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ABSTRACT
We focus on the problem of detecting anomalous run-time behav-
ior of distributed applications from their execution logs. Specifi-
cally we mine templates and template sequences from logs to form a
control flow graph (cfg) spanning distributed components. This cfg
represents the baseline healthy system state and is used to flag devi-
ations from the expected behavior of runtime logs. The novelty in
our work stems from the new techniques employed to: (1) overcome
the instrumentation requirements or application specific assumptions
made in prior log mining approaches, (2) improve the accuracy of
mined templates and the cfg in the presence of long parameters and
high amount of interleaving respectively, and (3) improve by orders
of magnitude the scalability of the cfg mining process in terms of
volume of log data that can be processed per day.

We evaluate our template and cfg mining approaches using (a)
synthetic log traces and (b) multiple real-world log datasets collected
at different layers of application stack. Results demonstrate that the
template mining, cfg mining, and our anomaly detection algorithms
have high accuracy. The distributed implementation of our pipeline
is highly scalable and has more than 500 GB/day of log data process-
ing capability even on a 10 low-end VM based (Spark + Hadoop)
cluster.

1. INTRODUCTION
IT Operational Analytics (ITOA) aims at providing insights into

the operational health of IT components deployed in a cloud datacen-
ter. One of the strongest use cases of ITOA is driven by automated
problem diagnostics and has recently received a lot of attention as
a key differentiator of successful IT service vendors. A very chal-
lenging problem in this domain entails troubleshooting a distributed
application deployed on the cloud by analyzing large volumes of
machine-data collected from the different layers of the application,
middleware, and infrastructure.

Not surprisingly, one of the primary sources of data used for min-
ing operational insights is log data, given that execution logs con-
tain rich information about runtime behaviour of a system. For ex-
ample, warnings and error messages in logs give valuable clues to
debugging the cause of the problem. But limiting the analysis to
error/warning messages alone has severe limitations since several
problems do not manifest as errors/warnings (leading to bad recall).
Additionally, many errors/warnings are often benign and get reported
even when the system is healthy (leading to bad precision).
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We focus on a more robust approach of detecting anomalous run-
time behavior by (a) mining/learning a healthy state model, and (b)
comparing the runtime behaviour against the healthy-state reference
model to locate deviations from expected behaviour. Some prior
works [17, 31]) have proposed modeling the healthy state of a dis-
tributed system as a control flow graph (cfg) that stitches together
various log message types or templates after mining the execution
flows in the distributed system. In this paper, we adopt a similar ap-
proach, where we first mine templates from raw logs and then mine
sequences from the templates in order to create a cfg. But contrary
to prior works, we aim to do so without making some of the simplis-
tic assumptions (summarized below and also described in detail in
Section 5) made in prior works.

A template is an abstraction of a print statement in source code,
which manifests itself in raw logs with different embedded param-
eter values in different executions. Represented as a set of invari-
ant keywords and parameters (denoted by parameter placeholder <
P >), a template when accurately identified can be used for sum-
marization of multiple raw log lines that are instances of it. The
parameter values change across different instances of same template,
while the invariant keywords remain constant. The cfg represents the
distributed control flow of a distributed system, where the sequence
of templates is stitched together from execution flows. It is a graph
where the nodes are templates and the edges represent the transition
sequences from one template to another. The cfg graph represents all
possible flow paths (within and across components) of a distributed
system encountered when the distributed application runs.

The mining of cfg structures from execution logs may seem sim-
ilar to the network inference problem [1, 10]. This addresses the
problem of tracing paths of the underlying network using a gener-
ative model of cascades. Given the knowledge of when a partic-
ular node is infected (but not by whom), the challenge is to mine
the unobserved network topology for each cascade. In comparison,
there are two very important differences in the domain of mining cfg
structure from execution logs. In the log domain, the nodes of the
network are unknown and thus observations about when a particular
cascade event occurred on a node cannot be made without mining
the nodes themselves. We refer to this sub-problem of mining the
nodes as the template mining problem. Secondly, each cascade in
the network diffusion is identifiable using a cascade id. The execu-
tion logs from the distributed application domain does not guarantee
that every transaction or flow through the system will be uniquely
identifiable with a transaction id, and this results in interleaving of
events across different simultaneously occurring transactions. Thus
the cfg mining problem is inherently more complex in the setting of
execution logs, since it has to be done without knowing the nodes of
the network and without the presence of transaction ids.

To distinguish cfg mining from the process mining literature we
note that process mining [6, 11, 18] assumes that the set of nodes is
known in advance. It further assumes that recorded events contain
a case/transaction id which ties together the set of events occurring
for each execution of a workflow/process. While this assumption
of the presence of a clearly demarcated execution trace per transac-



tion is reasonable for transactional systems like ERP and CRM, for
the genre of distributed applications composed of various third-party
microservices on the cloud this assumption does not hold.

The goal of this work is to overcome certain limiting assumptions
made in the prior works in mining cfg of a distributed application.
Firstly, some prior works rely on the availability of source code or bi-
naries [31] to assist in the template mining phase, an assumption that
does not hold in today’s distributed applications composed of mul-
tiple third-party microservices. Amongst approaches that mine cfg
from logs only, they make certain assumptions about parameters be-
ing small [19] or occurring towards the beginning of a template [9],
or make assumptions about the presence of demarcated execution
traces through the cfg [11, 18], or rely on explicitly embedding a
transaction id parameter thats tracks a transaction flow across the
distributed application [2, 13]. The goal of our work is to mine the
cfg without making any of these assumptions.
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Figure 1: Transaction Flows in a Distributed Application
Figure 1 shows an example of a distributed application whose

components are running on the cloud. Based on user requests com-
ing to the application, one or more simultaneous flows are initiated
which in turn invokes one or more microservice hosted on the cloud.
Each transaction initiates a flow that executes one or more microser-
vice deployed on the cloud infrastructure. The control flow of each
microservice is represented as a cfg. The node within a cfg repre-
sents a template message that manifests itself in the execution logs
of the microservice. The edges represent how the control flow passes
between the nodes.

The figure shows four flows Flow 1 - Flow 4. Firstly, different
transactions could generate simultaneous flows within the same cfg.
For example, Flow 1 comprising (n1, n3) and Flow 2 comprising
(n2, n4) traverses through the same cfg 1. The execution logs of
microservice 1 will contain interleaved traces from both these flows
while executing the same cfg 1. Secondly, transactions could also
initiate parallel flows across different cfgs. For example, when Flow
1 and Flow 4 co-occur, cfg 1 and cfg 3 execute in parallel. Lastly,
transactions could also initiate flows across microservices. For ex-
ample, Flow 3 spans across cfg 2 and cfg 1.

To mine flows across cfgs, execution logs of all microservices
comprising a distributed application needs to be merged. Our goal
in this paper is to mine the cfg structures of the microservices and
their cross dependencies from the merged execution logs across all
microservices. The two sub-problems we strive to solve here are (a)
mining the template messages while assuming no application spe-
cific knowledge about the print statements, its invariants or parame-
ters and (b) mining cfg edges connecting the templates in the pres-
ence of interleaved logs without assuming the presence of explicit
transaction ids demarcating different transactions.

1.1 Challenges in CFG Mining
Figure 2 shows a sample raw log input to our cfg mining methods.

The raw logs are interleaved from multiple transaction flows that are
executing a ground truth cfg (shown at the bottom of Figure 2). Each
raw log statement has some invariant keywords and some variable
parameters. Sometimes the parameters can be as long or even longer
than the keywords (e.g. Template T4 in [Flow 3: T4]). Each raw

Raw Logs (Interleaved from 4 flows across the application)
11/12/2013::8:56 am :- Preparing for response GetLparNonBlockingDataBeans.  Port ID =9001. No waiting.[Flow1:T1]

11/12/2013::8:56 am :- Preparing for response GetLparDataBeans. Port ID =9008. No waiting. [Flow2:T1]

11/12/2013::8:57 am :- Synchronized Response for JobRequest=j0099@17:06:34, 3198, http://www.jobsubmission, 
ksh@gmail.com.  Port ID =9008. [Flow3:T4]

11/12/2013::8:57 am :- Parsing resp method: GetLparNonBlockingDataBeans for cmd.                                [Flow1: T2]

11/12/2013::8:58 am :- Preparing for response GetLparSynchronizedDataBeans. Port ID =null. No waiting. [Flow4:T1]

1/12/2013::8:59 am :- Error in resp method: GetLparDataBeans Missing parameter vportId .                [Flow2:T3]

11/12/2013::8:59 am :- Error in resp method: JobRequest Missing parameter serverId .                                [Flow3:T3]

11/12/2013::9:01 am :- Parsing resp method: GetLparNonBlockingDataBeans for cmd.                               [Flow4:T2]

T3T2

T1 T4

Flow 1 Flow 2 Flow 3

Preparing for response <P>.  Port ID =<P>. No waiting

Parsing resp method:  <P> for cmd Error in resp method:  <P> Missing parameter <P>

Synchronized Response for <P>.
Flow 4

Parameters
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Log line with long parameter

Ground Truth CFG

Figure 2: Raw Logs from Interleaved Flows

log instance is annotated with the tag of transaction-flow id:template
id. Note that transaction ids are only present for understanding of
the reader and in real logs we do not assume either transaction ids or
template ids to be present.

In the absence of application specific knowledge, mining mes-
sage templates from log lines incurs several challenges. This is be-
cause of the fact that parameters are indistinguishable from actual
words, and can vary in number, in length, as well as their positions
within a print statement. This causes instances of the same template
to look very different or different templates with common parame-
ters to look similar (see more examples of two classes of confusion
in Section 2.1). For the above reasons, off-the-shelf text clustering
techniques on the log lines does not work because of the complexi-
ties of semi-structured data with arbitrary behaviour of parameters.
Further, running clustering on large volumes (several million lines)
of log data does not scale.

In the absence of transaction ids, mining template sequences from
interleaved log traces of different components or multi-threaded traces
of the same component, also becomes a hard problem. Without
clearly distinguishable transaction demarcations, which is a prereq-
uisite for a suite of process mining techniques proposed in literature,
the challenge lies in separating the noise from interleaved sequences.
For e.g. in Figure 2, in the absence of transaction-flow ids, it is non-
trivial to separate the execution path of each flow and build the cfgs.
[Flow 3: T4] immediately follows [Flow 2: T1] and gives the false
impression of an edge existing between nodes T4 and T1.

1.2 Highlights of our Approach
The key highlights of our end-to-end system called OASIS are –
Template Mining Phase - In the absence of application specific

knowledge or assumptions on the usage of parameters, we observe
that using text alone is not sufficient to accurately map log lines to a
template (see prior works in Section 5.1). We attempt to overcome
this challenge by using the multi-modal signal of text and temporal
vicinity (i.e. predecessors and successors in the cfg) to further refine
the mapping of log lines to templates (see Section 2.1).

CFG Edge Mining Phase - In order to mine the cfg structure from
the interleaved logs in the absence of transaction-ids, we propose a
novel two-phase approach of mining template sequences that lever-
ages nearest-neighbor-groups (NNS) computed in the first phase to
prune away noise due to interleaving, followed by a second phase
that mines only immediate predecessors/successors of a template
(see Section 2.2).

Anomaly Detection Phase - We describe how the mined cfg struc-
ture can be used to identify different classes of anomalies. We de-
scribe the architecture and implementation of an end-to-end system
that detect anomalies in deployed distributed applications by analyz-
ing their execution logs (see Section 3).



Evaluation of our Approach - We empirically evaluated the ef-
fectiveness of our template mining and cfg edge mining algorithms
in comparison with alternative design choices, using synthetic log
traces and as well as several real-world log datasets. We also demon-
strate that our overall cfg mining pipeline has good parallelizability
and is able to process more than 500 GB/day of log data even on
a 10 low-end VM based (Spark + Hadoop) [24] cluster. Finally, we
demonstrate the efficacy of our end-to-end anomaly detection system
using a case study with Openstack [21] VM provisioning system.

2. OUR CFG MINING TECHNIQUES
We now describe our offline analytic models of template and se-

quence mining, both of which together enable us to compute the cfg
nodes (templates) and cfg edges (sequences).

2.1 Mining of Templates
The same template would manifest as multiple log lines based on

the embedding of the actual values of parameters. There are pri-
marily two classes of confusion created by parameters and invariant
keywords in a print statement when attempting to mine templates:
(i) C1: Log lines resulting from the same template can look different
textually when the template has multiple or long parameters values,
and (ii) C2: Log lines resulting from two different templates can look
alike textually when they share common long parameters.

Prior works in mining templates from logs (see Section 5.1) largely
rely on some form of text-based clustering of similar log lines in or-
der to compute templates. These text-based clustering approaches
combat the above two classes of confusion by relying on either ap-
plication specific knowledge of the types of parameters (such as IP
address, requestID etc.), or assume that a template has few param-
eters and that too comprising of a single word each, or assume that
parameters even if long are typically at the end of the print statement.
Although these assumptions are indeed true for a subset of datasets,
we found these assumptions to not hold for many of the datasets we
experimented with.

In the absence of application specific knowledge, we make the
observation that using text alone is never going to be sufficient to
generically map log lines to a template. Building on this intuition,
we propose a novel multi-modal algorithm for using temporal vicin-
ity of a template (i.e. templates that typically occur in time before it
or after it) as an additional signal to textual content of a template, in
order to mine high quality templates without making any application
specific assumptions. The intuition behind using the joint-signal of
text similarity and temporal vicinity similarity is that ideally two in-
stances of the same print statement should not only look similar w.r.t.
the text-similarity, but they should also have similar temporal vicini-
ties. W.r.t. confusion class C1, observe that although two instances
of the same print statement might have a low text similarity, they
can still be merged into the same template cluster if their temporal
vicinities are very similar. W.r.t confusion class C2, even if two log
line instances corresponding to two different print statements might
look similar if they share a long common parameter and also have
additional overlapping words, their temporal-vicinity will be quite
different and thereby will not be eligible for merging. Thereby, us-
ing the temporal vicinity similarity information in addition to the text
similarity information, we can overcome the fundamental challenges
created by the two classes of confusion described above.

Contrary to prior works that mine templates using the textual con-
tent of the log lines alone, our multi-modal approach of template
mining would require us to mine the temporal vicinity of each log
line as well. Given that each log line can be potentially unique be-
cause of the unique combination of the multiple embedded param-
eter values in each print statement, mining temporal vicinity at the
granularity a log line would not give us statistically significant infor-
mation about the observed predecessors and successors of a log line.
This leads to a seemingly chicken-and-egg situation, wherein mining
templates requires us to mine sequences, and mining sequences re-
quires us to mine some notion of template that aggregates multiple
instances of the same print statement. We resolve this dilemma by

not directly operating on raw logs but transforming the raw logs into
an intermediate form of approximate templates.

To construct approximate templates, we make a first pass on the
raw log lines in order to compute a frequency histogram comprising
of every distinct keyword that was observed in the logs. The un-
derlying intuition here is that the invariant template words are much
more frequent in the logs than the parameters. A change point de-
tection algorithm that operates on frequency analysis of the unique
words in the logs, detects words with frequencies beyond the change
point threshold as dictionary keywords. We transform the log lines
to approximate templates by iterating over the words in the log line
in order, and retaining words in the log line that are present in the
computed dictionary and replacing the words that are not in the dic-
tionary by a parameter placeholder < P >. At the end of this dic-
tionary based log line transformation phase, the output is a list of
approximate templates which are several orders of magnitude less
than the number of raw log lines. In our experiments, we typi-
cally observed more than 1000x compression ratio (i.e. #log-lines
: #approximate-templates).

Inspite of this reduction from log lines to approximate templates,
we nevertheless observe that in many datasets, a modest fraction
of approximate templates still have support values below the min-
imum threshold (i.e. support) required to mine statistically signif-
icant temporal vicinities of these approximate templates (using our
algorithm described in the next Section 2.2). To overcome this lim-
itation, we then run a text-based clustering at a very high threshold
(here 90%) of edit-distance based similarity to further cluster dif-
ferent approximate templates which correspond to the same ground
truth template or print statement. Note that we need to use a very
high text-similarity threshold in this phase to ensure that two differ-
ent print statements are extremely unlikely to get mapped to the same
approximate template cluster.

text-sim(A23, A54) > threshold

A1

text-sim(A16,A16) =1 
because they correspond to 
same approximate template

text-sim(A1,A2) > threshold A2

A23 A54

A16 A16

Figure 3: Example multi-modal similarity check

At this point, although the approximate template clusters are quite
noise-free (i.e. their constituent members indeed correspond to the
same print statement), the issue that needs to be overcomed is that we
mine multiple clusters for the same print statement when the number
of parameters is large or parameter values are long. Consequently,
to refine these text clusters further, we then resort to our multi-modal
clustering approach that merges clusters using the multi-modal sig-
nal of the textual content of cluster label that is computed using a
Longest Common Subsequence (LCS) of the text in the constituent
members, coupled with the computed statistically significant prede-
cessor(s) and successor(s) of these clusters.

Figure 3 shows an example multi-modal similarity check that is
performed for two approximate template clusters A1 and A2. Lets
say we mine 3 parents and 2 children of A1, and similarly, 2 parents
and 2 children of A2. In contrast to checking the text similarity of
the reference cluster labels of A1 and A2 alone (as was done in prior
text-alone approaches), we also compute the text similarity between
any parent of A1 and A2, and also between any child of A1 and A2.
Based on the comparison, if we find that these clusters have a good
text similarity match between any of their respective parents (A23
and A54) and also between any of their respective children (here



shared approximate template A16), then the two reference approxi-
mate clusters A1 and A2 satisfy the multi-modal similarity check.

Note that in comparison to text-only clustering approaches, our
multi-modal approach can set relatively lower values of the text sim-
ilarity threshold in order to combat confusion class C1 described
above, and still ensure that we do not succumb to the bad merges
that could have been potentially caused by confusion class C2.

Our algorithm however needs to handle a few special scenarios –
(a) when both of the clusters being compared do not have a child (this
happens for leaves in the cfg), we need to discount the child direction
text similarity match, and similarly (b) when both the clusters being
compared do not have a parent (this happens for root nodes in a cfg),
we need to discount the parent direction check.

Worth admitting here, is that there are some rare scenarios wherein
our multi-modal algorithm is unable to merge two instances of the
same print statement. This happens when the transaction flows pro-
ducing the two instances of the same print statement, have differ-
ent incoming paths and different outgoing paths in the underlying
ground truth cfg. In such a scenario, the temporal vicinity of the
two instances of the print statement are different in reality and thus
the multi-modal check fails. This is the primary reason why our
evaluation of our multimodal agorithm in Section 4.4 demonstrates
that although multi-modal performs superior to using pure text-based
clustering, we still end up with some print statements having multi-
ple unmerged cluster instances (leading to reduced precision).

Additionally, note that our multi-modal algorithm (in contrast to
pure text-based clustering) depends on the accuracy of the mined
predecessors/successors of the approximate template clusters. We
observed that because of this dependence, errors in the mined cfg
can negatively affect the accuracy of mined templates in the multi-
modal algorithm – leading to occassional merging of two different
print statements into a cluster whose’s LCS label becomes corrupted
(leading to reduced recall) and sometimes also leading to fragmenta-
tion of the same print statement into multiple cluster instances (lead-
ing to reduced precision).

2.2 Mining of CFG Edges
As described in the previous section, our multi-modal template

mining approach requires us to compute the predecessors and suc-
cessors of the approximate template clusters. Even if we had magi-
cally mined the intended ground-truth templates, this sequence min-
ing phase would nevertheless have been needed in order to mine the
cfg edges corresponding to the sequences between the mined tem-
plates. The challenge of this phase is to be able to robustly mine
statistically significant predecessors and successors of the approxi-
mate templates when operating on interleaved logs. Interleaved logs
result from multi-threaded executions of the same component (intra-
level parallelism). Further, given our intention of mining control
flows across different distributed microservices (e.g. the assignment
of map tasks from a Hadoop Jobtracker node to a Datanode), inter-
leaved logs also result from having to intentionally merge logs from
different distributed components (inter-level parallelism).

As described in Section 5.2, although classical sequence mining
approaches are not directly applicable in our problem setting of inter-
leaved logs because of the lack of demarcated transactions, one can
adapt these algorithms to work in our setting by chunking the inter-
leaved logstream based on time-windows and creating a transaction
id per time-window [20]. The duration of the time-window can be
set to maximum (or 99th percentile) edge lag in the application.

Figure 4 describes the inner workings of how such an approach
would mine predecessors/successors. As an example, a sub-goal is
to mine the children of T2, i.e. mine the existence of the edge T2 →
T3 and T2 → T6. Tracking the immediate successor of each tem-
plate does not work in the interleaved logs setting since the next log
line could very well be noise from either intra- or inter- parallelism.
What is needed is a lookahead window beyond the immediate next
line, and incrementing the counts of all succeeding templates occur-
ring within the lookahead window. Although this lookahead window
based bookkeeping would enable mining of the edges from the ref-
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Figure 4: Our two-stage sequence mining algorithm as com-
pared to classical single-stage sequence mining approach

erence node (here T2) to its children (here T2 → T3 and T2 → T6),
the limitation and concerning issue with this approach is that the
algorithm will also mine edges to the downstream cfg descendants
of the reference node (i.e. T4, T5, T7, T8, T9). Consequently, in-
stead of mining the two desired children of T2, the algorithm will
end up mining lots of redundant edges from the reference node to
the downstream descendants. Although one may envision running
a transitive-edge removal algorithm [4] on the bloated cfg mined by
this strawman algorithm, note that the transitive-edge removal could
end up removing potential genuine detour paths from a parent to
its downstream grandchild. For many practical datasets, the occur-
rence of multiple detour paths existing between two nodes is fairly
common, and standard transitive edge removal will thereby lead to
mining an incorrect cfg.
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Figure 5: Nearest-Neighbor (NNS) group computation using
template time-series

To overcome the limitations of the above strawman approach, we
propose a novel two-stage sequence mining approach. In the first-
stage, we compute Nearest-Neighbor-Groups (NNS) groups of each
template, and the second stage leverages this pre-computed NNS
group information to mine only the immediate successors/predecessors
of each template. The intuition behind our two-stage algorithm is
that if we find that the immediately succeeding log line of a ref-
erence template-id in the input logstream is not a part of the NNS
group of that reference template, then it implies that the occurrence
of this succeeding log line is essentially noise resulting from the in-
terleaving. Before we describe the details of our approach, we first
describe what we mean by NNS groups, followed by how it helps us
avoid the limitations of the previous single-stage approach.

The NNS group of a template is a set of other templates that are
observed to statistically temporally co-occur with the reference tem-
plate. NNS groups of each reference template can be computed
by analyzing the time-series of each template which captures the



timestamps or chunked time-bins wherein that particular template
occurred in the logstream. Given the time-series of each template
the algorithm to mine the NNS groups of a template depends on the
type of cfg sub-structure we want to mine.

Figure 5 describes the three fundamental cfg sub-structures we
want to mine, and how the time-series of the nodes in those sub-
structures relate to each other, and the algorithm we should use in
order to mine these sub-structures. In particular, the cfg comprises of
three types of sub-structures – linear sequences, forks, and merges.
Depending on the type of sub-structure, the time-series of the nodes
in the sub-structure have different extents of similarity. As depicted
in the figure, time-series of nodes in the linear sequence have al-
most a 100% similarity in their respective time-series. For forks, the
similarly depends on the branching probability between the parent
and the child. For merges however, the time-series similarity can be
low inspite of a high branching probability between the parent and
child. In general the algorithm to compute the NNS groups depends
on the type of sub-structure we want to mine. The scalable Locality-
Sensitive-Hashing (LSH) [12] based Minhash [5] algorithm that de-
tects jaccard similarity is a good candidate for detecting the linear
sequences, forks, and a constrained setting of merges that are not
very skewed (i.e. time-series similarities > approx 10%). To mine
arbitrary skew in forks and merges however, one would need to re-
sort to the bayesian approach of mining forward (fp) and backward
conditional probabilities (bp) [29].

When mining correlations using either the jaccard similarity or
the bayesian conditional probability approach, we ensure that the
correlations are not coincidental by incorporating the null-invariant
check [29]. For this, we measure the ratio of the conditional prob-
ability of an event as compared to the independent probability. Es-
sentially, if the ratio of ( P(A/B) / P(A) ) is above a non-indepedence
threshold, then it implies that the two events are not independent,
since P(A/B) should be approx P(A) if the two events A and B had
been independent.

The second-stage of our sequence mining approach leverages the
pre-computed information of the NNS group of each template, and
only increments the counter of the first template that succeeds the
reference template pre-conditioned on the fact that the succeeding
template must belong to the NNS group of the reference template
(here T2). Further, we can preempt the lookahead, the moment such
a template is found, thereby implying that we create a successor edge
only to the first NNS group member that follows the reference tem-
plate. Another way of interpreting this algorithm is that in order to
create the successor edges of a reference template, we consider a
projection of the input logstream on the NNS group of that reference
template, as shown in Figure 4. This projection essentially implies
that the noisy candidates due to interleaving do not exist in the pro-
jected logstream.

This second-stage of this algorithm can be realized by making
a single pass of the input logstream, and tracking for each NNS
group, the latest occurring NNS group member (lastmemberseen)
and the time of this last occurrence (lasttimeseen), and creating
edges only when the lastmemberseen is the same as the reference
template of the NNS group and the (currenttime - lasttimeseen)
< lagthreshold, wherein lagthreshold is an application specific
threshold based on expected edge lags. On observing a template,
we update the lastmemberseen and lasttimeseen in all the NNS
groups this template is part of.

For each template, once the successor/predecessor edges and also
the relative normalized values of the counters of the NNS group
members is computed, the relative branching probabilities of the
CFG edges can be computed. Further, the temporal vicinity of each
template can be stitched together to construct the desired CFG.

2.3 Scalability and Parallizability of our CFG
Mining Pipeline

Given that the log datasets of typical applications are very volumi-
nous, it is imperative that the algorithms involved in the above differ-
ent stages of the pipeline be parallelized in order to enable scalable

mining of the cfg from large volumes of training data using multiple
cores or a cluster of machines (i.e. worker nodes).

(Stage 1) The approximate template generation phase can be eas-
ily parallelized across multiple worker nodes by splitting the log
data into multiple splits. This stage in the first round computes the
frequency histogram of the keywords in a MapReduce fashion, fol-
lowed by broadcasting of the word dictionary computed from the
frequency histogram using change point detection, followed by the
generation of the approximate templates using the dictionary lookup
based transformation of the log lines.

(Stage 2) The second stage of high similarity edit-distance based
text clustering is done efficiently via Minhashing [5] the tokens of
the approximate templates to efficiently identify other potential ap-
proximate templates that are very similar. The actual edit-distance
is calculated between the Minhash pruned candidates, and members
having edit-distance similarity above a threshold are merged to form
high-similarity text clusters.

(Stage 3) To parallelize the third stage of NNS Group computa-
tion, we need to essentially parallelize the computation of the pair-
wise time-series correlation metric that is based on the bayesian con-
ditional probability coupled with the null-invariant check. To do this,
every worker node computes the partial time-series of every tem-
plate from the timeline fragmented portion of the logs hosted by the
worker, followed by O(N) computation of the partial length of each
time-series and the O(N2) computation of the pairwise overlap be-
tween the partial time-series of each template. The final pairwise
correlation metric (based on entire time-series) can be efficiently
computed in a distributed way by leveraging the partial length/overlap
statistics computed (in parallel) on the different worker nodes.

(Stage 4) The fourth stage of mining the predecessors/successors
makes one pass on the logs and this phase can be parallelized by
broadcasting the computed nns-matrix (typically sparse) to each worker
node, computing the partial edge statistics on respective portions of
the timeline based log splits, and then aggregating the partial statis-
tics to compute the relative branching probabilities for each approx-
imate template cluster.

(Stage 5) Finally, we have the fifth stage of multimodal template
refinement. Since this stage operates only on a small number of high-
similarity edit-distance based template clusters and not on the raw
logs, we avoid parallelizing this phase. Moreso, this stage cannot
be trivially parallelized and thus we intentionally chose to have a
centralized implementation only. However, to nevertheless speedup
this phase, we employed scalable LSH-based Minhashing [5] on the
text tokens of the approximate template cluster labels to efficiently
identify potential candidates for the multimodal similarity check.

3. ARCHITECTURE OF OUR END-TO-END
ANOMALY DETECTION SYSTEM

In this section we describe the system architecture and imple-
mentation of our end-to-end log analytics system called OASIS (see
Fig.6). Logs from various services are ingested using Logstash [16]
adapters, routed through Kafka [14], and indexed into ElasticSearch [7].
Data becomes available for search immediately. At the same time
data is also passed onto the (Hadoop + Spark [24]) layer. The two
components in OASIS are described below:

3.1 Offline Mining of CFG based Model
At the heart of OASIS lies the offline analytic models compris-

ing of template and cfg mining (shown in blue in Fig.6) using the
algorithms we described in Section 2. The offline training models
comprise of a set of templates along with the cfg edges having anno-
tations of branching probabilities and expected edge lags.

3.2 Online Anomaly Scoring
The online anomaly scoring module of OASIS uses the offline

models of the mined templates and the cfg, is shown in Fig. 6. This
comprises of two modules –
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Figure 6: OASIS Architecture

Template Matcher: At runtime, as log lines are ingested, the
offline computed dictionary is consulted to detect the invariant key-
words in the incoming messages and then mine the approximate tem-
plate in the same way as in the offline model building phase. Further,
using the previously stored mapping of the approximate templates to
the final refined templates got via multi-modal template mining, we
map in real-time the incoming log line to a previously mined refined
templates.

Anomaly Detector: Logs annotated with template ids are passed
through an anomaly detection routine. In OASIS, anomalies have
two attributes: (1) type of anomaly and (2) score of anomaly. The
type of an anomaly signifies the underlying reason of why it is an
anomaly. The score of an anomaly signifies its severity. There are
two types of anomalies viz. (a) sequence anomaly and (b) distribu-
tion anomaly.

A sequence anomaly is raised when none of the children of a par-
ent node is seen within an expected time lag interval. These are
raised instantaneously when the the expected duration timeout oc-
curs. Hence this type of anomaly messages are more real-time. The
advantage of sequence anomalies are that they are very few in num-
ber and high precision. Also most sequence anomalies can generate
actionable insights i.e. deeper investigation into why a particular
control flow was interrupted at a particular node. We also assign
a score to the sequence anomaly to denote our confidence that this
anomaly was not an artifact of the occurrence of some low branch-
ing probability edge that got pruned away as a noisy edge because
of its branching probability being below the 10% branching proba-
bility threshold. So, we use the aggregate children probability as the
anomaly score, with higher scores denoting that we are more confi-
dent.

A distribution anomaly is raised when the edge probabilities be-
tween parent and any of its children changes. This type of anomaly
can identify shifts in the observed branching probability distribution
at a cfg node. However, its critical that we design the scoring metric
in a way, that for inherently fluctuating workloads, we do not raise
false positives. To cater to this, we track the observed branching
probabibility distributions over the entire course of the healthy run
of the system. To do this, for each node, the branch probabilities are
calculated periodically on non-overlapping windows over the entire
span of the training log, and representative branching distributions
materialized in a set called Expected Set. During anomaly detection,
we calculate a diff-score of the observed branching distribution with
every distribution present in the Expected Set, and use the minimum
diff-score as the distribution anomaly score.

4. EVALUATION

4.1 Datasets
We evaluate our system using both real-world and synthetic datasets.

For the cfg mining technique, we use two real datasets – (i) linux:
Linux syslogs, and (ii) distMW: a proprietary distributed middleware
application. For evaluating our end-to-end anomaly detection sys-
tem, we do a special case study with a third real-world dataset open-
stack [21]: a popular cloud VM provisioning system which com-

prises of multiple distributed microservices. Given that our tech-
niques rely on exploiting timing correlations, we ensured that our
techniques are not negatively impacted by large machine clock drifts,
by running the distributed applications either in standalone mode
(i.e. all different microservices running on the same machine) or
on machines that are NTP time synchronized (a fairly common sce-
nario).

In addition to the above three real-world log datasets, we evalu-
ate each phase of our pipeline (i.e. template mining, mining of cfg
edges, anomaly detection) using synthetic logs generated by a log
generator, which we built specifically for this purpose. The syn-
thetic log generator has three modules – the cfg edge generator, the
cfg template generator, and the execution simulator.

Fork

Detour

Sequence

Merge

Figure 7: A portion of a synthetically generated cfg

The CFG Edge Generator builds the cfg edges for a hypothetical
microservice from basic programming constructs. Figure 7 shows a
portion of a sample synthetic cfg that is generated. As depicted in it,
observe that it models all types of fundamental building blocks like
linear sequences, forks, and merges, and also has detour paths. Fur-
ther, edges are characterized by a lag representing the delay between
the two print statements that are executed in succession, and also a
branching factor probability.

The CFG Template Generator determines the print statement
corresponding to every node in the cfg. The invariants are selected
from a global dictionary of words and parameters could be fixed or
variable length. The number of parameters and their positions and
the length of templates are chosen from a Gaussian distribution. Pa-
rameter values, determined at runtime are chosen either from a pa-
rameter space or inherited from their cfg ancestors.

Once the cfg is generated, the Execution Simulator generates
paths based on branching probabilities. As the paths are traversed,
each path outputs its print statements after simulating time equiva-
lent to the corresponding edge lag. Each path reflects the execution
of a thread. Threads arrive into the system according to a Poisson
process and are traversed simultaneously, leading to multi threaded
behaviour. Multiple cfg executions are also simulated.

4.2 Competitive Approaches
For comparison, we obtained the state-of-the art tools (from au-

thors of prior works, and open source binaries) and ran them against
the same datasets.

For template mining, the alternative approaches compared are: (i)
logcluster (lc): clustering approach on a set of approximate tem-
plates [28], (ii) loghound (lh): frequent item-set mining on the words
in each log line [27], (iii) edit-distance (ed): Levenshtein’s text sim-
ilarity metric, (iv) weighted-edit-distance (wted): modified similar-
ity metric with higher weights on words at the beginning of tem-
plates [18]. Further, to cover a representative spectrum of possible
configurations of competitive approaches, we report high(1%) and
low(0.01%) support versions of lc and lh approaches, and high(0.9)
and low(0.25) text similarity versions of edit distance algorithm. All
these approaches are compared with our multi-modal, which uses
temporal vicinity along with text to compute refined templates.
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(c) δ = 0.85 (Word:Param=0.75)
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(d) δ = 0.5 (Word:Param=0.75)

Figure 8: Template Mining Precision/Recall as a function of word:parameter ratio and discriminative property in synthetic dataset

For cfg edge mining, the competitive approaches compared are:
(i) SM-vanilla: classical sequence mining (SM) algorithm (PrefixS-
pan [22]), (ii) SM-tred: this employs classical sequence mining fol-
lowed by a step of graph transitive edge reduction in order to remove
redundant descendants, (iii) SM-wtred: classical sequence mining
with the transitive edge reduction step prioritizing which edges to re-
move based on weights [4] and using Jaccard association-rule min-
ing metric as the weight, (iv) PM: classical process mining (PM)
using the Fuzzy Miner [11], (v) PM-noCID: the MIM process min-
ing tool [8] that attempts mining of process workflows from inter-
leaved logs even in the absence of transaction or case ids, (vi) WM:
workflow-miner [17]. Note that classical SM and classical PM ap-
proaches work on the basis of transaction ids. Since transaction
boundaries are not present in interleaved execution logs, our ap-
proach for creating transformed inputs for classical SM and PM
is to time-slice the logs into chunks based on a configurable time-
window [20], and assign the same transaction id for all logs in the
same time-window.

4.3 Methodology
We use the standard Precision/Recall metrics for evaluating our

template mining, cfg edge mining, and anomaly detection phases.
Recall is the fraction of the ground truth templates, edges, or anoma-
lies that were mined. Precision is the fraction of mined templates,
edges or anomalies that were present in the ground truth.

For synthetic logs, the comparisons were made with the available
ground truth generated by our tool. For ground truth generation on
real logs, we took the following approach: (a) subject matter experts
were asked to identify the distinct ground truth templates present in
the logs, (b) thread ids in real logs were used to separate out the
valid ground truth sequences (note that threadids were used only for
ground truth sequence generation, but intentionally not leveraged by
our sequencing algorithms), (c) For logs where there were no thread-
ids, we asked domain experts for some known sequences and com-
pared our precision in being able to mine them.

4.4 Mining Templates
We now evaluate template mining performance for competitive

approaches mentioned in Section 4.2, for different characteristics of
the logs: its average word to parameter ratio and the discriminative
property of each template that denotes how distinct each template
looks from the others. These two metrics captures the confusion
added by long parameters or inherited parameters respectively.

Figure 8(a) and Figure 8(b) report how precision/recall vary as av-
erage word to parameter ratio changes, keeping discriminative prop-
erty fixed. In contrast, Figure 8(c) and Figure 8(d) report how pre-
cision/recall vary as discriminative property changes, keeping aver-
age word to parameter fixed. In these experiments, we intention-
ally used a single-threaded execution of a single cfg (having 100
templates), so that our proposed multi-modal algorithm has perfect
information with respect to temporal vicinities. Note however that
the real datasets in contrast have interleaved events from multiple
threads and multiple microservices.

In Figure 8(a), we first observe that lh and lc approaches at low
support have the best recall but suffer largely in terms of precision
because many ground truth templates gets fragmented into multi-
ple mined templates. In contrast, the high support variants have
great precision but low recall, implying that they are unable to mine
many low frequency patterns. For the edit-distance approaches, they
are very much sensitive to the similarity threshold parameter. Edit-
distance at 0.25 suffers from poor recall as they create many bad
merges of slightly similar looking templates. In contrast, multi-
modal even when run at a very low similarity threshold (0.25) ef-
fectively filters out noise using the temporal vicinity signal and con-
sistently reports better recall and precision.

In Figure 8(b), where parameters occupy as much as of the log
line as invariants, the precision of edit-distance at 0.9 drops severely
since different instances of the same print statement look different
and result in multiple mined templates. Edit-distance at 0.25 con-
tinues to have bad recall since the bad merges causes the cluster
labels to become corrupted resulting in several of the ground truth
templates not being identifiable in the list of mined templates. The
multi-modal is the only approach that does fairly on both recall and
precision front (both 60%).

In Figure 8(c), we observe that when templates are highly dis-
criminative (δ = 0.85), even edit-distance at 0.25 works quite well.
However, in Figure 8(d) when δ drops (δ = 0.5) and templates
start looking similar, the recall begins to degrade. This is because
with more confusion, mining actual ground truth templates become
harder. However multi-modal even in this setting does fairly well on
both recall and precision front.

We now report the template mining accuracy on the real datasets
of distMW and linux in Figure 9(a & b). For distMW, there were
3000 ground truth templates, with word:parameter ratio = 0.5 and
δ = 0.5. Consistent with our observation on synthetic logs, the
multi-modal has relatively better precision and recall, while other ap-
proaches suffer either in precision or in recall. This is because the pa-
rameters were extremely long and complex. For the linux cluster, the
computed ground truth templates was 80 while the word:parameter
ratio =0.8 and δ = 0.6. Here the edit distance approaches work fairly
well w.r.t precision because of relatively shorter params. However at
δ = 0.6, templates were still fairly similar and the ability of multi-
modal to disambiguate using temporal vicinity helped it dominate
the results.
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(a) Template Mining: distMW
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Figure 9: Template Mining on Real Datasets
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Figure 10: CFG Edge Mining in synthetic distributed applica-
tion setting
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(a) SM: distMW
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Figure 11: CFG Edge Mining on Real Datasets

The overall template mining results show that OASIS’s use of
multi-modal classification enables it to have better accuracy over
other best known alternatives. In our evaluation of multi-modal on
the synthetic dataset, we assumed that the ground truth cfg was known.
However since multi-modal algorithm depends on the accuracy of
the mined cfg in real datasets, the error in the mined cfg can affect
the accuracy of mined templates in some cases. We acknowledge
that accurately classifying log lines to ground truth templates in the
absence of any application-specific knowledge of the usage of pa-
rameters, is a hard problem, and call for more further research in
this direction.

4.5 Mining CFG Edges
We now evaluate cfg edge mining performance for the different

competitive approaches mentioned in Section 4.2, from the perspec-
tive of how efficiently they can mine cfg edges from interleaved logs.

We first simulate a distributed application having 10 cfgs exe-
cuting in parallel, where each cfg has 10 threads executing within
it. Keeping the mean cfg size constant at 300 nodes, Figure 10(a)
captures the performance of all the competitive approaches in this
(10cfg-10thread) setting. Note that the accuracy of PM approaches
suffer because they either expect caseIDs to be explicitly present (i.e.
PM) or try to implicitly mine them using generative models (i.e. PM-
noCID). Classical sequence mining SM-vanilla has high recall but it
mines a large number of spurious edges compromising precision.
Transitive reduction on the mined edges using SM-tred improves
precision to some extent but also removes valid detour paths, thereby
lowering recall. But SM-wtred that intelligently decides which edges
to remove has a decent precision and recall performance. OASIS
significantly out-performs all approaches with a precision > 90%
and recall > 82%. Also note that our branching factor threshold
for edges is 10%, which implies that the recall applies to all edges
above that. We observed that even setting a branching threshold of
25% results in above 95% recall for OASIS.

Readers may also notice we leave out WM [17] from our results.
This is because WM failed to produce any output and crashed in
our setting since this approach is designed to only work on the pre-
requisite that all the ordered events within each transaction flow (i.e.
one complete path thru the cfg) is contained in its entirety within
each trace. In contrast to classical process mining, their work is de-
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Figure 12: Anomaly Results

signed to cope with multiple parallel transactions within each trace,
but they require multiple such traces as input to their algorithm. In
our setting where we have a single log, our only option of chunk-
ing the logstream using our time-windowing approach violates their
strict complete-path pre-requisite. We confirmed this limitation of
their technique by creating another synthetic dataset that respects
complete-path boundaries, and as expected, we observed this ap-
proach to run successfully and also give good results.

Next we delve deeper into trends as a function of amount of intra-
and inter- parallelism. Table1 shows the results for (n,t,s) configura-
tions where n: #cfgs, t: #threads per cfg, and s: cfg size. We vary t
(intra-level parallelism) and n (inter-level parallelism) at s=300. For
a single threaded execution, most approaches do well, with the noted
exception being SM-vanilla where precision suffers because of the
large number of false edges mined. As t increases, the precision of
other algorithms drop considerably, whereas the precision of OASIS
remains very high (98.6%). Similar observation is made when n
increases viz. the precision of other algorithms drop considerably,
whereas OASIS has 100% precision. Overall, amongst the alterna-
tive approaches, we observe that SM-wtred is the second best after
OASIS in both the intra- and inter- parallelism setting.

We now experiment with differently sized cfgs having 50, 100,
300 and 500 nodes, each of which execute 10 parallel threads. Fig-
ure 10(b) shows that interestingly the precision/recall numbers im-
prove with larger cfgs. This is because when the cfg has fewer nodes
with a large number of parallel threads executing it, it is harder to
distinguish the true neighbor of a log message from noise. For this
reason the OASIS precision for 60 nodes drops to 65.8%. But with
larger cfgs, OASIS is able to successfully weave out the noise and
construct cfgs with very high accuracy.

Having established OASIS’s capabilities on simulated logs, we
now move to real data. Figure 11(a) and Figure 11(b) show results
on distMW and linux respectively. Here we discarded PM because
of their very bad performance in synthetic datasets. Overall, we ob-
serve that OASIS has the best performance and SM-wtred is second
best, as per our observation in synthetic datasets.

The overall cfg edge mining results show that OASIS significantly
outperforms best known alternatives. The only threat to validity we
acknowledge is when OASIS is unable to disambiguate confusion
due to high intra-level parallelism in small sized cfgs.

4.6 Anomalies
In Figure 12 we report the precision and recall on Single-threaded

(n=1,t=1,s=300), Intra (n=1,t=10,s=300), Inter (n=10,t=1,s=300) and
Realistic (n=10,t=10,s=300) configurations. In these experiments,
the anomalies were injected at a small fraction (approx 10%) of ran-
dom nodes in the cfg.

For sequence anomalies (Figure 12(a)), we observe that the pre-
cision is very high in all settings. In the case of single threaded and
inter setting, the recall is approx 90%. The misses happen when the
anomalies are generated at parent nodes of popular merge points.
This is because, inspite of the injected sequence anomaly at the par-
ent node, a popular merge point is observed to occur due to the merge
point happening through the path of another parent. At this point the
anomaly detection algorithm is unable to differentiate the multiple
paths to the merge point and will not raise the anomaly. This oc-



Intra-Parallelism Among Threads (varying t) Inter-Parallelism among CFGs (varying n)
(n=1,t=1,s=300) (n=1,t=2,s=300) (n=1,t=5,s=300) (n=1,t=10,s=300) (n=2,t=1,s=300) (n=5,t=1,s=300) (n=10,t=1,s=300)

OASIS P=100.0,R=97.1 P=100.0,R=96.2 P=99.8, R=91.9 P=98.6,R=88.8 P=100.0,R=97.1 P=100.0,R=92.7 P=100.0,R=82.3
SM-vanilla P=15.8,R=99.6 P=8.6,R=99.6 P=2.6,R=100.0 P=1.5,R=100.0 P=11.9, R=86.0, P=6.5,R=87.7 P=3.0,R=88.9

SM-tred P=66.4,R=47.6 P=56.7,R=43.9 P=43.5,R=36.9 P=32.5, R=31.1 P=76.6, R=51.9 P=49.0,R=37.4 P=45.1, R=37.3
SM-wtred P=91.8,R=88.6 P=87.5,R=86.9 P=84.2,R=82.7 P=82.9, R=79.8 P=91.1, R=80.6 P=89.3,R=81.4 P=87.1, R=81.3

PM P=96.8,R=97.7 P=81.3,R=97.1 P=72.5,R=84.6 P=39.0,R=58.6 P=91.0,R=91.8 P=61.9,R=53.0 P=24.0,R=29.3
PM-noCID P=64.0,R=78.2 P=58.7,R=73.5 P=45.8,R=59.1 P=24.0,R=40.0 P=64.0,R=69.8 P=27.6,R=41.5 P=10.0,R=24.0

Table 1: CFG Edge Mining with various levels of interleaving (n: #cfgs, t: #threads per cfg, s: cfg size)

currence is magnified in the t=10 settings and the lower recall can
be explained by multiple threads through the cfg being explored in
parallel.

For distribution anomalies (Figure 12(b)), the precision and recall
scores are overall quite satisfactory. We observe that the cause of the
ocassional misses and false alerts are due to the fact that we have not
captured the entire spectrum of inherent fluctuations in the workload
due to larger time-windows over which the branching probability
distributions are being measured. One way to improve performance
is to use smaller time-windows. Larger volumes of training data
would also improve performance since it would capture all potential
benign fluctuations.

4.7 Scalability
Finally we comment on the performance of each of the five stages

(see Section 2.3) of our cfg mining technique in terms of their pro-
cessing time. The pipeline comprises of the Spark [24] implemen-
tations of the four stages discussed in Section 2.3 viz. Approx-
TemplateMiner, TemplateTextClustering, NNSGroupComputation,
CFGEdgeMiner. For the reasons described in section 2.3 the Mul-
timodal phase remains a centralized implementation. The pipeline
is executed on a 10 VM (Spark + Hadoop) cluster, with 1 dedicated
master and 9 workers. Each Spark worker utilizes 1 core and has
4GB memory available to it.

Figure 13 shows how the time taken by each of the stages reduce
as the number of Spark worker nodes increase. We use a 25 GB
subset of the distMW dataset described in section 4.1 comprising ap-
prox 55 million log lines for this experiment. We get more than 5x
speedup when going from single to 9 workers. The total throughput
of the entire pipeline is 522 GB/day using our 10 low-end VM setup.
Further, we also experimented with the entire 100 GB dataset com-
prising more than 200 million lines and got similar throughput (508
GB/day to be precise).
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Figure 13: Scalability on (Spark + Hadoop) Setup

4.8 Case Study: OpenStack
To evaluate the overall effectiveness of our end-to-end system, we

did a case-study with OpenStack [21] VM provisioning system. We
drove the input workload by manually creating, suspending, resum-
ing, and terminating VMs randomly via Openstack’s Web portal.
These meta-level activities were randomly initiated over a period of
one week with a total of approximately 50 such activities.

We collected individual logs from all the different microservices
of Openstack spanning across the nova, glance, keystone, cinder,
swift, neutron, and horizon services. We did a timestamp-based

merging of these individual logs in order to be able to detect flows
across microservices. We used this one-week of logs as training data
to mine the healthy-state cfg. We got a cfg with a total of 264 nodes
(i.e. templates) and 616 edges.

From this mined cfg, we were specifically interested in the sub-
graph that corresponded to the popular create-VM event since this
event requires coordination between most of the microservices. In
order to mine the templates that were associated with the create-
VM event, we manually created a time-series of this event using
the recorded times when we issued this event, and then ran LSH’s
Minhash [5] with a very high time-series similarity threshold to de-
tect other templates that were tightly correlated with the create-VM
event time-series. A summarized view of the subset of the CFG com-
prising 44 templates corresponding to create-VM event is shown in
Figure 14. The templates belong to different modules of different
microservices that participate in the create-VM event, and the cfg
structure depicts interactions between them. The actual template pat-
tern for node 8 in Figure 14 is shown, and it reflects the starting of
the nova compute manager instance.

nova.api.openstack.wsgi (create compute object)

nova.quota (projects reserve)

nova.quota (fixed ip’s) nova.quota (instances, ram, cores)

nova.quota (reserve)

nova.quota (commit)

nova.compute.manager (starting)

nova.network.manager (allocate fixed ip)

nova.compute.resource.tracker (instance)
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oslo_concurrency.processutils nova.virt.libvirt.driver (image)

nova.network.manager( network up on host)
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Figure 14: Summarized view of Openstack CFG subgraph re-
lated to create-VM event

To verify that our anomaly detection scheme does not throw false
alarms when run on another healthy run of the system that is differ-
ent from the training data, we fired different types of VM events be-
yond the training period. On running our anomaly detection scheme
on these logs, we observed that our system raised only one false-
positive sequence anomaly.

We additionally wanted to verify if we can detect anomalies when
we manually inject different types of faults in the Openstack cluster.
To verify this, we manually disrupted the nova-compute microser-
vice by killing the nova-compute process. Subsequently, we fired a
create-VM request. Not surprisingly, the Openstack portal denoted
the failure of the create-VM event but was unable to tell us the cause
for it. To get insights on the potential cause, we ran our anomaly de-
tector, which reported a sequence anomaly at node-7, since the entire
subgraph in Figure 14 from node-8 to node-14 was found missing.



5. RELATED WORK
5.1 Mining of Templates

Contrary to our approach of mining templates from logs using a
multi-modal signal of text and temporal-vicinity, all prior approaches
use only the textual content of log lines in order to mine templates.

The first subcategory of such works [25, 27] mine templates by
leveraging frequent item-set mining approaches wherein the premise
is that by mining sets of co-occuring words across a large fraction of
logrecords, one can filter out the invariant words in the print state-
ments from the time-varying parameters. Frequent-itemset mining
approaches for template mining however suffer from either bad re-
call or bad precision depending on the support threshold.

The next subcategory of such works [9, 23, 26, 28] employ some
mechanism of generating approximate templates using frequency
histogram of keywords mined in the first phase, and then further
cluster similar approximate templates using some form of text-based
similarity metric.

Last but the least, the work of Makanju et al. [19] employs an iter-
ative partitioning technique that recursively partitions the set of log
lines, first on number of words in a line, followed by the words in
different positions, followed by another partitioning based on asso-
ciation of words in the log lines. But this approach works on imprac-
tical assumption that parameters comprise single words only.

5.2 Mining of CFG Edges
Contrary to our two-phase CFG edge mining approach, we de-

scribe prior approaches of mining template sequences on interleaved
logs and their limitations.

Firstly, classical process mining [6, 11, 18] approaches are not di-
rectly applicable to our problem setting since they operate on the
prerequisite of clearly demarcated transactions and require an input
dataset comprising a set of such transactions.

A second class of approaches [3, 18] exploit temporal dependen-
cies between events to mine control flows under high amount of in-
terleaved traces. Assuming that enough data is available for min-
ing statistically significant dependencies, these approaches use some
form of association rule mining [29] to mine correlated events and
can then do transitive edge removal. However transitive edge re-
moval will result in removal of genuine detour paths in cfg.

A third class of approaches [17, 30] mine template sequences via
stitching together log message templates that share the same param-
eter. But from our experimentation with real-world log datasets, we
observed that parameters unless explicitly embedded (as in [13]),
inherently do not flow deep enough. Also, they typically metamor-
phose, resulting in detection of very short sequences.

Finally, worth mentioning here is that instead of mining sequences,
one may mine only the frequency, periodicity, and mutual distribu-
tion of different message templates, as proposed in Melody [15].
These models, due to the lack of the underlying cfg structure, are
unable to pinpoint the root-cause of the change in the expected distri-
bution of different event types, and end up throwing alerts for every
node in the affected subtree of the cfg.

6. CONCLUSION
We have presented an approach of detecting anomalous run-time

behaviour in distributed systems from execution logs. We mine a
control-flow-graph (cfg) that captures healthy execution flows that
span within and across different components of a distributed system,
and raise anomaly alerts on observing deviations from this learnt cfg
model. We outlined why mining such a cfg from interleaved logs
of a distributed application without making any application specific
assumptions, is a hard problem. We proposed novel and scalable
algorithms to accurately mine the cfg, and based on an extensive
evaluation against alternative design choices, depict the superiority
of our proposed algorithms.
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