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ABSTRACT

We propose a machine learning based framework for build-
ing a hierarchical monitoring system to detect and diagnose
service issues. We demonstrate its use for building a moni-
toring system for a distributed data storage and computing
service consisting of tens of thousands of machines. Our
solution has been deployed in production as an end-to-end
system, starting from telemetry data collection from indi-
vidual machines, to a visualization tool for service operators
to examine the detection outputs. Evaluation results are
presented on detecting 19 customer impacting issues in the
past three months.

1. INTRODUCTION

Consumer and enterprise services increasingly run on large
scale distributed storage and computing platforms built on
hundreds of thousands of commodity machines. Service
quality can be affected by hardware and software failures,
unexpected user load changes, and so on, resulting in slow re-
sponse, unavailability, violation of service level agreements,
and ultimately customer dissatisfaction and negative repu-
tation. Therefore monitoring the service to detect and diag-
nose issues quickly is an important problem. Recently there
has been a steady increase in the literature in this area, from
designing incident ticket management systems [13, 15], to
building large scale textual log and time series analyzers [8,
20], developing specialized machine learning and data min-
ing algorithms for anomaly detection [4, 9, 19], and many
others [1, 2, 6, 18, 22].

There are several challenges in building a service mon-
itoring system. Telemetry data manageability: A typical
service is heavily instrumented by sensors of various kinds
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(e.g., performance counters, textual logs, event streams), re-
porting values of thousands of variables in real time. The
monitoring system needs to use this data in a scalable man-
ner to accurately detect and diagnose issues, and present to
the service operators only the small subset of data that is
actually relevant for an issue. Complexity of service archi-
tecture: Most services consist of sub-systems, components,
sub-components and so on. The architecture induces rela-
tionships, often unknown, among the variables which need
to be taken into account for accurate detection. Further-
more, the complexity can grow over time as more machines
and functions get added, giving rise to new issues.

Currently rule-based detection is commonly used in ser-
vice monitoring. Manually written rules often involve only
one or at most a few variables, so the volume of detections
becomes large as the number of variables runs into several
thousands. They do not take into account the unknown re-
lationships among the large set of variables, and as a result,
they tend to produce a large number of false positives. Also,
they do not handle changes in the service behavior over time.
We consider a machine learning-based approach to building
a detection system. Such an approach should process the
large volume of telemetry in a scalable manner to detect is-
sues, and present the user only the relevant subset of data
to look at in an easily interpretable form. It should au-
tomatically discover the unknown relationships among the
variables to reduce false positives. It should make use of
any domain knowledge available, such as the architecture of
the service, and any knowledge about patterns in individ-
ual variables that may be partial indicators of issues (e.g.,
spikes, step changes, trends, etc. in individual variables).
It should use minimal supervision for learning because in
practice there may not be a large number of past service
issues available as labeled examples, and getting labels is
expensive. Furthermore, many issues that should have been
detected can go undetected, so even apparently “issue-free”
data may not be so. Finally, although a fully automated
approach would be ideal, here we do not insist on it, as a
semi-automated one with semi-supervised learning is more
feasible and still highly valuable in practice.

We propose an approach that addresses the above require-
ments. The main idea is to build a hierarchical monitoring
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Figure 1: Summary of the service architecture, monitoring
infrastructure, and the various types of users involved.

system with several levels of detectors, with detectors in each
level taking the detector outputs of the previous level as in-
put. The lowest level (i.e., leaf nodes) detectors take raw
telemetry data as inputs. The system has the capability to
throw alerts at various levels. The hierarchical structure has
several advantages. (1) It helps in reducing the data dimen-
sionality progressively in the hierarchy so that at the higher
levels the data volume is low. At the lowest level, where the
data volume is highest, the computation is embarrassingly
parallel over the leaf nodes, which allows the approach to
scale to large data volume. (2) A detector’s output at a
given level can be interpreted by navigating the paths below
it to identify the small relevant subset of telemetry data at
the leaf nodes. (3) Domain knowledge about service archi-
tecture can be used to shape the hierarchy, while knowledge
about unusual patterns in individual variables can be used
to design the lowest level detectors. (4) It offers a mecha-
nism to reduce false positives as evidence for an issue can
be gathered by identifying relationships among variables at
each level. Low level detectors can be inaccurate as they
are built using individual variables and may only give a par-
tial indication of an issue. By combining these detectors via
their relationships, it becomes possible to build a more ac-
curate detector. (5) It requires minimal supervision. Note
that although our approach is general and can be applied
to different types of telemetry data, in this paper we focus
exclusively on time series data from performance counters.

1.1 Contributions

The main contributions of the paper are:

1. We propose a general framework for building a hier-
archical monitoring system that addresses the key re-
quirements of a service monitoring application, making
it broadly useful. It can be used with different types of
telemetry data sources to detect and diagnose service
issues.

2. We demonstrate a principled machine learning approach
to building a monitoring system using our framework.
The system is used to monitor Microsoft’s internal
distributed data storage and batch computing service
that consists of tens of thousands of machines.

3. We have built an end-to-end pipeline for running our
monitoring system, starting from telemetry data col-
lection from individual machines, all the way to a visu-
alization tool which service operators use to examine
the detection outputs of our system to quickly focus
on where the issues are.

4. We have deployed our system in production and present
results on detecting 19 customer impacting issues in
the past three months.

Outline: The rest of the paper is organized as follows: we
begin with a detailed description of our service monitoring
application in section 2. Section 3 gives an overview of our
solution approach and its deployment in production. Sec-
tion 4 describes the details of the machine learning tech-
niques we use. Section 5 presents the evaluation of our ap-
proach. We then discuss related work (section 7), and con-
clude with a discussion of possible extensions of our work
(section 8).

2. SERVICE MONITORING APPLICATION

The application we consider here is that of monitoring
Microsoft’s internal distributed data storage and batch com-
puting service. The service is built on several tens of thou-
sands of commodity machines providing fault-tolerant stor-
age and compute. It is used heavily by Microsoft’s product
groups for running distributed batch jobs on large scale data.

Figure 1 provides a high-level summary of the service and
its monitoring infrastructure. The service has a complex
architecture with many micro-services, components, sub-
components, and so on. Each of these report their own
telemetry. The complexity of the service architecture and
the volume of the telemetry necessitates automatic analysis
of the data.

Users of monitoring: On-Call Engineers (OCEs) monitor
for any issues with the service that need to be immediately
addressed to prevent customer impact. They also respond
to customer escalations about their jobs failing or executing
too slowly (possibly due to service issues), and suggesting
work-arounds to customers. Engineering teams who own
various components monitor their health and the effect of
any updates made to them. Both types of users need to
be alerted on any service issues in near-real time so that
corrective action can be taken quickly.

Telemetry: Performance counters measure quantities such
as CPU/memory/disk/network usage, latencies of service
operations, number of requests received, etc. at fixed in-
tervals (e.g., once every minute). Logs contain various text
messages that are generated as the service software executes
(e.g., status messages, error messages). FEvent streams are
symbolic sequences reporting discrete occurrences in the ser-
vice, e.g., “Job started”. The amount of telemetry is large,
e.g., the Storage Manager component by itself reports nearly
26000 counters. (Most of these are accounted by a few hun-
dred unique counters reported by multiple instances of the
component.)

Monitoring: As mentioned earlier, a common approach is
to use rules, written usually by component owners, to de-
tect issues. Rules are almost always defined on single per-
formance counters, e.g., If (latency > threshold), then throw
alert. Since one counter provides a limited view of the ser-
vice behavior, there may not be any threshold at which the
counter value separates genuine issues from false positives.
One is forced to pick a threshold that will detect the is-
sues, but will also result in a large number of false positives.
Service operators do not have the time to examine a large
number of alerts to pick out the few genuine ones, so the
issues are missed anyway. For example, in our application
a component team determined that the threshold value for



a single-counter rule that would be required to detect issues
of interest to them would generate more than 12000 alerts
over a four month period. This is simply too high a volume
relative to the manpower available.

Diagnostics: Once an issue is caught, an OCE or a compo-
nent owner needs to understand it to identify a mitigation
for the affected customer or apply a hotfix to the affected
component. The subset of performance counters relevant to
an issue is typically a small fraction of the full set. Cur-
rently OCEs and component owners use domain knowledge
and significant manual effort to find the right set of perfor-
mance counters to visualize. As a result, diagnostics is slow
and tedious, and prone to error without domain knowledge.
One powerful form of domain knowledge is to know how the
various performance counters can be grouped together, both
by the service component they belong to, and also by the
functionality of that component that they are most closely
associated with. Such knowledge helps the user identify the
relevant group of performance counters to look at and re-
duces the manual effort.

3. HIERARCHICAL MONITORING SYSTEM

We give an overview of our solution and then describe its
deployment in production.

3.1 Solution overview

We introduce the main ideas behind our learning algo-
rithm. For the purposes of this section, we will define a “de-
tector” abstractly as a function that outputs a scalar score
measuring how unusual its inputs are (higher score implies
more unusual). Applying the detector across time (e.g., in
a sliding window manner) results in a time series of scores.
Issue example: We begin with examples of service issues
we are interested in learning detectors for. Figure 2 shows
two issue examples ((a) and (b)) which manifest in perfor-
mance counters. In issue (a), two groups of performance
counters shown in blue (counters 1-3) and green (counters
4-6) for the same time interval behave unusually around -
axis value 2.5. (Here the groups were identified using domain
knowledge.) For issue (a), the blue group shows a spike and
the green group simultaneously shows a drop. For issue (b),
only the blue group shows a spike. So an issue appears as
unusual patterns in individual counter time series, but the
unusual pattern in any one counter by itself is not sufficient
to detect the issue (the same pattern may occur at non-
issue times also), resulting in high false positive rates for
single-counter detectors. Therefore it is necessary to dis-
cover groups of unusual patterns that characterize the issue
accurately.

Our algorithm (1) detects unusual patterns in counters,
(2) automatically discovers groups of related detectors from
a large set, and (3) combines the detectors within each group
to detect issues characterized by multiple simultaneous un-
usual patterns in that group. Detectors with similar score
time series are likely detecting the same underlying issues, so
grouping them together provides more evidence for detect-
ing them. For example, by grouping together detectors for
the blue counters in figure 2 and combining them, a detector
for issue (b) can be constructed.

To detect higher-order issues, such as issue (a) in figure 2
which involves two groups, one can iteratively apply the
same grouping and combining steps to build further levels
in the hierarchy:
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(b) Issue where only blue counter group is unusual

Figure 2: Examples of two different service issues involving
(a) two counter groups, denoted by blue and green, and (b)
only the blue counter group. The plots show the raw counter
time series data with time as x-axis and counter value as y-
axis. The issue interval is indicated by two vertical red lines.

e Grouping: At level ¢, find groups of related detectors
by the similarity of their score time series.

e Combining: For each group found in the previous
step, combine their scores to define a detector for level
1+ 1.

So, a detector at the i+ 1°¢ level is a group of i’ level detec-
tors which when simultaneously output high scores indicate
a higher level issue. For example, by grouping together the
detectors for the blue and green groups and combining them,
it becomes possible to build a detector that outputs a high
score for issue (a).

Note that our algorithm is unsupervised, i.e., it does not
use manually marked issue intervals in the counter time se-
ries to learn detectors. As a result, the algorithm may learn
detectors also for unusual patterns that do not correspond to
actual service issues. Such detectors will need to be removed
using manual analysis, but since the number of detectors is
small, this is not a difficult task.

Figure 3 provides a visual summary of how the algorithm
builds the hierarchy. We will refer to the circled numbers
in the figure to explain the steps. Consider an example
service with two components, A and B, each reporting its
own telemetry data consisting of counters, logs, and event
streams. (To save space, component B’s detectors are shown
in less detail than those of A.) Step 1 is the initialization
before the iterations begin. It applies a set of low-level de-
tectors to the raw telemetry data. These detectors will have
only a limited view of the service behavior, e.g., an anomaly
detector based on a single counter, or a small set of counters
within a sub-component. As explained, each detector out-
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Figure 3: Summary of the main steps of the proposed learn-
ing algorithm. Circled numbers refer to the different steps
which are explained in section 3.

puts a scalar score time series that measures how unusual
its inputs are across time.

As shown in the figure, the low-level detectors can take
different forms. Various time series anomaly detection al-
gorithms from the literature can be applied to the counter
time series. Alert rules written by service experts can also
be plugged in, allowing our approach to leverage the domain
knowledge encoded in such rules. Services invest heavily in
rule-based alerting before machine learning approaches are
adopted. We make direct use of that investment by com-
bining rules with ML, rather than treating them as mutu-
ally exclusive. Further detectors based on features extracted
from logs and event streams, e.g., frequent itemset mining
on event sequences, can also be plugged in, again allowing
us to build on the rich literature in this area.

The iterative part starts at Step 2 with the first grouping
operation applied, followed by the combining operation in
Step 3. Section 4 discusses the algorithmic details of both
of these operations. Once Step 3 is complete, the next-level
detectors are defined. At the lower levels of the hierarchy
the grouping and combining operations may be restricted
to be within a component or a sub-component, as shown
by the example in the figure where the second-level detec-
tors are within either component A or B. So the resulting
second-level detectors still have a narrow view of the service
behavior, but broader than the first-level detectors. Note
that alerts need not be generated only at the highest level
of the hierarchy. If needed, the lower-level detectors can also
be used to throw alerts, e.g., to produce alerts at a compo-
nent level, as shown in the figure.

Steps 4 and 5 show the next iteration of grouping and
combining. As the example shows, at this point detectors
across components are combined so that the unusual pat-
terns that require combining information from multiple com-
ponents can be detected. These two steps can be repeated to
learn detectors that have visibility across the entire service,
as shown in Step 6. As more levels are added, the complex-
ity of the detected unusual patterns increases, and we also
expect the detectors to become increasingly sparser in terms
of how frequently they output high scores.

3.2 Addressing the requirements

Scalability: By restricting the lowest level detectors to in-
dividual counters or small groups of counters, the learning
at the lower levels can be made embarassingly parallel. For
this reason we avoid joint analysis of a large set of counters
at the lowest levels. As further levels are added, the num-
ber of detector score time series to consider also drops, and
therefore information from across a large set of counters can
be efficiently combined at the higher levels. At the higher
levels, more expensive joint analysis algorithms can be ap-
plied without affecting scalability.

Irrelevant variables: By removing detectors that do not
fit into any group well in the grouping operation, irrelevant
counters and detectors are automatically removed.
Domain knowledge: Restricting the structure of the hi-
erarchy according to the service architecture and the choice
of the level at which to combine detectors across compo-
nent and sub-component boundaries are powerful ways to
incorporate domain knowledge about the service into the
detector. Use of rules as low-level detectors provides yet an-
other way.

Lack of labeled data: The algorithm does not require la-
beled examples to learn the detectors. Evaluating the qual-
ity of the detectors still requires labeling. Avoiding or re-
ducing that effort is an open research problem. Supervision
is also needed in removing any learned detectors that detect
unusual patterns which are not of use for monitoring service
health.

Interpretability: Once an alert is thrown at the highest
level, the user can trace through the hierarchy to find out
which branches contributed the most to the alert. This will
directly help identify the components and sub-components
involved in the issue.

4. MACHINE LEARNING ASPECTS

This section presents the details of our approach. As ex-
plained before, there are two main steps that are repeatedly
applied to build each level of the hierarchical detector: 1)
discover groups of related detectors from the previous level,
and 2) for each such group, combine the scores of its mem-
bers to compute a score for the group. We present specific
choices of algorithms for these two steps. Here we use sparse
structure estimation for Gaussian Graphical Model [17] with
Affinity Propagation [7] to discover groups of related detec-
tors, and use averaging of scores to compute the group score.
We also describe one choice for the low-level detector which
is designed to detect a change over time in the probability
distribution of a counter.

4.1 Sparse Structure Estimation

Consider a p-dimensional Gaussian random vector X =
(X1, ..., Xp) ~ N(u,2) with mean p, covariance matrix
¥, and precision matrix K = £7'. A Gaussian Graphical
Model (GGM) is an undirected graph g = (V, E) with a ver-
texset V = X1, ..., X, and an edge set E. The absence of an
edge between the vertices X; and X; denotes the conditional

independence P(X;, X;|X_¢; ;)) = P(Xa| X_i,5)) P(X;1X_(:,5))

where X_(; ;) denotes the set of all variables in X except X;
and X;. It can be shown that an edge (i,7) € E is absent if
and only if K;; = 0. This is because the conditional distribu-
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Since K is symmetric, K;; = Kj;. So if K;; =0, 3 becomes
a diagonal matrix and X; and X; become conditionally in-
dependent. Therefore the problem of estimating the graph
structure of the GGM can be turned into the problem of
estimating the non-zero entries of K.

One way to estimate the graph structure from data for the
special case of sparsely connected, high-dimensional GGMs
is presented by Meinshausen and Buhlmann [17]. This ap-
proach uses the fact that the distribution P(X;|X_;) is

Gaussian with mean E[XG|X_()] = -3, I;” X,. This is
a linear regression model with X; as the target variable, all

remaining variables X_ ;) as inputs, and 8;; = %f as the
regression coefficient for the input variable Xj. To identify
the non-zero entries of K, for each X;, learn the regression
coefficients f;; from data, and K;; # 0 whenever g;; # 0.

In particular, Meinshausen and Buhlmann propose using
squared loss with Li regularization to estimate the coeffi-
cients (popularly called Lasso [23]). Let’s denote the train-
ing data matrix as X, containing n independent samples of
X as the rows and the p variables as the columns. X is the
it" column of this matrix, and X_; is the matrix containing
the remaining columns. Let §; be the vector of regression
coefficients when the i*" variable is the target. The optimal
regression coefficient vector 3; is estimated as

* . 1
ﬂz‘ = argmlnﬁi EHXZ - X—LBLHg + )‘Hﬁl'll? (2)

where A is a parameter to control the relative contribution
of the L, regularizer to the objective function. Meinshausen
and Buhlmann show that the resulting algorithm is a con-
sistent estimator of the graph structure for the case of high
dimensional data (including p > n) and sparse graph (the
maximum number of edges for any vertex is O(n”) with
0 < k < 1). Both of these conditions are relevant for our
application — the dimensionality is high due to the large
number of performance counters, and the graph is sparse as
we expect only a small number of them to be conditionally
dependent on each other. So we expect the algorithm to be
well-suited for our application. Detailed theoretical results
for the algorithm can be found in [17].

In our implementation, for each detector i, we chose A to
be the largest value such that the squared error falls below
a fraction above the asymptotic squared error value.

The final output of the algorithm is a px p graph adjacency
matrix A such that A;; = 1 if the algorithm has determined
that there is an edge between X; and X, and 0 otherwise.
A;; is fixed to be 0 for all 7.

We apply the algorithm to the output scores of detectors.
In practice a detector score may follow a heavier-tailed dis-
tribution than a Gaussian, with the score at zero or near
zero most of the time and taking high values only during
an unusual event. In such a case, the average squared error
term in the Lasso objective function (equation 2) is domi-
nated by the prediction error on the high scores. As a result,
the algorithm tends to put edges between pairs of detectors
that give high scores simultaneously because they can sig-
nificantly reduce the average squared error.

4.2 Clustering with Affinity Propagation

Once the graph structure is estimated using the Lasso-
based algorithm, we want to find groups of detectors that
can be combined to form the next-level detectors in the hier-
archy. Our approach is to cluster the detectors based on the
graph structure such that densely connected subgraphs form
the detector groups. One way to achieve this is to use the
graph adjacency matrix as a (binary) similarity score ma-
trix between detector pairs in a clustering algorithm. The
output is a clustering of the detectors into different groups.

Here we use Affinity Propagation (AP) [7] for clustering.
Given a dataset of points and the pairwise similarities be-
tween points, AP selects a subset of them as “exemplars”,
one per cluster, to act as the representative point of each
cluster. The remaining points are assigned to one exem-
plar each, resulting in a partitioning of the dataset. The
exemplars and the assignments are selected to maximize the
sum of similarities between points and their exemplars. The
solution is found using a message passing algorithm.

Unlike k-means clustering, AP does not require pre-specifying
the number of clusters. Instead, it uses a “preference” pa-
rameter which controls the cost for a datapoint to be se-
lected as an exemplar. The more negative it is, the larger
clusters one gets. This parameter can be used to bias the
solution towards small/medium/large number of clusters. It
also provides a way to incorporate into the clustering domain
knowledge about particular data points that should be used
as exemplars.

4.3 Combining scores within a detector group

After detector groups are formed using affinity propaga-
tion, the scores of the detectors within a group need to be
combined to form a single score, which is the output of that
group. Here we use averaging, which keeps the group score
interpretable. One consequence of this choice is that the de-
tector group score at any level in the detector hierarchy is a
linear function of a subset of low-level detector scores.

Other functions can also be used to combine the scores,
including nonlinear and/or learned ones. For example, one
can use unsupervised learning algorithms such as One Class
Support Vector Machine [21] or Local Outlier Factor [3] to
learn a nonlinear combiner function. More generally, it can
be useful to jointly learn both the detector groups and the
combiner function applied to each group by optimizing a
single objective function, instead of treating them as two
disjoint steps.

4.4 Distribution change detection as a low-level
detector

Many issues affecting the service manifest as abrupt changes
in the probability distribution of counters (e.g., a jump in the
mean value of a counter). One choice for a low-level detector
is to find such changes in a single performance counter.

Let X (t) be a univariate counter time series which is gen-
erated by independently sampling at each discrete time step
from a distribution P(X;0) parametrized by 6. Consider
a time interval ¢ € [to,?1] in which a distributional change
occurs at time t. such that X ~ P(X;60 = 0y) for ¢ € [to, t.)
and X ~ P(X;0 = 6,) for t € [tc,t1]. tc can be estimated as
the candidate changepoint ¢, € (o, t1) at which the distribu-
tion estimated from samples in [to, to) is maximally different
(according to a chosen dissimilarity function) from the dis-
tribution estimated from samples in [tq, t1]. If the maximum



dissimilarity is above a threshold, then the detector reports
a change in distribution.

We use Poisson distribution for P(X; 6) for count variables
and Squared Hellinger distance to compute the distance be-
tween two distributions P and Q). For Poisson-distributed
P and @ with parameters A\p and \q, respectively, Squared
Hellinger distance is

D*(P,Q) =1 —exp(—5 F VAQ)®) ®3)

where p is a scaling parameter. The advantages of this dis-
tance are: 1) it is a function of the change in mean between
P and Q, which makes its detection results more visually
interpretable, and 2) it produces a score normalized to the
interval [0, 1], which is needed when combining detectors to
form groups. We use an interval size of 12 hours.

To estimate detection quality, we manually evaluated a
set of detections. We selected ten counters belonging to five
different types of counters (two of each type) and evaluated
the ten time intervals over a period of six months which
gives the highest change detection score. We found that the
precision was 95%.

Setting p: The p parameter in the Squared Hellinger dis-
tance expression above is set such that the detector score
saturates at 1 for only a small percentage of time during a
six month period, ensuring that the detector stays within its
dynamic range most of the time. This percentage is set to
0.1% for all counters. As a result, the appropriate value of
p for each counter can be estimated automatically from the
data.

Alternative approaches: Other choices for the paramet-
ric form of the distribution, such as Pareto, Exponential,
Log-Normal, etc., can be also be tried. Counters with heavy-
tailed distributions are more common in our application, so
we expect distributions such as Pareto to be more useful.
One can also attempt to automatically identify the best-
fitting distribution type for a counter; we leave this as future
work. Instead of assuming a parametric form for the counter
distribution, one can also use non-parametric two-sample
tests such as Kolmogorov-Smirnov test and Maximum Mean
Discrepancy [11], or non-parametric change detection using
exchangeability Martingales [12].

5. RESULTS

To illustrate the effective working of the various principles
underlying our hierarchical monitoring system, we use the
data collected from 11 wolumes (instances of the Storage
Manager component of the service), each of which serves the
same functionality. Each volume has 75 counter time series.
The change detection algorithm described in section 4.4 is
applied on each of the counter time series to form 75 low level
detector time series. The hierarchical approach was applied
on these to form several detectors at the mid level; a second
iteration yields one high level detector. The grouping of the
low level detectors to form the mid level detectors is done in
one of two ways: (a) Manual - where an expert identified the
grouping at a broad level; and (b) Auto - where the Lasso
algorithm combined with AP clustering was applied to get
the grouping. The manual approach was mainly included to
provide a strong baseline for evaluating Auto.

The results are grouped in three parts. (1) First we illus-
trate the working of the structure discovery process and its
effectiveness in bringing about sparsity and removal of ir-

relevant variables, thus leading to manageability. (2) Then
we show how the hierarchical monitoring process leads to
a reduction of manual effort via reduction of false positives
while retaining alert quality. (3) We quantify this via suit-
ably chosen plots that relate alert quality and manual effort
and evaluate the detectors at various levels.

Effectiveness of structure discovery: Figure 4 shows re-
sults associated with the formation of the mid level detectors
for one volume. The top left gray scale image describes the
weights obtained by the Lasso algorithm. Each row (i-th)
corresponds to the Lasso weights associated with the pre-
diction model for the i-th variable. Pure black pixels indi-
cate zero weights while gray pixels indicate non-zero weights;
as the weight magnitude becomes larger, the pixel becomes
more white. It is clear that the solution is very sparse - only
a minimal set of important variables are picked up for pre-
dicting each variable. The top right plot is the same gray
scale image with the variables re-ordered to show the group-
ings formed by the AP clustering algorithm. The diagonal
blocks shown in red or blue describe the groupings.

Note that the AP algorithm is not perfect (it leaves out
several good white pixels from the diagonal blocks), which
is expected of any soft clustering algorithm. Since the total
number of white pixels in the image is small, an alternative
to the AP algorithm is to take each white pixel and define a
grouping with just the two variables defining the pixel. This
means that the groupings can have an intersection, which is
quite fine. In general, finding overlapping clusterings may
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Figure 4: Illustration of the effectiveness of structure discovery
(Lasso and AP clustering). See text for details.



be a good idea for avoiding information loss. We will explore
these ideas in future work.

It is useful to note from the top right image of Figure 4
that the last 20 variables do not involve any white pixel.
This confirms the ability of our method to separate out vari-
ables that do not form any grouping with other variables.
While it is usually the case that most of these variables are
actually irrelevant, some of them could still be useful; such
variables could be identified via supervision - either direct
manual specification, or, via supervised learning using data
that contains time windows containing issues in the system.

Figure 4(c) shows the low level detector time series (left
side plots) and their corresponding raw time series (right
side plots) corresponding to a selected subset of three of
the eight variables that define the top, red diagonal block
of the image in Figure 4(b). In the top two sets of plots in
Figure 4(c) one can see that the raw time series of those two
variables are quite different, but their detector time series
are very close. Thus, as recommended by our method, it is
always better to use the detector time series and avoid using
the raw time series, at the low level.

The bottom variable in Figure 4(c) has an interesting raw
time series with great jumpiness. The distribution detection
algorithm is quite effective and leads to a detector with only
a small number of high peaks. Thus, this is a case in which
the low level detector itself is useful. The other variables
of the red block of Figure 4(b) have high peaks that are
decently matched with those of the bottom variable - this is
the good effect caused by Lasso. It turns out that the mid
level detector formed by the red block is even better than
the bottom variable in terms of restricting the firings to an
even smaller set.

Reduction of manual effort while retaining alert qual-
ity: Figure 5 plots the detector time series at the three levels
of the hierarchy. The time interval between the two vertical
red lines denotes an interval where an issue occurred. For
illustration we use a fixed threshold of 0.5 on each detec-
tor to define its firing. (Even if the thresholds are changed,
the conclusions given below remain nearly the same.) Each
firing leads to an alert that adds to the manual effort to
investigate and resolve it. Clearly, the number of firings re-
duces significantly as we move up the hierarchy, and becomes
manageably very small - just two - at the high level. These
firings also lie in the red interval, thus neatly detecting the
issue. It is important to note that this does not mean that
firings at the lower levels are unimportant. For example, if
we look at the third variable in the mid level, it fires several
times around time=150. Other mid level detectors do not
fire around the same time, and so the high level detector
does not fire here. But it is quite possible that the firings of
this variable is indicative of an issue with a mid level compo-
nent. As pointed out earlier, such firings at lower levels can
be determined as important using appropriate supervised
learning.

Evaluation of alert quality and manual effort at var-
ious levels: Figure 6 plots various quantities accumulated
over all 11 volumes of the platform. Here, #Firings is the
number of times a specified threshold is crossed. Human
experts labeled 19 issues in the 11 volumes by locating time
intervals where issues occurred in the system. A detector is
said to successfully identify an issue if it fires within that
issue’s time interval. We define Recall as the fraction of the
set of 19 issues identified by a detector. The figure compares
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Figure 5: Reduction of the number of firings along levels of the
hierarchy. See text for details.
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Figure 6: Performance of the hierarchical approach. See text for
details.

the performance of detectors at the low (blue), mid (red) and
high (green) levels. Ratio refers to the ratio of the number
of firings of mid or high level to that of the low level; thus,
numbers much smaller than 1 indicate much better manage-
ability compared to the low level. The top plots of Figure 6
show the behavior of #Firings against Recall - each curve
is drawn by decreasing the threshold of each detector from
a large value to a small value. The curves for the Auto and
Manual methods are shown respectively as continuous and
dotted lines. The plots in the middle row show the varia-
tion of Ratio as a function of Recall. Note the use of log
scale in the vertical axes of these plots. In all these plots,
lower a curve is, the better it is in terms of manageability: a
specified recall can be achieved with lesser number of firings.

We can draw the following conclusions. (a) The mid level
detectors are overall better than the low level detectors in
reducing #Firings, equal in some places and much better in
other places. (b) The high level detector is clearly superior
to the low and mid level detectors. To get a quantification,
(i) horizontal lines are drawn at #Firings=10? to get a feel
for improvements in Recall for a specified number of firings
(fixed amount of inspection time for the system’s operators);
and (ii) vertical lines are drawn at Recall=0.6 to get an idea
of the reduction in #Firings at the same Recall.

The bottom row of plots compares Auto and Manual sep-
arately at the Mid level (left plot) and the High level (right
plot). While the two methods are close at the mid level,
Auto is overall much better than Manual at the High level.
This is a clear indication of the effectiveness of the automatic
method defined by Lasso and AP clustering.

6. DEPLOYED SYSTEM

This section explains the training pipeline and the real-
time detection service we have implemented to deploy our
solution in production (fig. 7). Performance counters are
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Figure 7: Summary of the training pipeline and real-time
detection service for deploying our solution in production.

constantly updated on every machine; however, since there
are tens of thousands of machines, these raw counters must
be aggregated across time and various machine types for
any viable real-time health assessment. Our counter aggre-
gation service generates standard aggregate values such as
sum, min, max, and average at specified time intervals (e.g.,
once per minute). These aggregates are stored in a central
database for up to 15 days for real-time querying. Addi-
tionally, this data is archived in separate historical counter
storage for one year for any offline analysis.

Training Pipeline: The counter data in historical counter
storage form the input to the offline learning of the hier-
archical detector. A list of past service issues are used for
evaluation. The output is a hierarchical detector.
Real-time detection: The goal of our detection service is
to detect anomalies as soon as they occur. To achieve this,
the service executes the following every 15 minutes:

1. It queries the central database for most recent twelve
hours of counter data.

2. The Distributed Analysis module then applies the learned

detector (output by the training pipeline) on the coun-
ters. The results computed by the detector are used
to give health assessments for various components of
the service being monitored.

3. Results for each component are sent to the Unified
Results Manager, which in turn sends alert decisions
to the Centralized Alert Service.

4. Centralized Alert Service sends alerts to relevant stake-
holders.

Unified Results Manager: Acting as a bridge between
the Distributed Analysis module and the Centralized Alert
Service as shown in figure 7, this module groups the detector
results, suppresses frequent alert fires, and sends summary
reports. Additionally, it sends the detector results to visu-
alization tools used by engineers to debug service issues.
Honoring real-time expectations: To honor real-time
expectations, our process must complete in fifteen minutes
or less. This necessitates the implementation to be scal-
able for both data access (querying the central DB) and
processing (computing detector results). Our service imple-
ments a distributed architecture to achieve scale-out with
components communicating with each other using industry
standard REST Protocol.

Interactive Monitoring Tool: We have built a tool for
visualizing the health of the system, the components and
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the sub-components in a hierarchical fashion. See Figure 8.
The health information is colour coded with colours ranging
from green (good health) to red (bad health). The health
color information of any node in the hierarchy encodes the
aggregated health score computed from the detectors feed-
ing to the node. The health of a higher level component is
computed as a weighted combination of the preceding level
lower components and, weights are assigned according to
the severity of issues that arise in different components. For
example, data loss could be a more serious issue than de-
lay in job execution. Users can monitor the health of any
component and navigate down (e.g., to counter level details
and views) as they see degrading health or unhealthy signs.
As users navigate down, lower level health information (e.g.,
response health, load health, disk access health) get exposed.
For example, response health can be computed using alerts
signalled through unusual delays in responses (as measured
through latency counters). Thus, navigating through a path
gives a complete of view of the issues and the components
involved in producing the unhealthy state of a higher level
component. Furthermore, users can mark patterns or events
to detect as they find changing behaviors during their inves-
tigation process. Detectors for such patterns get added to
the system subsequently. Similarly, users can provide feed-
back when any harmless unusual patterns get detected, as
such patterns falsely score a healthy state as unhealthy. Such
labels can be used to adapt the machine learning models.

7. RELATED WORK

The literature in the area of service monitoring and di-
agnosis can be classified into two categories. Due to space
limitation, we briefly discuss a few representative works from
each of these categories. The first category covers applica-
tion oriented works that consider one or more application
scenarios (e.g., data centers, internet sites, online services)
and develop some heuristics and/or data mining based ap-
proaches to solve a selected set of problems. Bodik et al. [2]
propose the identification of finger prints that characterize
different faulty states of data centers and use such finger

prints to classify and identify performance crises quickly.
Chen et al. [6] suggest a decision tree based approach to de-
tect failures in large Internet sites such as eBay. Gabel et
al. [10] present an unsupervised approach to detect faulty
machines by comparing machines that perform the same
task. Lin et al. [13] propose a hierarchical approach to clus-
ter alerts and incident tickets using text content in large
scale enterprise IT infrastructure scenarios. Chen et al. [5]
present a subspace modelling approach that discovers a map-
ping between workloads and system internal measurements
and use this mapping to detect system failures even under
varying workload conditions. Fu et al. [§] study the problem
of identifying performance issue metrics (e.g., access delay
in databases) given a large collection of system metrics for
an online services system. Roy et al. [20] describe an auto-
mated system for mining service logs to identify anomalies.
Lou et al. [15] present a software analytics approach to im-
plement an incident management system that investigates
faulty incidents and suggest actions to take. To the best
of our knowledge, none of the works develop a principled
hierarchical monitoring system that can (a) handle high di-
mensional time series data, and (b) take system architecture
and experts domain knowledge into account.

The second category covers methods that solve more prim-

itive problems such as discovering patterns or detecting anoma-

lies in time series data, text logs and event streams. Fu
et al. [9] and Lou et al. [14] develop data mining based
approaches to detect anomalies in job execution log files.
Liang et al. [22] address the problem of generating system
events from logs, with the resulting event streams subse-
quently used to detect anomalies using techniques such as
finite state automaton or frequent item-set mining. Luo
et al. [16] suggest to find correlation between time series
and event data, and show how such discovered correlations
help in the incident diagnosis process. The problem of de-
tecting anomalies in multivariate time series has been stud-
ied by several researchers [4, 19]. Qiu et al. [19] propose
a Lasso based approach to discover dependency structure
among variables and detect anomalies in high dimensional
time series data. Chandola et al. [4] suggest a sub-space
based approach to convert multivariate time series to uni-
variate time series and use that to detect anomalies. Dis-
covering Motifs or shapelets and detecting rare occurrences
of them in time series data have been other related areas
of research [1, 18]. All these approaches are relevant to our
work from the viewpoint of building low level detectors in
our hierarchical monitoring system.

8. DISCUSSION & CONCLUSION

In this paper we have proposed a principled hierarchical
approach that scales well to service monitoring applications
having large amounts of telemetry data. This approach has
been successfully deployed for monitoring a large distributed
computing platform.

We briefly cover several important aspects of the system
that have possible extensions.

(1) Low level detectors: They broadly belong to three
categories: (a) general purpose (e.g., change detection meth-
ods, nearest neighbor based local outlier detectors), (b) stan-
dard patterns (e.g., frequently occurring spikes, bursts, trends)
and (c) user-specified patterns or rules that are specified
through a tool. While the first two categories of detec-
tors and using expert rules as detectors are reasonably well-



understood, identification and detection of newer patterns
can be semi-automated through a motif discovery process [18]
and experts suggesting patterns to detect.

(2) Structure discovery models: While our current im-
plementation uses linear models based on the Gaussian as-
sumption, improvements through non-linear and non-Gaussian
models are possible. At each level, our method forms non-
overlapping groups of variables. Modifying it to allow over-
lapping groups is easy and can be useful too.

(3) Learning: The learning process can be made more
powerful and sophisticated. Our current system is unsu-
pervised. But supervision data usually comes in as specific
issues (e.g., machine overload or data loss) get identified by
users. Weighted combinations of detectors at various levels
can be set up to detect the issues. The supervision data can
be used to adjust these weights as well as guide the structure
discovery process. In essence, semi-supervised learning can
become an important aspect over time. This set up has the
potential to pick up important lower level detectors that are
useful for detecting issues; see also the discussions in sec-
tion 5.

(4) Interaction: Human interaction is useful to improve
the quality of machine learning solutions. For example, ex-
perts can interact with the system to remove some variables
from groups during the structure discovery process.
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