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Abstract

We present a novel approach to probabilistic time series forecasting that combines
state space models with deep learning. By parametrizing a per-time-series lin-
ear state space model with a jointly-learned recurrent neural network, our method
retains desired properties of state space models such as data efficiency and inter-
pretability, while making use of the ability to learn complex patterns from raw data
offered by deep learning approaches. Our method scales gracefully from regimes
where little training data is available to regimes where data from large collection
of time series can be leveraged to learn accurate models. We provide qualitative
as well as quantitative results with the proposed method, showing that it compares
favorably to the state-of-the-art.

1 Introduction

Time series forecasting is a key component in many industrial and business decision processes. A
typical example of such tasks is demand forecasting: accurate and up-to-date models are fundamen-
tal to successful inventory planning and minimization of operational costs.

State space models [8, 13, 23] (SSMs) provide a principled framework for modeling and learning
time series patterns such as trend and seasonality. Prominent examples include ARIMA models
[4, 8] and exponential smoothing [13]. SSMs are particularly well-suited for applications where the
structure of the time series is well-understood, as they allow for the incorporation of structural as-
sumptions into the model. This allows for the model to be interpretable and the associated learning
procedure to be data efficient, but it requires time series with enough history. In modern forecast-
ing applications with large and diverse time series corpora, SSMs require prohibitively labor- and
compute-intensive tasks such as model and covariate selection. Further, traditional SSMs cannot
infer shared patterns from a dataset of similar time series, as they are fitted on each time series
separately. This makes creating forecasts for time series with little or no history challenging.

Deep neural networks [12, 25, 26] offer an alternative. With their capability to extract higher order
features, they can identify complex patterns within and across time series, and can do so from
datasets of raw time series with considerably less human effort [9, 27, 19]. However, as these models
make fewer structural assumptions, they typically require larger training datasets to learn accurate
models. Additionally, these models are difficult to interpret and—often more importantly—make it
difficult to enforce assumptions such as temporal smoothness.

In this paper we propose to bridge the gap between these two approaches by fusing SSMs with deep
(recurrent) neural networks. We present a forecasting method that parametrizes a particular linear
SSM using a recurrent neural network (RNN). The parameters of the RNN are learned jointly from
a dataset of raw time series and associated covariates, allowing the model to automatically extract
features and learn complex temporal patterns. At the same time, as each individual time series
is modeled using an SSM, we can enforce and exploit assumptions such as temporal smoothness.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



Furthermore our method is interpretable, in the sense that the SSM parameters for each individual
time series can be inspected (and even changed if necessary). By incorporating prior structural
assumptions, the presented method scales from small to large data regimes seamlessly. When there
is little data to learn from, the structure imposed by the SSM can alleviate overfitting.

The rest of the paper is organized as follows. We first discuss related work in Section 2 and then
review the general state space approach to time series forecasting in Section 3. In Section 4, we
present our joint forecasting model and describe the training and inference procedure. In Section 5,
we first do a qualitative analysis of our method and then present quantitative comparison against the
state-of-the-art. We conclude in Section 6.

2 Related work

Hyndman et al. [13] and Durbin and Koopman [8] provide comprehensive overviews of SSMs. Re-
cent work in the machine learning literature on linear state-space models includes [23, 22]. We
follow [13] in their approach to use linear state space models. The assumption of linear dynam-
ics consisting of interpretable components (level/trend/seasonality) makes the forecasts robust and
understandable. Note that non-linear effects can still be captured via exogenous variables. In the
forecasting context, non-linearities are typically associated with interventions such as promotions,
so this assumption is practically reasonable.

Combining state-space models (SSM) with RNNs has been proposed before, through either or both
of the following: (i) extending the Gaussian emission to complex likelihood models; (ii) making the
transition equation non-linear via a multi-layer perceptron (MLP) or interlacing SSM with transi-
tion matrices temporally specified by RNNs. The so-called Deep Markov Model (DMM) proposed
by [18, 17] keeps the Gaussian transition dynamics with mean and covariance matrix parameterized
by MLPs. Stochastic RNNs [10] explicitly incorporate the deterministic dynamics from RNNs by
interlacing them with an SSM while the dynamics of RNNs do not depend on latent variables. Com-
pared to DMM, the difference is the added information from the deterministic state of RNNs. An
alternative way to make the transition equation non-linear is to cut the ties between the latent states
lt’s and associate them with deterministic states ht of RNN. In this way, the transition from lt�1

to lt is non-linearly determined by the RNN and the observation model. Chung et al. [7] first pro-
posed such Variational RNNs. They were later used in Latent LSTM Allocation [29] and State-Space

LSTM [30]. [15] discusses unsupervised learning of state space models from sequential data.

Arguably the most relevant to our work is [11], which aims to keep the linear Gaussian transition
structure intact so that the highly efficient Kalman filter/smoother is applicable. The non-linear
behavior is approximated by locally linear transition matrices. The so-called called Kalman Vari-

ational Auto-Encoder (KVAE) disentangles the observations (emissions) and the latent dynamics
(transitions) with VAE. By making the locally linear part outside of the standard inference routine
and using a fully factorized Gaussian “decoder,” Kalman smoothing can be readily applied. A sim-
ilar idea appeared in [14] where a recognition network is used to output conjugate graphical model
potentials so that efficient structural inference is feasible. Our model differs from [11] in that instead
of using an RNN to specify the linear combination of a fixed set of K parameters, we directly use
RNNs to output the SSM parameters, eliminating the need to tune additional hyper-parameters.

3 Background

The general probabilistic forecasting problem is the following. Let N be a set of univariate time
series {z(i)

1:Ti
}Ni=1

, where z(i)
1:Ti

= (z(i)
1

, z(i)
2

, . . . , z(i)Ti
) and z(i)t 2 R denotes the value of the i-th time

series at time t.1 Further, let {x(i)
1:Ti+⌧}Ni=1

be a set of associated, time-varying covariate vectors
with x

(i)
t 2 RD. Our goal is to produce a set of probabilistic forecasts, i.e. for each i = 1, . . . , N

we are interested in the probability distribution of future trajectories z(i)Ti+1:Ti+⌧ given the past:

p
⇣

z(i)Ti+1:Ti+⌧

�

�

�

z(i)
1:Ti

,x(i)
1:Ti+⌧ ;�

⌘

. (1)

1We consider time series where the the time points are equally spaced, but the units are arbitrary (e.g. hours,
days, months). Further, the time series do not have to be aligned, i.e., the starting point t = 1 can refer to a
different absolute time point for different time series i.
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Here � denotes the set of learnable parameters of the model, which are shared between and learned
jointly from all N time series. For any given i, we refer to time series z(i)

1:Ti
as target time series, to

time range {1, 2, . . . , Ti} as training range, and to time {Ti + 1, Ti + 2, . . . , Ti + ⌧} as prediction

range. The time point Ti+1 is referred to as forecast start time and ⌧ 2 N>0

is the forecast horizon.
Note that we assume that the covariate vectors x(i)

t are given also in the prediction range.

We make the common simplifying assumption that the time series are independent of each other
when conditioned on the associated covariates x(i)

1:Ti
and the parameters �. However, in constrast to

many related methods that make this assumption, in our approach the model parameters� are shared
between all time series. So while this assumption precludes us from modeling correlations between
time series, it does not mean that the proposed model is not able to share statistical strength between
and learn patterns across the different time series, as we are learning the parameters � jointly from
all time series.

State Space Models. SSMs model the temporal structure of the data via a latent state lt 2 RL

that can be used to encode time series components such as level, trend, and seasonality patterns.
In the forecasting setting they are typically applied to individual times series (though multivariate
exensions with multi-dimensional targets exist). For this reason, we will drop the superscript i from
the notation in this section. A general SSM is described by the so-called state-transition equation,
defining the stochastic transition dynamics p(lt|lt�1

) by which the latent state evolves over time,
and an observation model specifying the conditional probability p(zt|lt) of observations given the
latent state.

We consider linear state space models where the transition equation takes the form

lt = F tlt�1

+ gt"t, "t ⇠ N (0, 1). (2)

Here at time t, the latent state lt�1

maintains information about level, trend, and seasonality pat-
terns and evolves by way of a deterministic transition matrix F t and a random innovation gt"t.
The structure of the transition matrix F t and innovation strength gt determine which kind of time
series patterns are encoded by the latent state lt (see [13] or [22] for details on possible structures;
Appendix A.1 contains two example instantiations).

The probabilistic observation model then describes how the observations are generated from the
latent state lt. Here we consider a univariate Gaussian observation model of the form

zt = yt + �t✏t, yt = a>
t lt�1

+ bt, ✏t ⇠ N (0, 1), (3)

where at 2 RL, �t 2 R>0

and bt 2 R are further (time-varying) parameters of the model. Finally,
the initial state l

0

is assumed to follow an isotropic Gaussian distribution, l
0

⇠ N(µ
0

, diag(�2

0

)).

Parameter learning. The state space model is fully specified by the parameters
⇥t = (µ

0

,⌃
0

,F t, gt,at, bt,�t), 8t > 0. In the classical setting the dynamics are assumed to
be time-invariant, that is ⇥t = ⇥, 8t > 0. One generic way of estimating them is by maximizing
the marginal likelihood, i.e., ⇥⇤

1:T = argmax

⇥1:T
pSS(z1:T |⇥1:T ), where

pSS(z1:T |⇥1:T ) := p(z
1

|⇥
1

)

T
Y

t=2

p(zt|z1:t�1

,⇥
1:t) =

Z

p(l
0

)

"

T
Y

t=1

p(zt|lt)p(lt|lt�1

)

#

dl
0:T (4)

denotes the marginal probability of the observations z
1:T given the parameters ⇥ under the state

space model, integrating out the latent state lt. In the linear-Gaussian case considered here, the
required integrals are analytically tractable.

Note that in the classical setting, if there is more than one time series, a separate set of parameters
⇥

(i) is learned for each time series z(i)
1:Ti

independently. This has the disadvantage that no informa-
tion is shared across different time series, making it challenging to apply this approach to time series
with limited historical data or high noise levels.

4 Deep State Space Models

Instead of learning the state space parameters⇥(i) for each time series independently, our forecasting
model instead learns a globally shared mapping from the covariate vectors x(i)

1:Ti
associated with each

3



x

(i)
1

. . .
x

(i)
t

. . .
x

(i)
Ti

features

z(i)1:Ti
observations

h

(i)
1

. . .
h

(i)
t

. . .
h

(i)
Ti

recurrent network

⇥(i)
1

. . . ⇥(i)
t

. . . ⇥(i)
Ti

state space parameters

pSS(z
(i)
1:Ti

|⇥(i)
1:Ti

) likelihood

Figure 1: Summary of the model. During training, the inputs to the network are the features x(i)
t as

well as the previous network output h(i)
t�1

at each time step t in the training range {1, 2, . . . , Ti}. The
network output h(i)

t = h(h(i)
t�1

,x(i)
t ,�) is then used to compute the parameters of the state space

model ⇥(i)
t after mapping it to the corresponding ranges of the parameters. Given the time series

observations z(i)
1:Ti

in the training range, the likelihood of the state space parameters ⇥(i)
1:Ti

(which
are functions of the shared network parameters �) are computed according to Eq. 4. The shared
network parameters � are then learned by maximizing the likelihood.

target time series z(i)
1:Ti

, to the (time-varying) parameters ⇥(i)
t of a linear state space model for the

i-th time series. This mapping,

⇥

(i)
t =  (x

(i)
1:t,�), i = 1, . . . , N, t = 1, . . . , Ti + ⌧, (5)

is a function of the entire covariate time series x(i)
1:t up to (and including) time t, as well as a set of

shared parameters �. Then, given the features x(i)
1:T and the parameters �, under our model, the data

z(i)
1:Ti

is distributed according to

p(z(i)
1:Ti

|x(i)
1:Ti

,�) = pSS(z
(i)
1:Ti

|⇥(i)
1:Ti

), i = 1, . . . , N. (6)

where pSS denotes the marginal likelihood under a linear state space model as defined in Eq. 4,
given its (time-varying) parameters ⇥(i)

t .

We parameterize the mapping  from covariates to state space model parameters using a deep
recurrent neural network (RNN). Figure 1 shows a sketch of the overall model structure, unrolled for
all the time steps in the training range. Given the covariates2

x

(i)
t associated with time series z(i)t , a

multi-layer recurrent neural network with LSTM cells and parameters � computes a representation
of the features via a recurrent function h,

h

(i)
t = h(h(i)

t�1

,x(i)
t ,�).

The real-valued output vector of the last LSTM layer is then mapped to the parameters ⇥(i)
t of the

state space model, by applying affine mappings followed by suitable elementwise transformations
constraining the parameters to appropriate ranges (see Appendix A.2). Parameters⇥(i)

t are then used
to compute the likelihood of the given observations z(i)t , which is used for learning of the network
parameters �.

4.1 Training

The model parameters� are learned by maximizing the probability of observing the data
n

z(i)
1:Ti

oN

i=1

in the training range, i.e., by maximizing the (log-)likelihood: �?
= argmax

�

L(�), where

L(�) =
N
X

i=1

log p
⇣

z(i)
1:Ti

�

�

�

x

(i)
1:Ti

,�
⌘

=

N
X

i=1

log pSS

⇣

z(i)
1:Ti

�

�

�

⇥

(i)
1:Ti

⌘

. (7)

2The covariates (features) can be time dependent (e.g. product price or a set of dummy variables indicating
day-of-week) or time independent (e.g., product brand, category etc.).
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Figure 2: Illustration of the how the model is used to make forecasts after the network parameters
� are learned. Given a time series z(i)

1:Ti
in the training range {1, 2, . . . , Ti} (not necessarily in the

training set) and associated features x

(i)
1:Ti+⌧ for both training and prediction ranges, forecasts are

produced as follows: (i) first the posterior of the latent state p(lTi |z1:Ti) for the last time step Ti in
the training range is computed using the observations z(i)

1:Ti
and the state space parameters ⇥(i)

1:Ti
ob-

tained by unrolling the RNN network in the training range; (ii) given the posterior of the latent state
p(lTi |z1:Ti), prediction samples are generated by recursively applying the transition equation and
the observation model (Eq. 8) where the state space parameters for the prediction range ⇥(i)

Ti+1:Ti+⌧
are obtained by unrolling the RNN in the prediction range.

We can view each summand of L(�) in Eq. 7 as a (negative) loss function, that measures compatibil-
ity between the state space model parameters ⇥(i)

1:Ti
produced by the RNN when given input x(i)

1:Ti
,

and the true observations z(i)
1:Ti

. Each of these terms is a standard likelihood computation under
linear-Gaussian state space model, which can be carried out efficiently via Kalman filtering (see e.g.
[3, Sec. 24.3] or [22, Appendix A] for details): this involves mainly matrix-matrix and matrix-vector
multiplications, which allows us to implement the overall log-likelihood computation using a neural
network framework (MXNet), and use automatic differentiation to obtain gradients with respect to
the parameters �, which are then used by a stochastic gradient descent-based optimization proce-
dure. Note that a forward pass of our network to compute the loss (i.e., negative log-likelihood)
essentially uses the same basic primitives as that of classical methods that learn parameters per time
series independently. Thus, one can, in principle, extend our ideas to other instances of state space
models by simply redefining their parameters as the outputs of the RNN.

4.2 Prediction

Once the network parameters � are learned, we can use them to address our original problem spec-
ified in Eq. 1, i.e., to make probabilistic forecasts for each given time series. Given �, we can
compute the joint distribution over the prediction range for each time series analytically, as this joint
distribution is a multivariate Gaussian. However, in practice it is often more convenient to represent
the forecast distribution in terms of K Monte Carlo samples,

ẑ(i)k,Ti+1:Ti+⌧ ⇠ p(z(i)Ti+1:Ti+⌧ |z
(i)
1:Ti

,x(i)
1:Ti+⌧ ,⇥

(i)
1:Ti+⌧ ), k = 1, . . . ,K.

In order to generate prediction samples from a state space model, one first computes the posterior of
the latent state p(lT |z1:T ) for the last time step T in the training range, and then recursively applies
the transition equation and the observation model to generate prediction samples. More precisely,
starting with sample `T ⇠ p(`T |z1:T ), we recursively apply

yT+t = a>
T+t`T+t�1

+ bT+t, t = 1, . . . ⌧, (8a)
ẑT+t = yT+t + �t✏t, ✏T+t ⇠ N (0, 1), t = 1, . . . ⌧, (8b)
lT+t ⇠ F T+t`T+t�1

+ gT+t"T+t, "T+t ⇠ N (0, 1), t = 1, . . . ⌧ � 1. (8c)

In our case, we compute the posterior p(l(i)Ti
|z(i)

1:Ti
) for each of the time series z(i)

1:Ti
by unrolling the

RNN network in the training range to obtain ⇥(i)
1:Ti

as shown in Figure 2, and then using the Kalman
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filtering algorithm. Next, we unroll the RNN for the prediction range t = Ti + 1, . . . , Ti + ⌧ and
obtain⇥(i)

Ti+1:Ti+⌧ , then generate the prediction samples by recursively applying above equations K
times.3

Remarks. Note that in our model, in contrast to classical and deep learning-based auto-regressive
models (e.g. DeepAR [9]), target values are not used as inputs directly. This is a key feature of
our method, and brings several advantages: (i) It makes the model more robust to noise, as target
values are only incorporated through the likelihood term, where noise is properly accounted for;
(ii) Missing target values can easily be handled by simply dropping the corresponding likelihood
terms; (iii) Forecast sample path generation is computationally more efficient, as the RNN needs
to be unrolled only once for the entire prediction (independent of the number of samples), whereas
auto-regressive models (e.g. [9, 26]) have to be unrolled for each sample.

5 Experiments

Qualitative experiments. In our first experiment, we test whether our model effectively recovers
the state space parameters if trained on synthetic data. For this, we generate five groups of time
series from day-of-week seasonality model (see Appendix A.1) but with different initial states and
innovation parameters per group. For simplicity, we use the same observation noise �t for all time
series. Each time series consists of six weeks of daily data and we use the first four weeks of all
time series for training our model. We use a group identifier as an input feature. In the ideal case,
for each time series the model should output the parameters of the state space model from which
this time series was generated.

The state space model parameters in this case are given by ⇥(i)
t = (µ(i)

0

,�(i)
0

, �(i)
t ,�(i)

t ), t =

1, . . . , Ti + ⌧ , where Ti = 28, 8i and ⌧ = 14. Note that except for �(i)
t , all the other parameters

are different for each group. We encode the day-of-week seasonality using seven components of the
latent state as in [22], i.e., L = 7 and µ

0

2 R7 (each component corresponds to a different day of
the week). For simplicity, we fix the term b(i)t = 0 in this experiment.

To analyse how much data is required for recovering the parameters, we train three different models
using N = {20, 40, 140} examples from each group. Figure 3 shows the ground truth values of the
parameters as well as the values obtained by our model for different number of training examples
per group. The columns show the mean of the initial state µ

0

(seven values), innovation parameter
�t as well as the standard deviation �t of the observations while the rows correspond to each of the
five groups. The innovation parameter and the standard deviation of the observations are shown for
the prediction range (two-weeks). The recovery of state space parameters becomes more accurate
gradually as we increase the number of examples from 20 to 140. Moreover, these parameters are
recovered reasonably well with N = 200 examples per group. In fact, the means of the initial state
are exactly recovered. The standard deviation of the initial state �

0

(not plotted) has converged
to a constant value in all cases. It turns out that the initial state means µ

0

are easy to recover but
observation noise �t and the standard deviation of the initial state �

0

are the most difficult to recover.

Quantitative experiments. In our first quantitative experiment we evaluate how our model per-
forms under small data regimes. For this, we use the publicly available datasets electricity
and traffic [28]. The electricity dataset is a hourly time series of electricity consumption
of 370 customers. The traffic dataset contains hourly occupancy rates (between 0 and 1) of 963
car lanes of San Francisco bay area freeways. As one expects, all the time series in these datasets
exhibit hourly as well as daily seasonal patterns. As baselines we use the classical forecasting meth-
ods auto.arima, ets implemented in R’s forecast package and a recent RNN-based method
DeepAR [9]. We obtained results for DeepAR using the Amazon Sagemaker machine learning
platform [1]. Since DeepAR and DeepState fit a joint model across the time series, both are
given a time independent feature representing the category (i.e., the index) of the time series and
time-based features like hour-of-the-day, day-of-the-week, day-of-the-month. For DeepState the
size of SSM (i.e., latent dimension) directly depends on the granularity of the time series which
determines the number of seasons. For hourly data, we use hour-of-day (24 seasons) as well as

3Note that the sampling procedure is trivially parallelizable over K samples once the parameters
⇥(i)

Ti+1:Ti+⌧ and the distribution of the final latent state are computed.
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Figure 3: Recovery of state space parameters as the number of examples per group is increased.
Columns show state space parameters while the rows correspond to each of the five groups. Each
plot shows the true and the recovered values of the parameters with increased number of examples.

2-weeks 3-weeks 4-weeks
Datasets Methods p50Loss p90Loss p50Loss p90Loss p50Loss p90Loss

electricity
auto.arima 0.283 0.109 0.291 0.112 0.30 0.11
ets 0.121 0.101 0.130 0.110 0.13 0.11
DeepAR 0.153 0.147 0.147 0.132 0.125 0.080
DeepState 0.087 0.05 0.085 0.052 0.085 0.057

traffic
auto.arima 0.492 0.280 0.492 0.289 0.501 0.298
ets 0.621 0.650 0.509 0.529 0.532 0.60
DeepAR 0.177 0.153 0.126 0.096 0.219 0.138
DeepState 0.168 0.117 0.170 0.113 0.168 0.114

Table 1: Data efficiency. Evaluation on electricity and traffic datasets with increasing
training range. The forecast is evaluated on 7 days.

day-of-week (7 seasons) models and hence latent dimension is 31. We train each method on all time
series of these datasets but vary the size of the training range Ti 2 {14, 21, 28} days. We evaluate
all the methods on the next ⌧ = 7 days after the forecast start time using the standard p50 and
p90- quantile losses. For a given collection of time series z and corresponding predictions ˆz , the
⇢-quantile loss for ⇢ 2 (0, 1) is defined as

QL⇢(z , ẑ) = 2

P
i,t P⇢(z

(i)
t , ẑ(i)t )

P
i,t |z

(i)
t |

, P⇢(z, ẑ) =

(
⇢(z � ẑ) if z > ẑ,

(1� ⇢)(ẑ � z) otherwise.

The p50 and p90 losses are reported in Table 1. Overall our method achieves the best performance
except for one case. Moreover, our method achieves very good performance even with 2-weeks data
since it can explicitly incorporate seasonal structures (i.e., hour-of-day seasonality). Although ets
and auto.arima incorporate such seasonal structures, their results are much worse. Inability to
learn shared patterns across the time series could be a possible reason for their worse performance.
DeepAR tries to learn seasonal patterns purely from the data and its performance generally improves
with increased training size. We show some example predictions of our method in Appendix A.5.
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Next, to compare against the matrix factorization method [28], we repeat the experiment in [28]
that evaluates rolling-day forecasts for seven days (i.e., prediction horizon is one day and forecasts
start time is shifted by one day after evaluating the prediction for the current day). Note that unlike
MatFact, our method and DeepAR need not retrain after updating the forecast start time. We just
extend the training range by one day and update the posterior of the latent state accordingly. The
results are shown in Table 2. Since MatFact only produces point forecasts, we report normalized
deviation as in [28], which in our case is equal to p50-loss. For DeepAR and DeepState we
report both p50- and p90-losses. Note that our method is much better than MatFact even though the
latter is retrained after each day of prediction. We get comparable results to DeepAR, which in our
experience performs well with short forecast horizons.

MatFact DeepAR DeepState

electricity 0.16 0.075/0.04 0.083/0.056
traffic 0.20 0.161/0.099 0.167/0.113

Table 2: Average p50/p90-loss for rolling-day
prediction for seven days. MatFact outputs points
predictions, so we only report p50-loss.

In the final experiment we evaluate our method
on a diverse collection of publicly available
datasets. We selected datasets containing time
series from a single domain as our method is
most suited for datasets of related time series.
This includes monthly and quarterly time se-
ries from the tourism competition dataset [2]
describing tourism demand, hourly time se-
ries from the M4 competition [20] and parts
dataset [6] which contains monthly demand of

spare parts at a US auto-mobile company. The number of time series in these data sets are 414
(M4-Hourly), 366 (tourism-Monthly), 427 (tourism-Quarterly) and 1046 (parts).
For tourism and M4 datasets, train and test splits are already provided. The length of the train-
ing time series as well as the starting date differ for the time series in the M4-Hourly and
tourism datasets. The prediction horizon for these data sets are 48 hours (M4-Hourly), 24 months
(tourism-Monthly) and 8 quarters (tourism-Quarterly). For parts dataset we use the
last 12 months as the prediction range while the training range contains 39 months. For both
tourism-Monthly and tourism-Quarterly we used month-of-year seasonal model along
with a trend component (to accommodate the trend visible in the training range of these time series)
and for parts we used month-of-year seasonal model. For M4-Hourly we used the hour-of-day
as well as day-of-week seasonal models. The p50 and p90 losses are reported in Table 3 for all the
methods. These results further show that our method achieves the best performance overall.

ets auto.arima DeepAR DeepState

M4-Hourly 0.054/0.0267 0.052/0.0354 0.090/0.0304 0.044/0.0266

parts 1.639/1.0086 1.6444/1.0664 1.273/1.086 1.47/0.935

tourism-Monthly 0.093/0.054 0.0999/0.058 0.107/0.059 0.138/0.067
tourism-Quarterly 0.105/0.055 0.1241/0.062 0.11/0.062 0.098/0.047

Table 3: p50/p90-losses for datasets obtained from publicly available sources.

6 Conclusions

In this paper we propose a new approach to time series forecasting by marrying state space models
with deep recurrent neural networks. This combination allows us to explicitly incorporate structural
assumptions to handle small data regimes on one hand and learn complex patterns from raw time
series data for larger data regimes on the other hand. Our experiments on synthetic data suggest that
the model is capable of accurately recovering the parameters of the state space model from which the
data is generated. We also showed, on real-world datasets, that the proposed method achieves state-
of-the-art performance by comparing it against a recent RNN-based method, a matrix factorization
method, as well as classical approaches such as ARIMA and ETS. Under regimes of limited data our
method clearly outperforms the other methods by explicitly modelling seasonal structure. Extending
our approach to other instances of state space models as well as non-Gaussian likelihoods are some
of the directions we are currently pursuing. Some ideas of extending our method to non-Gaussian
likelihoods are discussed in Appendix A.4.
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