
Fast Memory-efficient Anomaly Detection in
Streaming Heterogeneous Graphs

Emaad Manzoor
⇤

Stony Brook University
Department of Computer Science
emanzoor@cs.stonybrook.edu

Sadegh M. Milajerdi
†

University of Illinois at Chicago
Department of Computer Science

smomen2@uic.edu

Leman Akoglu
Stony Brook University

Department of Computer Science
leman@cs.stonybrook.edu

ABSTRACT
Given a stream of heterogeneous graphs containing di↵er-
ent types of nodes and edges, how can we spot anomalous
ones in real-time while consuming bounded memory? This
problem is motivated by and generalizes from its application
in security to host-level advanced persistent threat (APT)
detection. We propose StreamSpot, a clustering based
anomaly detection approach that addresses challenges in two
key fronts: (1) heterogeneity, and (2) streaming nature. We
introduce a new similarity function for heterogeneous graphs
that compares two graphs based on their relative frequency
of local substructures, represented as short strings. This
function lends itself to a vector representation of a graph,
which is (a) fast to compute, and (b) amenable to a sketched

version with bounded size that preserves similarity.
StreamSpot exhibits desirable properties that a stream-

ing application requires—it is (i) fully-streaming; processing
the stream one edge at a time as it arrives, (ii) memory-
e�cient; requiring constant space for the sketches and the
clustering, (iii) fast; taking constant time to update the
graph sketches and the cluster summaries that can process
over 100K edges per second, and (iv) online; scoring and
flagging anomalies in real time. Experiments on datasets
containing simulated system-call flow graphs from normal
browser activity and various attack scenarios (ground truth)
show that StreamSpot is high-performance; achieving above
95% detection accuracy with small delay, as well as competi-
tive time and memory usage.

1. INTRODUCTION
Anomaly detection is a pressing problem for various critical

tasks in security, finance, medicine, and so on. In this work,
we consider the anomaly detection problem for streaming
heterogeneous graphs, which contain di↵erent types of nodes
and edges. The input is a stream of timestamped and typed

⇤
Primary author.

†
This author has contributed with the creation of the datasets

used in this work (i.e., collecting and preprocessing system-call

traces for the benign/malicious scenarios).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’16, August 13-17, 2016, San Francisco, CA, USA
c� 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939783

edges, where the source and destination nodes are also typed.
Moreover, multiple such graphs may be arriving over the
stream simultaneously, that is, edges that belong to di↵erent
graphs may be interleaved. The goal is to accurately and
quickly identify the anomalous graphs that are significantly
di↵erent from what has been observed over the stream thus
far, while meeting several important needs of the driving
applications including fast real-time detection and bounded
memory space usage.
The driving application that motivated our work is the

advanced persistent threat (APT) detection problem in secu-
rity, although the above abstraction can appear in numerous
other settings (e.g., software verification). In the APT sce-
nario, we are given a stream of logs capturing the events
occurring in the system. These logs are used to construct
what is called information flow graphs, in which edges depict
data or control dependencies. Both the nodes and edges of
the flow graphs are typed. Examples of node types are file,
process, etc. and edge types include various system calls
such as read, write, fork, etc. as well as other parent-child
relations. Within a system, an information flow corresponds
to a unit of functionality (e.g., checking email, watching video,
software updates, etc.). Moreover, multiple information flows
may be occurring in the system simultaneously. The working
assumption for APT detection is that the information flows
induced by malicious activities in the system are su�ciently
di↵erent from the normal behavior of the system. Ideally,
the detection is to be done in real-time with small compu-
tational overhead and delay. As the system-call level events
occur rapidly in abundance, it is also crucial to process them
in memory while also incurring low space overhead. The
problem then can be cast as real-time anomaly detection
in streaming heterogeneous graphs with bounded space and
time, as stated earlier.
Graph-based anomaly detection has been studied in the

past two decades. Most work is for static homogeneous
graphs [5]. Those for typed or attributed graphs aim to find
deviations from frequent substructures [26, 12, 22], anoma-
lous subgraphs [16, 27], and community outliers [13, 28],
all of which are designed for static graphs. For streaming
graphs various techniques have been proposed for clustering
[3] and connectivity anomalies [4] for plain graphs, which are
recently extended to graphs with attributes [35, 24]. (See
Sec. 6) Existing approaches are not, at least directly, appli-
cable to our motivating scenario as they do not exhibit all
of the desired properties simultaneously; namely, handling
heterogeneous graphs, streaming nature, low computational
and space overhead, and real-time anomaly detection.

To address the problem for streaming heterogeneous graphs,
we introduce a new clustering-based anomaly detection ap-
proach called StreamSpot1 that (i) can handle temporal
graphs with typed nodes and edges, (ii) processes incoming
edges fast and consumes bounded memory, as well as (iii)
dynamically maintains the clustering and detects anomalies
in real time. In a nutshell, we propose a new shingling-based
similarity function for heterogeneous graphs, which lends it-
self to graph sketching that uses fixed memory while preserv-
ing similarity. We show how to maintain the graph sketches
e�ciently as new edges arrive. Based on this representation,
we employ and dynamically maintain a centroid-based clus-
tering scheme to score and flag anomalous graphs. The main
contributions of this work are listed as follows:

• Novel formulation and graph similarity: We for-
mulated the host-level APT detection problem as a
clustering-based anomaly detection task in streaming
heterogeneous graphs. To enable an e↵ective clustering,
we designed a new similarity function for timestamped
typed graphs, based on shingling, which accounts for the
frequency of di↵erent substructures in a graph. Besides
being e�cient to compute and e↵ective in capturing
similarity between graphs, the proposed function lends
itself to comparing two graphs based on their sketches,
which enables memory-e�ciency.

• Dynamic maintenance: We introduce e�cient tech-
niques to keep the various components of our approach
up to date as new edges arrive over the stream. Specif-
ically, we show how to maintain (a) the graph sketches,
and (b) the clustering incrementally.

• Desirable properties: Our formulation and proposed
techniques are motivated by the requirements and de-
sired properties of the application domain. As such, our
approach is (i) fully streaming, where we perform a con-
tinuous, edge-level processing of the stream, rather than
taking a snapshot-oriented approach; (ii) time-e�cient,
where the processing of each edge is fast with constant
complexity to update its graph’s sketch and the clus-
tering; (iii) memory-e�cient, where the sketches and
cluster summaries consume constant memory that is
controlled by user input, and (iv) online, where we
score and flag the anomalies in real-time.

We quantitatively validate the e↵ectiveness and e�ciency
(time and space) of StreamSpot on simulated datasets con-
taining normal host-level activity as well as abnormal attack
scenarios (i.e., ground truth). We also design experiments to
study the approximation quality of our sketches, and the be-
havior of our detection techniques under varying parameters,
such as memory size.

2. PROBLEM & OVERVIEW
For host-level APT detection, a host machine is instru-

mented to collect system logs. These logs essentially capture
the events occurring in the system, such as memory accesses,
system calls, etc. An example log sequence is illustrated
in Figure 1. Based on the control and data dependences,
information flow graphs are constructed from the system
logs. In the figure, the tag column depicts the ID of the
information flow (graph) that an event (edge) belongs to.

1

Code/data at http://www3.cs.stonybrook.edu/~emanzoor/streamspot/

time% pid% event% arg/data% tag%
100# 10639# fork# NULL# 1#

200# 10640# execve# /bin/sh# 1#

300# 10650# read# STDIN# 2#

400# 10640# fstat# 0xbfc5598# 1#

500# 10660# sock_wr# 0.0.0.0# 2#

…# …# …# …# …#

10650%

STDIN%

10660%

0.0.0.0%

10639%

10640%

0xbfc5598%

<100,fork>%

/bin/sh%

Figure 1: Example stream of system logs, and two re-
sulting information flow graphs (red vs. blue). Both
nodes and edges are typed. Edges arriving to di↵er-
ent flows may interleave.

The streaming graphs are heterogeneous where edge types
correspond to system calls such as read, fork, sock_wr, etc.
and node types include socket, file, memory, etc. As such,
an edge can be represented in the form of:

< source-id, source-type �s, dest-id, dest-type �d,

timestamp t, edge-type �e, flow-tag >

These edges form dynamically evolving graphs, where the
edges sharing the same flow-tag belong to the same graph.
Edges arriving to di↵erent graphs may be interleaved, that
is, multiple graphs may be evolving simultaneously.

Our goal is to detect anomalous graphs at any given time
t, i.e., in real time as they occur. To achieve this goal, we
follow a clustering-based anomaly detection approach. In
a nutshell, our method maintains a small, memory-e�cient
representation of the evolving graphs in main memory, and
uses a new similarity measure that we introduce to cluster
the graphs. The clustering is also maintained dynamically as
existing graphs evolve or as new ones arrive. Anomalies are
flagged in real time through deviations from this clustering
model that captures the normal flow patterns.
The main components of StreamSpot are as follows,

which are detailed further in the noted (sub)sections:

• Similarity of heterogeneous graphs: (§3.1) We in-
troduce a new similarity measure for heterogeneous
graphs with typed nodes and edges as well as times-
tamped edges. Each graph G is represented by a what
we call shingle-frequency vector (or shortly shingle vec-

tor) zG. Roughly, a k-shingle s(v, k) is a string con-
structed by traversing edges, in their temporal order,
in the k-hop neighborhood of node v. The shingle-
vector contains the counts of unique shingles in a graph.
Similarity between two graphs is defined as the cosine
similarity between their respective shingle vectors. In-
tuitively, the more the same shingles two graphs contain
in common, the more similar they are.

• Memory-e�cient sketches: (§3.2) The number of
unique shingles can be arbitrarily large for heteroge-
neous graphs with hundreds to thousands of node and
edge types. We show how to instead use a sketch repre-
sentation of a graph. Sketches are small, constant-size
vector representations of graphs whose pairwise simi-
larities also approximate the (cosine) similarities of the
shingle vectors of those graphs.

• E�cient maintenance of sketches: (§3.3) As new
edges arrive, shingle counts of a graph change. As
such, the shingle vector entries need to be updated.
Recall that we do not explicitly maintain this vector
in memory, but rather its (much smaller) sketch. In
this paper, we show how to update the sketch of a
graph e�ciently, (i) in constant time and (ii) without
incurring any additional memory overhead.

• Clustering graphs (dynamically): (§4) We employ
a centroid-based clustering of the graphs to capture
normal behavior. We show how to update the clustering
as the graphs change and/or as new ones emerge, that
again, exhibit small memory footprints.

• Anomaly detection (in real time): We score an
incoming or updated graph by its distance to the closest
centroid in the clustering. Based on a distribution of
distances for the corresponding cluster, we quantify the
significance of the score to flag anomalies. Distance
computation is based on (fixed size) sketches, as such,
scoring is fast for real time detection.

3. SKETCHING TYPED GRAPHS
We require a method to represent and compute the simi-

larity between heterogeneous graphs that also captures the
temporal order of edges. The graph representation must
permit e�cient online updates and consume bounded space
with new edges arriving in an infinite stream.

Though there has been much work on computing graph
similarity e�ciently, existing methods fall short of our require-
ments. Methods that require knowing node correspondence
[20] are inapplicable, as are graph kernels that precompute a
fixed space of substructures [31] to represent graphs, which
is infeasible in a streaming scenario. Methods that rely on
global graph metrics [7] cannot accommodate edge order and
are also inapplicable. Graph-edit-distance-based [9] methods
approximate hard computational steps with heuristics that
provide no error guarantees, and are hence unsuitable.
We next present a similarity function for heterogenous

graphs that captures the local structure and respects tem-
poral order of edges. The underlying graph representation
permits e�cient updates as new edges arrive in the stream
and consumes bounded space, without needing to compute
or store the full space of possible graph substructures.

3.1 Graph Similarity by Shingling
Analogous to shingling text documents into k-grams [8] to

construct their vector representations, we decompose each
graph into a set of k-shingles and construct a vector of
their frequencies. The similarity between two graphs is
then defined as the cosine similarity between their k-shingle
frequency vectors. We formalize these notions below.

Definition 1 (k-shingle). Given a graph G = (V,E)
and node v 2 V , the k-shingle s(v, k) is a string constructed

via a k-hop breadth-first traversal starting from v as follows:

1. Initialize k-shingle as type of node v: s(v, k) = �v.

2. Traverse the outgoing edges from each node in the order

of their timestamps, t.
3. For each traversed edge e having destination w, con-

catenate the types of the edge and the destination node

with the k-shingle: s(v, k) = s(v, k)� �e � �w.

We abbreviate the Ordered k-hop Breadth First Traversal
performed during the k-shingle construction defined above as
OkBFT. It is important to note that the k-hop neighborhood
constructed by an OkBFT is directed.

Definition 2 (shingle (frequency) vector zG). Given

the k-shingle universe S and a graph G = (V,E), let

SG = {s(v, k), 8v 2 V } be the set of k-shingles of G. zG
is a vector of size |S| wherein each element zG(i) is the

frequency of shingle si 2 S in SG.

Shingling is illustrated for two example graphs in Figure
2, along with their corresponding shingle vectors.

zG zG�

A 0 2

C 1 1

D 1 0

E 1 0

AxByC 1 1

BrArA 0 1

BpEoD 1 0

AxByC
BpEoD
C
D
E

A

B

C E

D
<600,o>'

A

B

C A

A
<650,r>'

AxByC
BrArA
C
A
A

Figure 2: Shingling: (left) two example graphs with
their shingles listed in dashed boxes (for k = 1),
(right) corresponding shingle frequency vectors.

The similarity between two graphs G and G0 is then the
cosine similarity between their shingle vectors zG and zG0 .

Representing graphs by shingle vectors captures both their
local graph structure and edge order. It also permits e�cient
online updates, since the local nature of k-shingles ensures
that only a few shingle vector entries need to be updated
for each incoming edge (§3.3). The parameter k controls the
trade-o↵ between expressiveness and computational e�ciency.
A larger k produces more expressive local neighborhoods,
whereas a smaller one requires fewer entries to be updated
in the shingle vector per incoming edge.

3.2 Graph Sketches by Hashing
With a potentially large number of node and edge types,

the universe S of k-shingles may explode combinatorially and
render it infeasible to store |S|-dimensional shingle vectors
for each graph. We now present an alternate constant-space
graph representation that approximates the shingle count
vector via locality-sensitive hashing (LSH) [17].

An LSH scheme for a given similarity function enables e�-
cient similarity computation by projecting high-dimensional
vectors to a low-dimensional space while preserving their
similarity. Examples of such schemes are MinHash [8] for
the Jaccard similarity between sets and SimHash [10] for
the cosine similarity between real-valued vectors, which we
detail further in this section.

3.2.1 SimHash

Given input vectors in Rd, SimHash is first instantiated
with L projection vectors r

1

, . . . , rL 2 Rd chosen uniformly
at random from the d-dimensional Gaussian distribution.
The LSH hrl(z) of an input vector z for a given random
projection vector rl, l = 1 . . . , L, is defined as follows:

hrl(z) =

(
+1, if z · rl � 0

�1, if z · rl < 0
(1)

In other words hrl(z) = sign(z · rl), which obeys the
property that the probability (over vectors r

1

, . . . , rL) that
any two input vectors zG and zG0 hash to the same value is
proportional to their cosine similarity:

Pl=1...L[hrl(zG) = hrl

�
zG0

�
] = 1�

cos�1(
zG·zG0

kzGkkzG0k)

⇡
(2)

Since computing similarity requires only these hash values,
each d-dimensional input vector z can be replaced with an
L-dimensional sketch vector x containing its LSH values, i.e.,

r1 … rL

+1 ... -1

-1 … +1

-1 … -1

+1 … +1

-1 … +1

+1 … +1

-1 … -1

zG

A 0

C 1

D 1

E 1

AxByC 1

BrArA 0

BpEoD 1

yG xG

1 -4 + 1 = -3 sign(-3) = -1

… … …

… … …

L -2 + 3 = +1 sign(+1) = +1

yG(l) = zG · rl
xG(l) = sign(yG(l))

3.2.1 SimHash

Given input vectors in Rd, SimHash is Þrst instantiated
with L projection vectors r

1

, . . . , rL 2 Rd chosen uniformly
at random from the d-dimensional Gaussian distribution.
The LSH hrl(z) of an input vector z for a given random
projection vector rl, l = 1 . . . , L, is deÞned as follows:

hrl(z) =

(
+1, if z á rl � 0

�1, if z á rl < 0
(1)

In other words hrl(z) = sign(zárl), which obeys the property
that the probability (over vectors r

1

, . . . , rL) that any two
input vectors z and z0 hash to the same value is proportional
to their cosine similarity:

Prl=1...,L[hrl(z) = hrl(z
0)] = 1�

cos�1(záz0
kzkkz0k)

⇡
. (2)

The similarity between two input vectors can be estimated
by empirically evaluating this probability as the proportion
of hash values that the input vectors agree on when hashed
with L random vectors. Since computing similarity requires
only these hash values, each d-dimensional input vector z
can be replaced with an L-dimensional sketch vector x con-
taining its LSH values, i.e., x = [hr1(z), . . . , hrL(z)]. As
such, each sketch vector can be represented with just L bits,
where each bit corresponds to a value in {+1,�1}.

In summary, given a target dimensionality L ⌧ |S|, we
can represent each graphG with a sketch vector of dimension
L, discard the |S|-dimensional shingle vectors and compute
similarity in this new vector space.

3.2.2 SimpliÞed SimHash

Note that we need to perform the same set of random pro-
jections on the changing or newly emerging shingle vectors,
with the arrival of new edges and/or new graphs. As such,
we would need to maintain the set of L projection vectors
in main memory (for now, later we will show that we do not
need them explicitly).
In practice, the random projection vectors rlÕs remain suf-

Þciently random when each of their |S| elements are drawn
uniformly from {+1,�1} instead of from a |S|-dimensional
Gaussian distribution [31]. With this simpliÞcation, just like
the sketches, each projection vector can also be represented
using |S| bits, rather than 32⇤ |S| bits (assuming 4 bytes per
ßoat), further saving space.
However, three main shortcomings of SimHash remain:

(1) it requires explicit projection vectors in memory, (2) |S|
can still get prohibitively large, and (3) it requires knowing
the size of the complete shingle universe |S| to specify the
dimension of each random vector. With new shingles con-
tinuously being formed from the new node and edge types
arriving in the stream, the complete shingle universe (and
hence its size) always remains unknown. As such, SimHash
as proposed cannot be applied in a streaming setting.
[drawing]

3.2.3 StreamHash

We propose StreamHash which, instead of L |S|-
dimensional random bit vectors (with entries correspond-
ing to {+1,�1} as described above), is instantiated with L
hash functions h

1

, . . . , hL picked uniformly at random from
a family H of hash functions, mapping shingles to {+1,�1}.
That is, a function h 2 H is a deterministic function that

maps a Þxed/given shingle s to either +1 or �1. H is chosen
so that it is equally probable (over all hash functions in the
family) for a given shingle to hash to +1 or �1:

Prh2H[h(s) = +1] = Prh2H[h(s) = �1], 8s 2 S. (3)

If the shingle universe is Þxed and known, picking a hash
function hl at random from H is equivalent to picking some
vector rl at random from {+1,�1}|S|, with each element
rl(i) equal to the hash value hl(si).
If we overload the Òdot-productÓ operator for an input

vector z and a hash function hl as follows:

y(l) = z á hl =
X

i=1,...,|S|
z(i)hl(si), l = 1 . . . L (4)

we can deÞne the LSH ghl(z) of the input vector for the
given hash function similar to Eq. (1):

ghl(z) =

(
+1, if z á hl � 0

�1, if z á hl < 0
(5)

The y vector is called the projection vector of a graph.
Each entry y(l) essentially holds the sum of the counts of
shingles that map to +1 by hl, minus the sum of the counts
of shingles that map to �1 by hl.
The L-bit sketch can then be constructed for each input

vector z by x = sign(y) and used to compute similarity the
same way as in SimHash. Unlike SimHash, the sketches in
StreamHash can be constructed and maintained incremen-

tally (¤3.3), as a result of which, we no longer need to know
the complete shingle universe S or maintain |S|-dimensional
random vectors in memory.

Choosing H. We require a family that is uniform: for a
given shingle, hash values in {+1,�1} are equiprobable over
all hash functions in the family (formalized in Eq. (3)).
To disallow trivially uniform families such as H = {8s 2

S : h
1

(s) = +1, h
2

(s) = �1}, we also require each hash
function in the family to be uniform: for a given hash func-
tion, hash values in {+1,�1} are equiprobable over all shin-
gles in the universe:

Prs2S [h(s) = +1] = Prs2S [h(s) = �1], 8h 2 H. (6)

To further disallow uniform families with correlated uni-
form hash functions such as H = {h

1

(s), h
2

(s) = �h
1

(s)}
(where h

1

is some uniform hash function), we require hash
functions in the family to be pairwise-independent :

8s, s0 2 S s.t. s 6= s0 and 8t, t0 2 {+1,�1},
Prh2H[h(s0) = t0|h(s) = t] = Prh2H[h(s0) = t0]. (7)

A family satisfying the aforementioned properties is said
to be strongly universal [36].
For our scenario, we adopt a fast implementation of the

strongly universal multilinear family for strings [23]. In this
family, an input string s is divided into n components (gen-
eralizing ÒcharactersÓ) as s = s

1

s
2

. . . sn, and hashed using
n random numbers m

1

, . . . ,mn as follows:

h(s) = m
1

+
nX

i=1

mi+1

si. (8)

Thus, the hash value for a shingle s of length |s| can be
computed in ⇥(|s|) time. If |s|

max

is the maximum possi-
ble length of a shingle, each hash function is represented

1

…

…

…

…

…

|S|

Figure 3: Sketching: (left) L random vectors, (cen-
ter) shingle vector zG of graph G, (right) correspond-
ing projection vector yG and sketch vector xG.

x = [hr1(z), . . . , hrL(z)]. As such, each sketch vector can be
represented with just L bits, where each bit corresponds to
a value in {+1,�1}.
The similarity between two input vectors then can be

estimated by empirically evaluating the probability in Eq.
(2) as the proportion of hash values that the input vectors
agree on when hashed with L random vectors. That is,

sim(G,G0) / |{l : xG(l) = xG0(l)}|
L

(3)

In summary, given a target dimensionality L ⌧ |S|, we
can represent each graph G with a sketch vector of dimension
L, discard the |S|-dimensional shingle vectors and compute
similarity in this new vector space.

3.2.2 Simplified SimHash

Note that we need to perform the same set of random
projections on the changing or newly emerging shingle vectors,
with the arrival of new edges and/or new graphs. As such,
we would need to maintain the set of L projection vectors in
main memory (for now, later we will show that we do not
need them explicitly).
In practice, the random projection vectors rl’s remain

su�ciently random when each of their |S| elements are drawn
uniformly from {+1,�1} instead of from a |S|-dimensional
Gaussian distribution [29]. With this simplification, just like
the sketches, each projection vector can also be represented
using |S| bits, rather than 32 ⇥ |S| bits (assuming 4 bytes
per float), further saving space.
Figure 3 illustrates the idea behind sketching (for now in

the static case). Given |S|-dimensional random rl vectors,
l = 1 . . . L, with elements in {+1,�1} (left) and a shingle
vector zG (center), the L-dimensional sketch xG is obtained
by taking the sign of the dot product of z with each rl (right).
However, three main shortcomings of SimHash remain:

(1) it requires explicit projection vectors in memory, (2) |S|
can still get prohibitively large, and (3) it requires knowing
the size of the complete shingle universe |S| to specify the
dimension of each random vector. With new shingles con-
tinuously being formed from the new node and edge types
arriving in the stream, the complete shingle universe (and
hence its size) always remains unknown. As such, SimHash
as proposed cannot be applied in a streaming setting.

3.2.3 StreamHash

To resolve the issues with SimHash for the streaming
setting, we propose StreamHash which, rather than L |S|-
dimensional random bit vectors (with entries corresponding
to {+1,�1} as described above), is instead instantiated with
L hash functions h

1

, . . . , hL picked uniformly at random from

a family H of hash functions, mapping shingles to {+1,�1}.
That is, a h 2 H is a deterministic function that maps a
fixed/given shingle s to either +1 or �1.

Properties of H. We require a family that exhibits three
key properties; uniformity with respect to shingles and hash
functions, and pairwise-independence, as described below.

First, it should be equally probable for a given shingle to
hash to +1 or �1 over all hash functions in the family:

Prh2H[h(s) = +1] = Prh2H[h(s) = �1], 8s 2 S. (4)

Second, to disallow trivially uniform families such as H =
{8s 2 S : h

1

(s) = +1, h
2

(s) = �1}, we also require that for a
given hash function, hash values in {+1,�1} are equiprobable
over all shingles in the universe:

Prs2S [h(s) = +1] = Prs2S [h(s) = �1], 8h 2 H. (5)

To further disallow uniform families with correlated uni-
form hash functions such as H = {h

1

(s), h
2

(s) = �h
1

(s)}
(where h

1

is some uniform hash function), we require the
hash functions in the family to be pairwise-independent:

8s, s0 2 S s.t. s 6= s0 and 8t, t0 2 {+1,�1},
Prh2H[h(s0) = t0|h(s) = t] = Prh2H[h(s0) = t0]. (6)

If the shingle universe is fixed and known, picking a hash
function hl at random from H is equivalent to picking some
vector rl at random from {+1,�1}|S|, with each element
rl(i) equal to the hash value hl(si).
If we overload the “dot-product” operator for an input

vector z and a hash function hl as follows:

y(l) = z · hl =
X

i=1,...,|S|
z(i)hl(si), l = 1 . . . L (7)

we can define the LSH ghl(z) of the input vector z for the
given hash function similar to Eq. (1):

ghl(z) =

(
+1, if z · hl � 0

�1, if z · hl < 0
(8)

The y vector is called the projection vector of a graph.
Each entry y(l) as given in Eq. (7) essentially holds the sum
of the counts of shingles that map to +1 by hl minus the
sum of the counts of shingles that map to �1 by hl.
The L-bit sketch can then be constructed for each input

vector z by x = sign(y) and used to compute similarity the
same way as in SimHash. Unlike SimHash, the sketches in
StreamHash can be constructed and maintained incremen-

tally (§3.3), as a result of which, we no longer need to know
the complete shingle universe S or maintain |S|-dimensional
random vectors in memory.

Choosing H. A family satisfying the aforementioned
three properties is said to be strongly universal [34]. We
adopt the strongly universal multilinear family for strings
[21]. In this family, the input string s (i.e., shingle) is divided
into |s| components (i.e., “characters”) as s = c

1

c
2

. . . c|s|. A
hash function hl is constructed by first choosing |s| random
numbers m(l)

1

, . . . ,m
(l)
|s|, and s is then hashed as follows:

hl(s) = 2⇥
✓
(m(l)

1

+

|s|X

i=2

m
(l)
i ⇥ int(ci)) mod 2

◆
� 1. (9)

where int(ci) is the ASCII value of ci and hl(s) 2 {+1,�1}.

Note that the hash value for a shingle s of length |s| can be
computed in ⇥(|s|) time.
We represent each hash function by |s|

max

random num-
bers, where |s|

max

denotes the maximum possible length of
a shingle. These numbers are fixed per hash function hl,
as it is a deterministic function that hashes a fixed/given
shingle to the same value each time. In practice, L hash
functions can be chosen uniformly at random from this family
by generating L⇥ |s|

max

uniformly random 64-bit integers
using a pseudorandom number generator.

Merging sketches. Two graphs G and G0 will merge
if an edge arrives in the stream having its source node in G
and destination node in G0, resulting in a graph that is their
union G [G0. The centroid of a cluster of graphs is also
represented by a function of their union (§4). Both scenarios
require constructing the sketch of the union of graphs, which
we detail in this subsection.

The shingle vector of the union of two graphs G and G0 is
the sum of their individual shingle vectors:

zG[G0 = zG + zG0 . (10)

As we show below, the projection vector of the union of two
graphs yG[G0 also turns out to be the sum of their individual
projection vectors yG and yG0 ; 8l = 1, . . . , L:

yG[G0(l) = zG[G0 · hl (by Eq. (7))

=
X

i=1,...,|S|
(zG(i) + zG0(i))hl(si) (by Eq. (10))

=
X

i=1,...,|S|
zG(i)hl(si) +

X

i=1,...,|S|
zG0(i)hl(si)

= yG(l) + yG0(l). (11)

Hence, the L-bit sketch of G [G0 can be computed as
xG[G0 = sign(yG + yG0). This can trivially be extended to
construct the sketch of the union of any number of graphs.

3.3 Maintaining Sketches Incrementally
We now describe how StreamHash sketches are updated

on the arrival of a new edge in the stream. Each new edge
being appended to a graph gives rise to a number of outgoing
shingles, which are removed from the graph, and incoming

shingles, which are added to the graph. These shingles are
constructed by OkBFT traversals from certain nodes of the
graph, which we detail further in this section.

Let e(u, v) be a new edge arriving in the stream from node
u to node v in some graph G. Let xG be the L-bit sketch
vector of G. We also associate with each graph a length-
L projection vector yG, which contains “dot-products” (Eq.
(7)) for the hash functions h

1

, . . . , hL. For an empty graph,
yG = 0 and xG = 1 since z(i)’s are all zero.

For a given incoming shingle si, the corresponding z(i)
implicitly2 increases by 1. This requires each element of
the projection vector yG(l) to be updated by simply adding
the corresponding hash value hl(si) 2 {+1,�1} due to the
nature of the dot-product in Eq. (7). Updating yG for an
outgoing shingle proceeds similarly but by subtracting the
hash values. For each element yG(l) of the projection vector
that is updated and that changes sign, the corresponding bit
of the sketch xG(l) is updated using the new sign (Eq. (8)).
Updating the sketch for an incoming or outgoing shingle s is
formalized by the following update equations. 8l = 1, . . . , L:

2

As we do not maintain the shingle vector z’s explicitly.

yG(l) =

(
yG(l) + hl(s), if s an incoming shingle

yG(l)� hl(s), if s an outgoing shingle
(12)

xG(l) = sign(yG(l)). (13)

Now that we can update the sketch (using the updated
projection vector) of a graph for both incoming and outgoing
shingles, without maintaining any shingle vector explicitly,
we need to describe the construction of the incoming and
outgoing shingles for a new edge e.
Appending e to the graph updates the shingle for every

node that can reach e’s destination node v in at most k
hops, due to the nature of k-shingle construction by OkBFT.
For each node w to be updated, the incoming shingle is con-
structed by an OkBFT from w that considers e during traver-
sal, and the outgoing shingle is constructed by an OkBFT
from w that ignores e during traversal. In practice, both
shingles can be constructed by a single modified-OkBFT
from w parameterized with the new edge.

Since the incoming shingle for a node may be the outgoing
shingle for another, combining and further collapsing the
incoming and outgoing shingles from all the updated nodes
will enable updating the sketch while minimizing the number
of redundant updates.

3.4 Time and Space Complexity
Time. Since sketches are constructed incrementally (§3.3),

we evaluate the running time for each new edge arriving in
the stream. This depends on the largest directed k-hop
neighborhood possible for the nodes in our graphs. Since the
maximum length of a shingle |s|

max

is proportional to the
size of this neighborhood, we specify the time complexity in
terms of |s|

max

.
A new edge triggers an update to O(|s|

max

) nodes, each of
which results in an OkBFT that takes O(|s|

max

) time. Thus,
it takes O(|s|2

max

) time to construct the O(|s|
max

) incoming
and outgoing shingles for a new edge. Hashing each shingle
takes O(|s|

max

) time (§3.2.3) resulting in a total hashing
time of O(|s|2

max

). Updating the projection vector elements
and bits in the sketch takes O(L) time.

This leads to an overall sketch update time of O(L+ |s|2
max

)
per edge. Since L is a constant parameter and |s|

max

depends
on the value of the parameter k, the per-edge running time
can be controlled.

Space. Each graph (of size at most |G|
max

) with its sketch
and projection vectors consumes O(L+ |G|

max

) space.3 How-
ever, the number of graphs in the stream is unbounded, as
such the overall space complexity is dominated by storing
graphs. Hence, we define a parameter N to limit the maxi-
mum number of edges we retain in memory at any instant.
Once the total number of edges in memory exceeds N , we
evict the oldest edge incident on the least recently touched

node. The rationale is that nodes exhibit locality of reference
by the edges in the stream that touch them (i.e., that have
them as a source or destination). With up to N edges, we
also assume a constant number c of graphs is maintained and
processed in memory at any given time.
The total space complexity is then O(cL+N) which can

also be controlled. Specifically, we choose N proportional to
the available memory size, and L according to the required
quality of approximation of graph similarity.

3

Note that the projection vector holds L positive and/or negative integers,
and the sketch is a length-L bit vector.

4. ANOMALY DETECTION
Bootstrap Clusters. StreamSpot is first initialized

with bootstrap clusters obtained from a training dataset of
benign flow-graphs. The training graphs are grouped into
K clusters using the K-medoids algorithm, with K chosen
to maximize the silhouette coe�cient [30] of the resulting
clustering. This gives rise to compact clusters that are well-
separated from each other. An anomaly threshold for each
cluster is set to 3 standard deviations greater than the mean
distance between the cluster’s graphs and medoid. This
threshold is derived from Cantelli’s inequality [14] with an
upper-bound of 10% on the false positive rate.

Provided the bootstrap clusters, StreamSpot constructs
StreamHash projection vectors for each training graph,
and constructs the projection vector of the centroid of each
cluster as the average of the projection vectors of the graphs it
contains. In essence, the centroid of a cluster is the “average
graph”with shingle vector counts formed by the union (§3.2.3)
of the graphs it contains divided by the number of graphs.
The sketch of each centroid is then constructed and the
bootstrap graphs are discarded from memory.

Streaming Cluster Maintenance. Apart from the
cluster centroid sketches and projection vectors, we maintain
in memory the number of graphs in each cluster and, for
each observed and unevicted graph, its anomaly score and
assignment to either one of K clusters or an “attack” class.
Each new edge arriving at a graph G updates its sketch xG

and projection vector yG to x0
G and y0

G respectively (§3.3).
x0
G is then used to compute the distance of G to each cluster

centroid. Let Q be the nearest cluster to G, of size |Q| and
with centroid sketch xQ and centroid projection vector yQ.

If G was previously unassigned to any cluster and the
distance of G to Q is lesser than its corresponding cluster
threshold, then G is assigned to Q and its size and projection
vector are updated 8l = 1, . . . , L as:

yQ(l) =
yQ(l)⇥ |Q|+ y0

G(l)
|Q|+ 1

, |Q| = |Q|+ 1 . (14)

If the graph was previously already assigned to Q, its size
remains the same and its projection vector is updated as:

yQ(l) = yQ(l) +
y0
G(l)� yG(l)

|Q| . (15)

If the graph was previously assigned to a di↵erent cluster
R 6= Q, Q is updated using Eq. 14 and the size and projection
vector of R are updated as:

yR(l) =
yR(l)⇥ |R|� yG(l)

|R|� 1
, |R| = |R|� 1 . (16)

If the distance from G to Q is greater than its corresponding
cluster threshold, G is removed from its assigned cluster (if
any) using Eq. (16) and assigned to the “attack” class. In
all cases where the projection vector of Q (or R) is updated,
the corresponding sketch is also updated as:

xQ(l) = sign(yQ(l)), 8l = 1, . . . , L. (17)

Finally, the anomaly score of G is computed as its distance
to Q after Q’s centroid has been updated.

Time and Space Complexity. With K clusters and
L-bit sketches, finding the nearest cluster takes O(KL) time
and computing the graph’s anomaly score takes O(L) time.
Adding a graph to (Eq. (14)), removing a graph from (Eq.

(16)) and updating (Eq. (15)) a cluster each take O(L) time,
leading to a total time complexity of O(KL) per-edge.
With a maximum of c graphs retained in memory by

limiting the maximum number of edges to N (§3.4), storing
cluster assignments and anomaly scores each consume O(c)
space. The centroid sketches and projection vectors each
consume O(KL) space, leading to a total space complexity
of O(c+KL) for clustering and anomaly detection.

5. EVALUATION
Datasets. Our datasets consist of flow-graphs derived

from 1 attack and 5 benign scenarios. The benign scenar-
ios involve normal browsing activity, specifically watching
YouTube, downloading files, browsing cnn.com, checking
Gmail, and playing a video game. The attack involves a
drive-by download triggered by visiting a malicious URL
that exploits a Flash vulnerability and gains root access to
the visiting host. For each scenario, Selenium RC4 was used
to automate the execution of a 100 tasks on a Linux machine.
All system calls on the machine from the start of a task
until its termination were traced and used to construct the
flow-graph for that task. The flow-graphs were compiled into
3 datasets whose properties are shown in Table 1.

Experiment Settings. We evaluate StreamSpot in
the following settings:

(1) Static: We use p% of all the benign graphs for training,
and the rest of the benign graphs along with the attack
graphs for testing. We find an o✏ine clustering of the training
graphs and then score and rank the test graphs based on this
clustering. Graphs are represented by their shingle vectors
and all required data is stored in memory. The goal is to
quantify the e↵ectiveness of StreamSpot before introducing
approximations to optimize for time and space.

(2) Streaming : We use p% of the benign graphs for training
to first construct a bootstrap clustering o✏ine. This is
provided to initialize StreamSpot, and the test graphs
are then streamed in and processed online one edge at a
time. Hence, test graphs may be seen only partially at
any given time. For each edge, StreamSpot updates the
corresponding graph sketch, clusters, cluster assignments
and anomaly scores, and a snapshot of the anomaly scores is
retained every 10,000 edges for evaluation. StreamSpot is
also evaluated under memory constraints by limiting the
sketch size and maximum number of stored edges.

5.1 Static Evaluation
We first cluster the training graphs based on their shingle-

vector similarity. Due to the low diameter and large out-
degree exhibited by flow-graphs, the shingles obtained tend
to be long (even for k = 1), and similar pairs of shingles from
two graphs di↵er only by a few characters; this results in
most pairs of graphs appearing dissimilar.

To mitigate this, we ‘chunk’ each shingle by splitting it into
fixed-size units. The chunk length parameter C controls the
influence of graph structure and node type frequency on the
pairwise similarity of graphs. A small C reduces the e↵ect of
structure and relies on the frequency of node types, making
most pairs of graphs similar. A large C tends to make pairs
of graphs more dissimilar. This variation is evident in Figure
4, showing the pairwise-distance distributions for di↵erent
chunk lengths.

4

http://www.seleniumhq.org/projects/remote-control/

T a b l e 1 : D a t a se t su m m a ry: T ra ining sc e na rios a nd t e st e d ge s (a t t a c k + 2 5 % b e nign gra p hs) .

D a t a se t S c e na rios # G ra p hs A v g. |V | A v g. |E | # T e st E d ge s

Y D C Y ouTube, D ownload, C NN 300 8705 239 648 21,857,89 9
G FC GM ail, V Game, C NN 300 8151 148414 13,854,229
A L L Y ouTube, D ownload, C NN, GM ail, V Game 500 8315 173857 24,826,556

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pairwise (Cosine) Distance

0.0
0.1
0.2
0.3
0.4
0.5

Fr
ac

tio
n

of
 A

ll
Pa

irs Chunk Length 5
Chunk Length 200

(a) Y D C

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pairwise (Cosine) Distance

0.0
0.1
0.2
0.3
0.4
0.5

Fr
ac

tio
n

of
 A

ll
Pa

irs Chunk Length 5
Chunk Length 200

(b) G FC

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pairwise (Cosine) Distance

0.0
0.1
0.2
0.3
0.4
0.5

Fr
ac

tio
n

of
 A

ll
Pa

irs Chunk Length 5
Chunk Length 200

(c) A L L

F igu re 4 : D ist rib u t ion of p a irw ise c osine d ist a nc e s
f or d i↵e re nt v a l u e s of c hu nk l e ngt hs.

We aim to choose a C that neither makes all pairs of
graphs too similar or dissimilar. Figure 5 shows the entropy
of pairwise-distances with varying C for each dataset. At the
point of maximum entropy, the distances are near-uniformly
distributed. A Òsafe regionÓ to choose C is near and to the
right of this point; intuitively, this C su�ciently di↵erentiates
dissimilar pairs of graphs, while not a↵ecting similar ones.
For our experiments, we pick C = 25, 100, 50 respectively for
Y D C , G FC , and A L L . After Þxing C , we cluster the training
graphs with K -medoids and pick K with the maximum
silhouette coe�cient [30] for the resulting clustering; these
are K = 5, 5, 10 respectively for Y D C , G FC , and A L L .

5 10 25 50 100 150 200
Chunk Length

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

En
tro

py

(a) Y D C

5 10 25 50 100 150 200
Chunk Length

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

En
tro

py

(b) G FC

5 10 25 50 100 150 200
Chunk Length

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

En
tro

py

(c) A L L

F igu re 5 : V a ria t ion in e nt rop y of t he p a irw ise c osine
d ist a nc e d ist rib u t ion. (p = 75%)

To validate our intuition for picking C , Figure 6 shows
a heatmap of the average precision obtained after cluster-
ing and anomaly-ranking on the test data (the attack and
remaining 25% benign graphs), for varying C and K . We
can see that for our chosen C and K , StreamSpot achieves
near-ideal performance. We also Þnd that the average preci-
sion appears robust to the number of clusters when chunk
length is chosen in the Òsafe regionÓ.

(a) Y D C (b) G FC (c) A L L

F igu re 6 : A v e ra ge p re c ision f or d i↵e re nt c hu nk -
l e ngt h C a nd nu m b e r of c l u st e rs K . (p = 75%)

To quantify anomaly detection performance in the static
setting, we set p = 25% of the data as training and cluster
the training graphs based on their shingle vectors, following
the aforementioned steps to choose C and K . We then score
each test graph by its distance to the closest centroid in the

clustering. This gives us a ranking of the test graphs, based
on which we plot the precision-recall (PR) and R O C curves.

As a baseline, we use iForest [23] with 100 trees and 75%
subsampling rate with each graph represented by a vector
of 10 structural features: the average/maximum degree and
distinct-degree 5 , the average eccentricity and shortest-path
length, and the diameter, density and number of nodes/edges.

The curves (averaged over 10 independent random samples)
for all the datasets are shown in Figure 7. Note that even
with 25% of the data, static StreamSpot is e↵ective in
correctly ranking the attack graphs and achieves an average
precision (AP, area under the PR curve) of more then 0.9
and a near-ideal AUC (area under R O C curve).

0.0 0.2 0.4 0.6 0.8 1.0
Re cal l

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Static StreamSpot

iForest

0.0 0.2 0.4 0.6 0.8 1.0
Re cal l

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Static StreamSpot

iForest

0.0 0.2 0.4 0.6 0.8 1.0
Re cal l

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Static StreamSpot

iForest

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Static StreamSpot

iForest

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Static StreamSpot

iForest

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Static StreamSpot

iForest

(a) Y D C (b) G FC (c) A L L

F igu re 7 : (t op) P re c ision- R e c a l l (P R) a nd (b ot t om)
R O C c u rv e s a v e ra ge d ov e r 1 0 sa m p l e s. (p = 25%)

Finally, in Figure 8 we show how the AP and AUC change
as the training data percentage p is varied from p = 10% to
p = 9 0% . We note that with su�cient training data, the test
performance reaches an acceptable level for G FC .

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

7UDining DDtD FUDFtion

0.5

0.6

0.7

0.8

0.9

1.0

0
e
tU

iF

AveUDge 3UeFision

A8C

(a) Y D C

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

7UDining DDtD FUDFtion

0.5

0.6

0.7

0.8

0.9

1.0

0
e
tU

iF

AveUDge 3UeFision

A8C

(b) G FC

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

7UDining DDtD FUDFtion

0.5

0.6

0.7

0.8

0.9

1.0
0

e
tU

iF

AveUDge 3UeFision

A8C

(c) A L L

F igu re 8 : A P a nd A U C w it h v a rying t ra ining % p .

The results in this section demonstrate a proof of concept
that our proposed method can e↵ectively spot anomalies
provided o✏ine data and unbounded memory. We now move
on to testing StreamSpot in the streaming setting, for
which it was designed.

5.2 Streaming Evaluation
We now show that StreamSpot remains both accurate

in detecting anomalies and e�cient in processing time and
memory usage in a streaming setting. We control the number
of graphs that arrive and grow simultaneously with parameter
B , by creating groups of B graphs at random from the test

5

Ignoring multi-edges to the same destination node.

0 5 10 15 20
Edges Seen (millions)

0.0

0.2

0.4

0.6

0.8

1.0
M

et
ric

Accuracy
AUC
AP

(a) YDC

0 5 10
Edges Seen (millions)

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Accuracy
AUC
AP

(b) GFC

0 5 10 15 20
Edges Seen (millions)

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Accuracy
AUC
AP

(c) ALL

Figure 9: Performance of StreamSpot at di↵erent instants of the stream for all datasets (L = 1000).

0 5 10 15 20
Edges Seen (millions)

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Accuracy
AP
AUC

0 5 10 15 20
Edges Seen (millions)

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Accuracy
AP
AUC

Figure 10: StreamSpot performance on ALL (mea-
sured at every 10K edges) when (left) B = 20 graphs
and (right) B = 100 graphs arrive simultaneously.

graphs, picking one group at a time and interleaving the
edges from graphs within the group to form the stream.
In all experiments, 75% of the benign graphs where used

for bootstrap clustering. Performance metrics are computed
on the instantaneous anomaly ranking every 10,000 edges.

Detection performance. Fig. 10 shows the anomaly
detection performance on the ALL dataset, when B = 20
graphs grow in memory simultaneously (left) as compared to
B = 100 graphs (right). We make the following observations:
(i) The detection performance follows a trend, with periodic
dips followed by recovery. (ii) Each dip corresponds to the
arrival of a new group of graphs. Initially, only a small
portion of the new graphs are available and the detection
performance is less accurate. However, performance recovers
quickly as the graphs grow; the steep surges in performance
in Fig. 10 imply a small anomaly detection delay. (iii)
The average precision after recovery indicates a near-ideal
ranking of attack graphs at the top. (iv) The dips become
less severe as the clustering becomes more ‘mature’ with
increasing data seen; this is evident in the general upward
trend of the accuracy. (v) The accuracy loss is not due to
the ranking (since both AP and AUC remain high) but due
to the chosen anomaly thresholds derived from the bootstrap
clustering, where the error is due to false negatives.
Similar results hold for B = 50 as shown in Figure 9 (c)

for ALL, and (a) and (b) for YDC and GFC respectively.
Sketch size. Figures 9 and 10 show StreamSpot’s per-

formance for sketch size L = 1000 bits. When compared to
the number of unique shingles |S| in each dataset (649,968,
580,909 and 1,106,684 for YDC, GFC and ALL), sketching
saves considerable space. Reducing the sketch size saves
further space but increases the error of cosine distance ap-
proximation. Figure 11 shows StreamSpot’s performance
on ALL for smaller sketch sizes. Note that it performs equally
well for L = 100 (compared to Fig. 9(c)), and reasonably
well even with sketch size as small as L = 10.

0 5 10 15 20
Edges Seen (millions)

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Accuracy
AP
AUC

(a) L = 100

0 5 10 15 20
Edges Seen (millions)

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Accuracy
AP
AUC

(b) L = 10

Figure 11: Performance of StreamSpot on ALL for
di↵erent values of the sketch size.

10 10
0

50
0

10
00

15
00

20
00

6ketFh 6ize

0.5

0.6

0.7

0.8

0.9

1.0

0
e
tU

iF

A3

A8C

AFFuUDFy

1.
25 2.

5
3.

75
6.

25
12

.5

(dge liPit (Pillions)

0.5

0.6

0.7

0.8

0.9

1.0

0
e
tU

iF

A3

A8C

AFFuUDFy

Figure 13: StreamSpot performance on ALL with
(left) sketch size L and (right) memory limit N .

Memory limit. Now we investigate StreamSpot’s
performance by limiting the memory usage using N : the
maximum number of allowed edges in memory at any given
time. Figures 12 (a)–(c) show the performance when N is
limited to 15%, 10%, and 5% of the incoming stream of
⇠25M edges, on ALL (with B = 100, L = 1000). The overall
performance decreases only slightly as memory is constrained.
The detection delay (or the recovery time) increases, while the
speed and extent of recovery decays slowly. This is expected,
as with small memory and a large number of graphs growing
simultaneously, it takes longer to observe a certain fraction
of a graph at which e↵ective detection can be performed.
These results indicate that StreamSpot continues to

perform well even with limited memory. Figure 13 shows
performance at the end of the stream with (a) increasing
sketch size L (N fixed at 12.5M edges) and (b) increasing
memory limit N (L fixed at 1000). StreamSpot is robust
to both parameters and demonstrates stable performance
across a wide range of settings.

Running time6. To evaluate the scalability of
StreamSpot for high-volume streams, we measure its per-

6

On an Intel Xeon R� E7 4830 v3 at 2.1Ghz with 1TB RAM.

0 5 10 15 20
Edges Seen (millions)

0.0

0.2

0.4

0.6

0.8

1.0
M

et
ric

Accuracy
AP
AUC

(a) Limit = 15%

0 5 10 15 20
Edges Seen (millions)

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Accuracy
AP
AUC

(b) Limit = 10%

0 5 10 15 20
Edges Seen (millions)

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Accuracy
AP
AUC

(c) Limit = 5%

Figure 12: Performance of StreamSpot on ALL (L = 1000), for di↵erent values of the memory limit N (as a
fraction of the number of incoming edges).

edge running time on ALL for sketch sizes L = 1000, 100
and 10 averaged over the stream of ⇠25M edges in Fig. 14
(left). Each incoming edge triggers four operations: updating
the graph adjacency list, constructing shingles, updating
the sketch/projection vector and updating the clusters. We
observe that the running time is dominated by the sketch-
update time (distribution in Fig. 14 (right)), but the total
per-edge running time is under 70µs when L = 1000. Thus,
StreamSpot can scale to process over 14,000 edges per sec-
ond. For L = 100, which performs comparably (see Fig. 11
(a)), it can further scale to over 100,000 edges per second.

10

30

50

70
6ketFh 8SdDte

ClusteU 8SdDte

GUDSh 8SdDte

6hingle ConstUuFtion

1000 100 10
6ketFh 6ize (bits)

0.5

1.0

5
u

n
ti

P
e
 (

P
iF

Uo
se

Fo
n

d
s)

0 50 100 500 1000 1500 3000
3eU-edge 6ketFh 8SdDte 7iPe (us)

0

2

4

6

8

10

12

14

F
Ue

T
u

e
n

Fy
 (

P
ill

io
n

s
o
f

e
d

g
e
s)

Figure 14: (left) Average runtime of StreamSpot per
edge, for various sketch sizes on ALL. (right) Distri-
bution of sketch processing times for ⇠25M edges.

Memory usage. Finally, we quantify the memory usage
of StreamSpot. Table 2 shows the total memory con-
sumed for ALL by graph edges (MG) in megabytes and by
the projection and sketch vectors (MY , MX) in kilobytes
with increasing N (the maximum number of edges stored in
memory). We also mention the number of graphs retained
memory at the end of the stream. Note that MG grows in
proportion to N , and MY is 32 times MX , since projection
vectors are 32-bit integer vectors of the same length as the
sketch vectors. Overall, StreamSpot’s memory consump-
tion for N = 12.5M and L = 1000 is as low as 240 megabytes,
which is comparable to the memory consumed by an average
process on a commodity machine.

In summary, these results demonstrate the e↵ectiveness as
well as the time and memory-e�ciency of StreamSpot.

6. RELATEDWORK
Our work is related to a number of areas of study, including

graph similarity, graph sketching and anomaly detection in
streaming and typed graphs, which we detail further in this
section.

Table 2: StreamSpot memory use on ALL (L = 1000).
|G|: final # graphs in memory. Memory used by MG:
graphs, MY : projection vectors, MX : sketches

N |G| MG MY MX

1.25 m 8 23.84 mb 31.25 kb 0.98 kb
2.5 m 29 47.68 mb 113.28 kb 3.54 kb

3.75 m 42 71.52 mb 164.06 kb 5.13 kb
6.25 m 56 119.20 mb 218.75 kb 6.84 kb
12.5 m 125 238.41 mb 488.28 kb 15.26 kb

Graph similarity. There exists a large body of work
on graph similarity, which can be used for various tasks
including clustering and anomaly detection. Methods that
require knowing the node correspondence between graphs are
inapplicable to our scenario, as are methods that compute
a vector of global metrics [7] for each graph (such as the
average properties across all nodes), since they cannot take
into account the temporal ordering of edges.
Graph-edit-distance (GED) [9] defines the dissimilarity

between two graphs as the minimum total cost of operations
required to make one graph isomorphic to the other. However,
computing the GED requires finding an inexact matching
between the two graphs that has minimum cost. This is
known to be NP-hard and frequently addressed by local-
search heuristics [19] that provide no error bound.

Graph kernels [33, 31] decompose each graph into a set of
local substructures and the similarity between two graphs
is a function of the number of substructures they have in
common. However, these methods require knowing a fixed
universe of the substructures that constitute all the input
graphs, which is unavailable in a streaming scenario.

Heterogeneous/typed graphs. An early method [26]
used an information-theoretic approach to find anomalous
node-typed graphs in a large static database. The method
used the SUBDUE [11] system to first discover frequent
substructures in the database in an o✏ine fashion. The
anomalies are then graphs containing only a few of the fre-
quent substructures. Subsequent work [12] defined anomalies
as graphs that were mostly similar to normative ones, but
di↵ering in a few GED operations. Frequent typed subgraphs
were also leveraged as features to identify non-crashing soft-
ware bugs from system execution flow graphs [22]. Work
also exists studying anomalous communities [16, 27] and
community anomalies [13, 28] for attributed graphs. All of
these approaches are designed for static graphs.

Streaming graphs. GMicro [3] clustered untyped graph
streams using a centroid-based approach and a distance func-
tion based on edge frequencies. It was extended to graphs
with whole-graph-level attributes [35], and node-level at-
tributes [24] where the goal was to cluster nodes. GOutlier
[4] introduced structural reservoir sampling to maintain sum-
maries of untyped, undirected graph streams and detect
anomalous graphs as those having unlikely edges. Classy
[19] implemented a scalable distributed approach to cluster-
ing streams of untyped call graphs by employing simulated
annealing to approximate the GED between pairs of graphs,
and GED lower bounds to prune away candidate clusters.
There also exist methods that detect changes in graphs

that evolve through community evolution, by processing
the edge stream to determine expanding and contracting
communities [2] and by applying information-theoretic [32]
and probabilistic [15] approaches on graph snapshots to find
time points of global community-structure change. Methods
also exist to find temporal patterns called graph evolution
rules [6], which are subgraphs with similar structure, types of
nodes, and order of edges. All the aforementioned methods
are primarily suited to untyped graphs.

Graph skeletons and sketches. Graph “skeletons” [18]
were introduced to approximately solve a number of common
graph-theoretic problems such as finding the global min-
cut and max-flow with provable error-bounds. Skeletons
were also applied [1] to construct compressed representations
of disk-resident graphs for e�ciently approximating and
answering minimum s-t cut queries. Work on sketching
graphs has primarily focused on constructing specialized
sketches that enable approximate solutions to specific graph
problems such as finding testing reachability and finding
the densest subgraph [25]; the proposed sketches cannot be
applied directly to detect graph-based anomalies.

7. CONCLUSION
We have presented StreamSpot to cluster and detect

anomalous heterogeneous graphs originating from a stream
of typed edges, in which new graphs emerge and existing
graphs evolve as the stream progresses. We introduced rep-
resenting heterogeneous ordered graphs by shingling and
devised StreamHash to maintain summaries of these repre-
sentations online with constant-time updates and bounded
memory consumption. Exploiting the mergeability of our
summaries, we devised an online centroid-based clustering
and anomaly detection scheme to rank incoming graphs by
their anomalousness that obtains over 90% average precision
for the course of the stream. We showed that performance is
sustained even under strict memory constraints, while being
able to process over 100,000 edges per second.
While designed to detect APTs from system log streams,

StreamSpot is applicable to other scenarios requiring scal-
able clustering and anomaly-ranking of typed graphs arriving
in a stream of edges, for which no method currently exists.
It has social media applications in event-detection using
streams of sentences represented as syntax trees, or biochem-
ical applications in detecting anomalous entities in streams
of chemical compounds or protein structure elements.

Acknowledgments
This research is sponsored by the DARPA Transparent Computing

Program under Contract No. FA8650-15-C-7561, NSF CAREER

1452425 and IIS 1408287, an R&D grant from Northrop Grumman,

and a faculty gift from Facebook. Any conclusions expressed in

this material are of the authors and do not necessarily reflect the

views, expressed or implied, of the funding parties.

8. REFERENCES
[1] C. C. Aggarwal, Y. Xie, and P. S. Yu. Gconnect: A connectivity

index for massive disk-resident graphs. PVLDB, 2009.
[2] C. C. Aggarwal and P. S. Yu. Online analysis of community

evolution in data streams. In SDM, 2005.
[3] C. C. Aggarwal, Y. Zhao, and P. S. Yu. On clustering graph

streams. In SDM, 2010.
[4] C. C. Aggarwal, Y. Zhao, and P. S. Yu. Outlier detection in

graph streams. In ICDE, 2011.
[5] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly

detection and description: a survey. Dat. Min. Know. Disc.,
2015.

[6] M. Berlingerio, F. Bonchi, B. Bringmann, and A. Gionis.
Mining graph evolution rules. In ECML/PKDD, 2009.

[7] M. Berlingerio, D. Koutra, T. Eliassi-Rad, and C. Faloutsos.
Network similarity via multiple social theories. In ASONAM,
2013.

[8] A. Z. Broder. On the resemblance and containment of
documents. In Compression and Complex. of Sequences, 1997.

[9] H. Bunke and G. Allermann. Inexact graph matching for
structural pattern recognition. Pattern Recogn. Letters, 1983.

[10] M. S. Charikar. Similarity estimation techniques from rounding
algorithms. In STOC, 2002.

[11] D. J. Cook and L. B. Holder. Graph-based data mining. IEEE
Intelligent Systems, 2000.

[12] W. Eberle and L. B. Holder. Discovering structural anomalies
in graph-based data. In ICDMW, 2007.

[13] J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and J. Han. On
community outliers and their e�cient detection in information
networks. In KDD, 2010.

[14] G. Grimmett and D. Stirzaker. Probability and random
processes. Oxford University Press, 2001.

[15] M. Gupta, C. C. Aggarwal, J. Han, and Y. Sun. Evolutionary
clustering and anal. of bibliographic networks. ASONAM, 2011.

[16] M. Gupta, A. Mallya, S. Roy, J. H. D. Cho, and J. Han. Local
learning for mining outlier subgraphs from network datasets. In
SDM, 2014.

[17] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In STOC, 1998.

[18] D. R. Karger. Random sampling in cut, flow, and network
design problems. In STOC, 1994.

[19] O. Kostakis. Classy: fast clustering streams of call-graphs.
Data Min. Knowl. Discov., 2014.

[20] D. Koutra, J. T. Vogelstein, and C. Faloutsos. Deltacon: A
principled massive-graph similarity function. In SDM, 2013.

[21] D. Lemire and O. Kaser. Strongly universal string hashing is
fast. The Computer Journal, 2014.

[22] C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu. Mining behavior
graphs for ”backtrace” of noncrashing bugs. In SDM, 2005.

[23] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In
ICDM, 2008.

[24] R. McConville, W. Liu, and P. Miller. Vertex clustering of
augmented graph streams. In SDM, 2015.

[25] A. McGregor. Graph stream algorithms: a survey. SIGMOD
Record, 2014.

[26] C. C. Noble and D. J. Cook. Graph-based anomaly detection.
In KDD, 2003.

[27] B. Perozzi and L. Akoglu. Scalable anomaly ranking of
attributed neighborhoods. In SDM, 2016.

[28] B. Perozzi, L. Akoglu, P. Iglesias Sánchez, and E. Müller.
Focused clustering and outlier detection in large attributed
graphs. In KDD, 2014.

[29] A. Rajaraman and J. D. Ullman. Mining of Massive Datasets.
Cambridge University Press, 2011.

[30] P. Rousseeuw. Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. J. Comp. Appl. Math., 1987.

[31] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen,
K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-Lehman graph
kernels. JMLR, 2011.

[32] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu.
Graphscope: Parameter-free mining of large time-evolving
graphs. In KDD, 2007.

[33] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and
K. M. Borgwardt. Graph kernels. JMLR, 2010.

[34] M. N. Wegman and J. L. Carter. New hash functions and their
use in authentication and set equality. J. of Comp. & Sys.
Sciences, 1981.

[35] P. S. Yu and Y. Zhao. On graph stream clustering with side
information. In SDM, 2013.

