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Linear system driven by stochastic process

we consider linear dynamical system x;11 = Ax; + Buy, with g and
ug, Ui, ... random variables

we'll use notation
jft — E.CCt, Zx(t) — E(CEt — jft)(il?t — ft)T

and similarly for g, >, (t)

taking expectation of ;11 = Ax; + Bu; we have
.f't_|_1 — Ai:t —I— Bl_l,t

i.e., the means propagate by the same linear dynamical system
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now let's consider the covariance

Lt4+1 — ft_|_1 = A($t — ft) -+ B(’U,t — "L_Lt)

and so

S.(t+1) = E(A(z — %) + Buy — @) (A — Ty) + Blug — @)
= AY,(t)AT + B, (t)BY + AY,, ()BT + BX,,.(t)A"

where

Yau(t) = Bua () = E(xy — Ty) (up — )7

thus, the covariance X, (%) satisfies another, Lyapunov-like linear dynamical
system, driven by >, and X,
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consider special case Y., (t) =0, i.e., x and u are uncorrelated, so we
have Lyapunov iteration

Ya(t+1) = AX,(t) AT + BY, (t)B?,

which is stable if and only if A is stable

if A is stable and >,,(%) is constant, >,(¢) converges to X, called the
steady-state covariance, which satisfies Lyapunov equation

>, =AY AT + BY,, BT

thus, we can calculate the steady-state covariance of x exactly, by solving
a Lyapunov equation

(useful for starting simulations in statistical steady-state)
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Example

we consider x;11 = Axy + wy, with

0.6 —0.8
=107 06 |

where w; are IID N (0, )
eigenvalues of A are 0.6 = 0.755, with magnitude 0.96, so A is stable

we solve Lyapunov equation to find steady-state covariance

v _ [ 1335 —003
=1 -0.03 1175

covariance of x; converges to >, no matter its initial value
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two initial state distributions: >,.(0)

plot shows >:11(t) for the two cases

0, $,(0) = 1021
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()1 for one realization from each case:
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Linear Gauss-Markov model

we consider linear dynamical system

xt_|_1 = AZCt —|— We,

Yy = Cxy + vy

e z; € R" is the state; y; € R? is the observed output

e w; € R" is called process noise or state noise

o v; € R? is called measurement noise
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Statistical assumptions

® 1o, Wy, W1,..., Vg,V1,...are jointly Gaussian and independent
o w; are lID with Ew; = 0, Ewtwf =W
e v; are |ID with Ev; = 0, E’UtUtT =V

o EZE‘O = Xy, E(ZE‘O — fo)(CIZQ — Q_TQ)T = Eo

(it's not hard to extend to case where wy, v; are not zero mean)
we'll denote X; = (xq,...,x¢), etc.

since X; and Y; are linear functions of xy, W5, and V;, we conclude they
are all jointly Gaussian (i.e., the process x, w, v, y is Gaussian)
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Statistical properties

e sensor noise v independent of x

e w; Is independent of xq,...,z; and yo, ..., ys

e Markov property: the process x is Markov, 1i.e.,
Te|Toy ..., Te_1 = Te|Tp_q

roughly speaking: if you know x;_1, then knowledge of x;_o, ..., xg
doesn’t give any more information about x;
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Mean and covariance of Gauss-Markov process

mean satisfies T;4.1 = AZy, Exg = To, s0 T; = AlZg

covariance satisfies

St +1) = AS, (AT + W

if A is stable, 3, (¢) converges to steady-state covariance ¥, which
satisfies Lyapunov equation

Y, =AY AT + W
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Conditioning on observed output

we use the notation

fIA?t|s = E(z¢|yo, - - Ys),
. L N\T
Zt|s — E(wt - xt|s>(xt - wt|s)
e the random variable x¢|yo, ..., ys is Gaussian, with mean #;, and

covariance 2.

® 1, is the minimum mean-square error estimate of x4, based on
Yo, -- -5 Ys

e X5 is the covariance of the error of the estimate Ty,
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State estimation

we focus on two state estimation problems:

e finding Z;;, i.e., estimating the current state, based on the current and
past observed outputs

e finding Z; )4, i-e., predicting the next state, based on the current and
past observed outputs

since x¢, Y; are jointly Gaussian, we can use the standard formula to find
T4+ (and similarly for &,y q)

Tyjp = Tt + Ea:thE;tl (Y; - Yy)

the inverse in the formula, E_tl, is size pt X pt, which grows with ¢

the Kalman filter is a clever method for computing Z;; and Z44 1,
recursively
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Measurement update
let’s find Z; and >3, in terms of Ty, and X4
start with y;, = Cz; + v, and condition on Y;_1:
Ye|Yio1 = Coy|Yi 1 + 0|V 1 = Cy]Yy 1 + vy

since v; and Y;_1 are independent

so x¢|Y;_1 and y;|Y;_1 are jointly Gaussian with mean and covariance

[ Tii—1 ] [ Yit)t—1 Yit—1CT
Coyp—1 | CXije—1 C’Zt|t_1CT+V
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now use standard formula to get mean and covariance of

(el Ye—1)[(ye|Ye—1),

which is exactly the same as x|Y;:

N A —1 A

Tyt = Tyg—1 T+ zt|t—1CT (C’Et|t_1CT T V) (Y — CZy—1)
~1

2igle = Lgle—1 — Z31&|t—1CT (CZt|t_1CT T V) CYyji—1

this gives us T, and X, in terms of Z,;_1 and X4

this is called the measurement update since it gives our updated estimate
of x; based on the measurement y; becoming available
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Time update
now let's increment time, using x¢y11 = Ax: + wy
condition on Y; to get

1|V = Axi|Yy +wi|Ys
= Az|Y: + wy

since w; Is independent of Y;

therefore we have 2,4, = AZy; and

Zt+1|t = E(£t—|—1|t - ngt+1)(i't+1|t - CT3t+1)T
— E(Aiﬂt — AZIZt — wt)(A-f%ﬂt — AZIJt — wt)T
— A2t|tAT —I_ W
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Kalman filter

measurement and time updates together give a recursive solution
start with prior mean and covariance, Zg—1 = Zo, 29|—1 = 20

apply the measurement update

N A —1 A

Tyt = Tyg—1 T+ Eze|t—1CT (C’Zt|t_1CT T V) (Y — CZyp—1)
~1

Dl = 2gfe—1 — Zt|t—1OT (CZt|t_1CT + V) CXije—1

to get Zgp and Xp|o; then apply time update
Tp1)e = ATy, gyt = AzﬂtAT + W

to get Z1p and Xqg

now, repeat measurement and time updates . . .
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Riccati recursion

we can express measurement and time updates for X as
Sippe = ANy 1 AT + W — AS, 1 CT (CEyp 1 CT + V) IOy AT

which is a Riccati recursion, with initial condition Yo _; = X

® X;+—1 can be computed before any observations are made

e thus, we can calculate the estimation error covariance before we get any
observed data
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Comparison with LQR

in LQR,

e Riccati recursion for P; (which determines the minimum cost to go from
a point at time t) runs backward in time

e we can compute cost-to-go before knowing z;
in Kalman filter,

e Riccati recursion for ¥;;_; (which is the state prediction error
covariance at time t) runs forward in time

e we can compute >, before we actually get any observations
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Observer form

we can express KF as

Tep1e = Ay + Azt|t—1CT(CEt|t—1CT + V) Ny — CZy—1)
= AZy—1 + Le(ye — Jeje—1)

where L; = A2t|t_1CT(CZt|t_1CT + V)1 is the observer gain

® ;1—1 Is our output prediction, i.e., our estimate of y; based on
Yo, -5 Yi—1

® ¢; = Yy — Yy¢—1 IS our output prediction error
o AZy._y is our prediction of x; 1 based on yo,...,y:1

e our estimate of x;,1 is the prediction based on yg,...,y:—1, plus a
linear function of the output prediction error
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Kalman filter block diagram
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Steady-state Kalman filter

as in LQR, Riccati recursion for X ;_; converges to steady-state value 3,
provided (C, A) is observable and (A, W) is controllable

Y. gives steady-state error covariance for estimating x;.1 given o, ..., y:

note that state prediction error covariance converges, even if system is
unstable

A

> satisfies ARE
> =ASAT + W — ASCT(CsCT +V)los AT

(which can be solved directly)

The Kalman filter 8-22



steady-state filter is a time-invariant observer:
Tyt = AZypp—1 + L(Ys — Jeje—1), Ypjt—1 = Clyp—1

where L = AXCT(CLCT 4+ V)1

define state estimation error Ty, = Ty — Ty4—1, SO
Yt — Yt|t—1 = Cry + vy — Cﬂ?t|t—1 — Cféﬂt—l + Ut
and

53t+1|t = Tt41 — 3A7t—|—1|t
= Axy +wp — AZypoq — L(CTypp—q1 + vy)
= (A—LCO)ZTy—1 +wy — Ly
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thus, the estimation error propagates according to a linear system, with
closed-loop dynamics A — LC, driven by the process w; — LC'vy, which is
IID zero mean and covariance W + LV LT

provided A, W is controllable and C, A is observable, A — LC' is stable
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Example

system Is
Tir1 = Az + wy, yr = Cwy + vy

with z; € R®, 4, € R
we'll take E zg = 0, E:I:O:EOT = Yo =5 W= (15)%I,V =1

eigenvalues of A:
0.9973 £+ 0.07307, 0.9995 + 0.03247, 0.9941 £+ 0.1081y

(which have magnitude one)

goal: predict y;+1 based on yq, ..., ys
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first let’s find variance of y; versus ¢, using Lyapunov recursion

Ey? = CY,(t)Ct +V, Ya(t+1) = AZ, (1) AT + W, ¥, (0) = g
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now, let's plot the prediction error variance versus t,
2 N 2 T
Eei = E(yt|t—1 — )" = Czt|t—1c +V,
where X, satisfies Riccati recursion, initialized by >_1)_5 = X,

i1t = A2t|t—1AT + W — A2t|t—1CT(CEt|t—1CT + V)_102t|t—1AT
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prediction error variance converges to steady-state value 18.7
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now let's try the Kalman filter on a realization y;

top plot shows y;; bottom plot shows e; (on different vertical scale)

300

200

100

Yt

-100

-200

-300
0

30

20

10

€t
o

_10 \

-20

The Kalman filter

80

100

t

120

140

160

180

200

20

40

60

80

100

t

120

140

160

180

200

8-28



