the accuracy with
which the classifier can detect the ezact root cause be-
hind the problem experienced by the user. The overall
accuracy for detecting the exact problem, is 88.18% for
the mobile VP, 85.74% for the router, 84.2% for the
server and 88.95% for all three VPs. These numbers
demonstrate the system’s high performance when car-
rying out the task of identifying the root cause behind
video QOE issues.

However, while the overall accuracy is good, we ob-
serve that certain vantage points exhibit difficulties in
discerning certain problems. Figure 4 shows the differ-
ent accuracy with which each issue is predicted, while
Table 4 provides insights about the 3 metrics with the
highest prediction power for each label (notice that

there are cases where only two or even only one metric
make significant contribution).

Furthermore, we observe the high accuracy with
which WiF1i interference and low RSSI related problems
are predicted. From the figure it is clear that all the
VPs in the system perform very well when detecting
sessions which suffer from severe problems in the wire-
less medium.

However, the detection of mild interference from the
router and the server is done with much lower accu-
racy. Given that these two VPs don’t have RSSI infor-
mation, they are unable to distinguish the small varia-
tions caused by mild interference. As a result, we ob-
serve from the classifier’s output that a large number
of mild interference instances are predicted as healthy
witch causes the particular label to be predicted with
lower accuracy.

More information that help understand this behav-
ior can be found in Table 4, where for the router and
the server, the highest ranked features are RT'T and the
first packet arrival delay which do not offer much infor-
mation about the performance of the wireless medium.

Table 4 also offers interesting insights in the features
with the highest prediction power for mobile load cases.
Specifically, when the mobile VP is used, CPU, mem-
ory and RTT are the most important for detecting the
problem. However, for the router and server the high-
est ranked feature is the RTT which has an obviously
very little information regarding the load of the device.
This can be reflected in the low performance of these
two VPs for identifying mobile load problems.

Specifically, for network related issues the important
metrics are the interface utilization, the RTT and the
number of video packets. In wireless medium problem
detection the greatest contribution is made from the
RSSI when the mobile VP is used and from RTT for
the other two VPs.

The router and server VPs have very poor detection
capabilities for mobile load issues since the significant
features in this case are the device CPU and memory
load. The very low accuracy for these problems by the
router and server VPs; is a result of the high number
of instances that are detected as healthy which in turn
has an impact on the number of false positives.

Apart from the mobile load, there are also other cases
in Figure 4 such as mild WAN congestion and shaping
where both the server and the router VPs show lower
detection capabilities. This poor performance is at-
tributed to the large number of miss-classifications of
these faults as either LAN congestion and shaping or
healthy and thus increasing the number of FP and FN.

However, for the case of the mobile load and WAN
congestion, we find that the combined use of the three
VPs significantly improves the detection performance.
These findings can motivate ISPs and content providers
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Table 4: Feature ranking for exact problem detection (M =mobile, R=router, S=server, C=combined)
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Figure 4: Precision and Recall for exact problem
detection per VP.

to pursue collaborations in order to improve the perfor-
mance.

Takeaway: Each of the entities can independently
perform well when detecting a large variety of problems
such as the ones related to wireless conditions, severe
LAN and WAN congestion and shaping. However, mo-
bile devices are much more accurate in identifying local
problems related to high load or wireless interference.
Furthermore, there cases such as WAN congestion and
mobile load where the combination of all the VPs can
significantly improve the performance. Finally, while
we observe that all three parties are capable of iden-
tifying healthy video sessions with very high accuracy,
these results indicate that in order to perform a full-
scale accurate root cause analysis, some collaboration
between the entities is desirable.

5.4 Which Features Help?

The objective of this section is to illustrate the im-
provements that can be achieved when using different
features to train the model. We evaluate the system
with the combination of the three VPs using seven dif-
ferent feature sets, RSSI, hardware metrics, interface
utilization, network delay parameters, TCP metrics, all
the available features and finally with the set of fea-

tures after performing Feature Selection (FS) and Fea-
ture Construction (FC). For the network delay parame-
ters, we consider all the RTT metrics we have available
from the TCP flows.

Figure 5 shows the precision and recall for each of
the inputs. When using only the RSSI or only mobile
hardware metrics, the accuracy is lower than 35%. Us-
ing the interface utilization alone, yields precision and
recall values near 55%, while the use of delay alone re-
sults in improved accuracies around 70%. The evalu-
ation with the entire feature set further increases the
obtained accuracy by 5% but even more improvement
is reached when applying F'S and FC, with precision and
recall values above 80%.

1 i

1 Precision|
m Recall

ALL

RSSI
58 FEATURES

HW UTILIZATION DELAY TCP FR & FC
Figure 5: Problem detection accuracy for differ-

ent feature sets.

From the information provided in Table 4, we observe
that the utilization of the interfaces contributes signif-
icantly in the detection of the majority of problems.
This result highlights the important role that feature
construction plays in the problem detection capabilities
of the system.

Moreover, one of the features that is used by almost
all VPs for predicting congestion and shaping issues, is
the first packet arrival time. This metric is an indicator
of video sessions with longer startup delays but it is also
correlated with network issues such as delay and loss.

The metrics with higher predictive power for mobile



load are the CPU and memory utilization. For the
server and the router VPs where these metrics are not
available, RTT is used instead but with very poor re-
sults as shown in Figure 4, as it does not hold informa-
tion regarding the device’s hardware state.

Takeaway: The results indicate that the RTT and
link utilization, as measured by each vantage point are
key metrics in performing RCA. Hardware and NIC
metrics can further help us to separate individual local
issues. Moreover, it is evident that feature construc-
tion and reduction plays a significant role in improving
the system’s accuracy as constructed features are highly
ranked by the classifier.

6. REAL WORLD EXPERIMENTS

In this section we describe and discuss the results of
the system’s evaluation in two real world settings. In
the first environment, clients are in a corporate WiFi
network where we can artificially introduce faults. In
the second case, clients access videos over a wide range
of wireless networks including both 3G and WiFi, where
faults are not controlled and occur naturally. In both
cases, clients retrieve videos from both a private server

and YouTube.
6.1 Experiments With Induced Faults

The purpose of the the real world experiments with
induced faults, is to get labeled data that will enable
us to evaluate the robustness of the trained model on a
real wireless network which is characterized by unpre-
dictable topology, constant variations in traffic, signal
strength and number of connected devices.

6.1.1 Setup

For the measurements, we distribute five Galaxy S
II to equal number of users for a period of one week.
The phones are again equipped with an application
that automatically launches random videos from the top
100 list, while coordinating the network and hardware
probes. The users were instructed to carry the phones
with them while inside the wireless range in order to
capture variations due to movement and received signal
quality.

In these experiments, the videos are streamed from
both our private video server and from YouTube with
probabilities 0.25 and 0.75 respectively. We select these
probabilities so that we end up with a dataset where
the majority of measurements corresponds to YouTube
sessions and a smaller part to streams from our server.
Finally, the phones, the wireless AP and our server were
instrumented with probes as described in 3.1.

Using the same methodology as the one in the con-
trolled experiments described in Section 4, we intro-
duce five different types of faults, lan congestion, wan
congestion, mobile load, low rssi and wifi interference.

Precision

Furthermore, we ensure that the conditions of the net-
work allow to successfully load a video just before and
after the induced fault. However, since this a semi-
controlled environment, we cannot fully guarantee that
during each video flow there are not additional (sponta-
neous) problems over the unmanaged Internet links or
video services.

The collected dataset consists of 2619 instances from
which 1962 are good, while 463 have mild and 194 have
severe QoE issues.

6.1.2 Real-World Evaluation

Our goal is to evaluate the ability of the classifier
to predict labels in the real world scenario based on
the training that was performed using the controlled
dataset.

In this part, we demonstrate the system’s capability
of detecting the existence of problematic instances us-
ing either one of the probes or the combination of all
three. The detection is done with 88% accuracy when
using the mobile probe, 84% when using the router and
81% when measurements from the server probe are only
used. The combination of the three probes yields accu-
racy of 88.1%.

Figure 6 illustrates the Precision and Recall values
for this phase of the evaluation. Overall, the results
match the controlled experiments. In this case too, the
mobile VP outperforms the other two VPs. However,
one notable difference is the increase in both Precision
and Recall for the mild problem detection. This can
be attributed to the fact that the variations and back-
ground noise in the current environment is less than the
variations we simulated in the controlled experiments.
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Figure 6: Precision and Recall for problem de-
tection in the real world experiments per van-
tage point.

Furthermore, we also observe equally good robustness
of the trained model in terms of detecting the exact root
cause of a playback problem. In this case, the combined
use of the three vantage points allows correct detection
with accuracy of 82.9%. When using separately the
mobile, the router and server VP we obtain accuracies



equal to 81.1%, 80.5% and 79.3% respectively.

From Figure 7 we see better performance for device
load and wireless medium issues which is to be expected
given the strong correlation of these faults with specific
hardware metrics. In the LAN congestion scenario we
observe better results from the mobile and the router
VP while for the case of WAN congestion the server is
detecting problems with higher accuracy.

For each of the entities that participate in the video
delivery this means that the VP on the client’s device
is necessary for detecting the root cause of the majority
of problems. ISPs on the other hand, can effectively
discover LAN faults but also wireless errors such as low
RSSI and interference. Finally, content providers can
perform WAN fault identification with good accuracy
but fall short when it comes to finding faults that occur
on the device or in the wireless medium.

Takeaway: Our findings here are in agreement with
those in the previous experiments for problem detection
and root cause identification. This is a strong indica-
tor that our system that was initially trained in a fully
controlled environment can be successfully applied in the
wild. At the same time, smaller differences in the detec-
tion of some problems emphasize the importance of con-
tinuous training. While collecting large-scale ground-
truth in the wild might not feasible, it is still possible
to acquire some labels as specific problems can be rec-
ognized by experts within each entity (e.g., network en-
gineers). Furthermore, ground-truth about the quality
of experience can be given by means of crowd-sourcing
(i.e., people complaining at call centers, or feedback pro-
vided by the users within the application).
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Figure 7: Precision and Recall for problem de-
tection in the real world experiments

6.2 Deployment Without Induced Faults

The final step in the evaluation is detecting faults that
were not induced by us and, therefore, might be more
complex. Furthermore, a particularly important aspect
of this evaluation is to test the system in mobile net-
works, given that there is a constantly growing number
of users who watch video over cellular broadband con-

nections.

In this scenario too, we distribute five Samsung
Galaxy S II devices to equal number of users for one
month with the instruction to carry the phones with
them at all times. The phones contain SIM cards with
unlimited 3G data-plans, while the users were allowed
to connect them to any WiFi access point. This ap-
proach allowed us to test the system on a multitude of
networks that use either cellular or 802.11 technology.

The videos are again streamed from both our pri-
vate video server and YouTube with 1:3 ratio so that
the final dataset is richer in measurements from the
YouTube service. A probe collects network statistics
on our video server for the sessions streamed from it.
With this methodology we can have three different VP
combinations, i) (mobile, router, server) when the user
is streaming video from our server while using our WiFi,
ii) (mobile, router) when YouTube videos are streamed
on our WiFi, iii) (mobile, server) when videos are deliv-
ered from our server over other networks and iv) (mo-
bile) when streaming from YouTube on other networks.
Given that the majority of the videos were delivered
over 3G and in order to make the results comparable
between 3G and WiFi, we removed any features from
the router (therefore only the mobile and server vantage
points are used).

Similar to the previous scenario we use the trained
model from the controlled experiments. For the real-
world experiments, although all mobile-based measure-
ments (e.g., hardware as well as the number of re-
buffering events) are always available, the number of
other metrics varies depending on the number of VPs
that were used. The real-world dataset contains 3495
instances from which 2940 are good and 555 problem-
atic.

6.2.1 Does it Work in the wild with real faults?

Since the experiments are done in the wild, we can-
not obtain the ground truth for the root cause behind
the stalls, only the ground truth for stalls and loading
time. Therefore, we can only mark instances as good or
problematic.

In terms of identifying the existence of a problem, the
mobile probe, server and their combination still achieve
a high accuracy and recall, as shown in Figure 8.

Similar to the controlled experiments, we find that
the mobile VP is a better choice than the server for
identifying both good and problematic instances, while
the combined use improves the system’s accuracy.

Takeaway: The results from the real world eval-
uation verify that the system is equally effective when
detecting problems in the wild even when fewer VPs are
available. This also reveals that the system can capture
successfully cases of mobility although they were not
covered in the training phase and it can cope with the
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diversity of mobile networks.

A closer look at the results shows that the detection
of healthy video sessions is achieved with high accuracy,
there is some loss regarding the identification of prob-
lematic videos. This loss occurs due to differences in the
characteristics of the faults that we encounter in the real
world as compared to the ones we induced manually in
the previous sections. This effect can be minimized by
introducing more VPs (e.g., on 3G RNCs) in order to
get more fine grain information about how smaller vari-
ations affect the video QoE and by furthermore training
the classifier with a wider range of problems. Finally,
as discussed in the previous section, these figures are
likely to be improved once more labeled faults are fed
into the training set.
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Figure 8: Precision and Recall for problem de-
tection per VP pair in the real world.

6.2.2 Identifying the Root-cause
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Figure 9: Comparing the server estimations
about CPU (left) load and RSSI (right) to the
ground truth

We can use the trained model from the controlled
experiments to predict the root cause of faults that oc-
curred in the problematic sessions. The results of the
predictor’s output can be found in Table 5. As we ob-
serve, the most common type of problems occur within
the users’ local network (13% of all instances). Surpris-
ingly only few (2%) of the instances are estimated to

be caused by low RSSI or WiFi interference as typically
the videos fail to even start a TCP flow when there is
very low signal. Furthermore, a number of instances
(4%) were problematic due to an estimated high mobile
load.

As discussed in the previous section, we can directly
calculate that the algorithm correctly identifies good
instances with 85% accuracy. Furthermore, although
it is not possible to verify all of these estimated root
causes, we still have the ground truth for some of them:
mobile load and low RSSI.

Figure 9(left) shows the distribution of CPU load on
the mobile device for problematic videos sessions as pre-
dicted by the video server Vantage Point. Two different
distributions of the CPU ground truth are given: video
sessions that server VP labeled as high “mobile load”
and the remaining video sessions. The results show
that, although the server vantage point only has access
to transport layer metrics (TCP statistics), the video
flows that were estimated as high mobile load have in-
deed much higher CPU utilization.

Similarly, Figure 9(right) shows the distribution of
RSSI for the instances that were considered as low RSSI
from the point of view of the server’s vantage point.
As before, we observe that the server vantage point can
successfully identify these instances despite the fact that
the phones were connected to various WiFI and 3G net-
works.

Takeaway: These results further reinforce our hy-
pothesis that a model that was trained in a controlled
environment is robust enough to be applied as a start-
ing point on a real world environments where the net-
work conditions and the faults can be highly dynamic
and unpredictable. Furthermore, we observed that even
the service provider VPs can identify problems that oc-
curred within the users network or device (e.g., low
RSSI or high CPU usage) without any external infor-
mation.

GOOD WAN LAN MOBILE | LOW WIFI
CONG. CONG. LOAD RSSI | INTER.
M S M S M S M|S| M S
2499 163 | 166 | 18 | 446 | 2 132 | 26 | 0| 43 0

Table 5: Real-world root cause predictions
(M=mild, S=severe)

7. PRACTICAL IMPLICATIONS

For the end user, our results indicate that even an
isolated mobile application that collects measurements
from multiple layers can successfully identify a large
number of problems without further instrumentation.
Such a system can be a powerful tool towards diagnos-
ing video playback QoE issues and where they have oc-
curred. Therefore, when the user is made aware of the
location of the problem and if it is originating from the



local network or the device itself then troubleshoot it.
Otherwise, the issue can be reported to the responsible
entity to take the necessary action.

For the ISPs, the results demonstrate that they can
also independently identify problematic sessions, even
when traffic is encrypted. Furthermore, they can iden-
tify if the problems originate within their own network,
in order to fix problematic segments and bottlenecks,
but also guide users to solve problems in their home
and/or their devices.

For content providers, there are deployment ben-
efits such as detecting loaded servers and network seg-
ments in their CDN if the problem occurs on their side,
or adapting the content for problematic connections
without instrumenting the client when the problem is
originating from either the user’s or the ISP’s side. This
is a valuable tool when identifying SLAs and net neu-
trality violations.

Collaboration: As we showed in the majority of
the controlled and real world evaluation scenarios, there
are significant improvements (in terms of identifying all
possible problems) when two or more entities collabo-
rate to troubleshoot QoE issues. The greater benefits
however, are obtained for the entities which collaborate
with the end users, since the mobile device has access
to valuable information of the local hardware and net-
work performance. This calls for instrumented players
or mobile devices.

At the same time, as collaborations might not be pos-
sible, an iterative root cause analysis might be employed
where each of the entities independently perform anal-
ysis within their own infrastructure. Then they report
to the other entities along the path whether or not the
problem has occurred in their segment. In this way,
no sensitive information is exchanged among users or
providers, collaborations can be easier established and
the deployment of the system can span over a wider
range of networks and devices.

Continuous Training: Once the system is deployed
in one or more entities, its fault detection and root cause
analysis capabilities can be further improved by means
of continuous training. This can be achieved by manu-
ally labeling new instances based on the observed prob-
lem and feeding this information back to the training
model. As new data is being added to the training set,
the system’s accuracy will continue to improve.

One of the limitations of our system, is the inability
to detect faults that it has not been trained for yet in the
lab. These would not only include new problems such
as middleboxes and DNS or routing miss-configurations
but also the co-occurrence of problems that jointly affect
video QoE.

8. RELATED WORK
Path Diagnosis: The works presented here deal

with common issues in wireless, broadband and WANS.
This information provided useful insights for the prob-
lems that may affect the performance of video streaming
services and the users QoE.

In [9] intra- and inter-ISP links were measured to
identify issues affecting video streaming QoE. The find-
ings show that most of the issues originate from fluc-
tuations in intradomain links, however there is no clear
correlation of these problems with QoE. Finally, [10],
showed that voice streaming over backbone links is only
affected in rare cases of packet loss.

Mobile Video Traffic Characterisation: In [11],
the authors analyse YouTube traffic from a university
campus network to conclude that caching improves the
performance and the scalability of the service. Plisson-
neau et al. [12], study the impact of throughput and
delay on YouTube abandonment for DSL users. In [13],
distributed active measurements are used to measure
YouTube and find the effect of redirections and load
balancing on video performance. The authors of [14]
propose a YouTube traffic generation model based on
traces collected from real use cases.

Plissonneau et al. [15] analysed the performance of
video streaming over 2G and 3G, while a more recent
work [16] evaluated the impact of YouTube on mobile
networks. [17] reported 10% packet loss due to redun-
dant TCP connections when streaming on Android and
iOS mobile devices. Hoque et al. [18] studied the en-
ergy consumption with five mobile video streaming ser-
vices. [19] provided a comparative study between An-
droid and iOS video streaming where larger number of
duplicate data was found on iOS.

The information in the works mentioned above, allow
us to obtain a more concrete understanding of the gen-
erated traffic patterns and important parameters that
affect the performance of these services.

Video Streaming QoE and QoS Correlation:
Krishnan et al. [20] used quasi-experimental designs cor-
relate the abandonment rate with the startup delay or
the total buffering time. In [8] the authors concluded
that the main metric affecting the QoE is the rebuffering
frequency. Dobrian et al. [3], show that abandonment
is affected by the buffering ratio and startup time.

In [21] a predictive model for video QoE is used to im-
prove user engagement by 20%. The same author in [22]
employed machine learning to predict user engagement.
In [23], user behaviour is correlated with startup delay,
redirections and server response time. Schatz et al. [24]
used passive network measurements at ISP-based VPs
to infer the rebuffering frequency and duration.

Contrary to these works, our system does not aim at
improving user engagement nor at estimating the video
QoE from QoS metrics. We focus on identifying video
sessions with low QoE scores and accurately detecting
the location and the root cause of the problem.



9. CONCLUSIONS

In this paper we presented a multi-vantage point sys-
tem for detecting video QoE issues and identifying their
root cause. Our approach utilizes performance metrics
from multiple layers which makes it agnostic to video
characteristics and streaming mechanisms but also to
encrypted traffic. With the aid of feature reduction
and construction techniques, the detection and RCA
of problems is done with a minimal set of performance
metrics while we ensure that the methodology is gen-
eralizable and can be applied to different video services
and clients. We further showed that each of the entities
which contribute to the video delivery is capable of de-
tecting poor QoE and identify underlying faults without
having to share information with other parties.

The next step in this work, is to extend the list of
problems that can be identified and train the system
for multi-problem detection. To further improve the
system’s accuracy, we will examine dividing problematic
sessions into more labels in order to obtain a more fine
grain classification of the severity of the problem.
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