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Abstract—The concept of Artificial Intelligence for IT Opera-
tions (AIOps) combines big data and machine learning methods
to replace a broad range of IT operations including availability
and performance monitoring of services. Such platforms typically
use separate models for each modality of monitoring data
(e.g., textual properties and real-valued response time in logs
and traces) to detect faults and upcoming anomalies in cloud
services, which do not capture the existing correlation between
the modalities. This paper extends the range of utilized data
types for creation of a single model to improve the anomaly
detection. We use a bimodal distributed tracing data from
large cloud infrastructures in order to detect an anomaly in
the execution of system components. We propose an anomaly
detection method, which utilizes a single modality of the data
with information about the trace structure. In the next step, we
extend the single-modality neural architecture to a multimodal
neural network with long short-term memory (LSTM) to enable
the learning from the sequential nature of both modalities in
the tracing data. Furthermore, we demonstrate an approach
to detect dependent and concurrent events using the ability of
the model to reconstruct the execution path. The implemented
prototype is experimentally evaluated with data from a large-
scale production cloud. The results demonstrate that the novel
approaches outperform other deep-learning methods based on
traditional architectures.

Index Terms—AIOps; anomaly detection; multimodal deep
learning; distributed tracing; service reliability; LSTM.

I. INTRODUCTION

The increasing number of IoT applications with dynamically
linked devices and their implementation in real-world envi-
ronments drive the creation of large multi-layered systems.
Consequently, the complexity of the systems is steadily in-
creasing to a level, where it is impossible for human operators
to oversee and holistically manage the entire systems without
additional support and automation. However, as uninterrupted
services with guaranteed latency, response times, and other
Quality of Service parameters are required for many data-
driven autonomous applications, loss of control is not allowed
for any system or infrastructure. Large service providers are
aware of the need for always-on dependable services and thus
already deployed various measures by introducing additional
human and artificial intelligence to the IT ecosystem. The next
step is to rapidly decrease the reaction time in case an urgent
administration activity is needed to prevent a system anomaly
developing into a fault. Such anomalies are typically evolving
from performance problems, component/system failures (e.g.,

outages, degraded performance), or security incidents. There-
fore, an important part of AIOps platforms is to detect and
recognize the anomaly, before it leads to a service or system
failure.

The foundation for AIOps platforms is the availability of
suitable and descriptive data. As shown in Figure 1, the
observational data consists three components: tracing, logging,
and monitoring information. The tracing component produces
events (spans) containing bi-modal information reflecting the
execution path in form of sequence of text labels and the
real-valued response time describing the service performance.
The log data represent interactions between data, files, or
applications that are typically used to analyze trends or to
record decisive events/actions for a later forensic. The widely
collected monitoring data describes the current utilization and
status of the infrastructure, typically as a cross-layer informa-
tion regarding CPU, memory, disk, network throughput, and
latency.

While the anomaly detection on system log and metric data
has been already investigated [1]-[4], the use of tracing data
is still limited as it is significantly more complex to collect
and handle. The tracing data also can be used to know the
underlying infrastructure, which previously has been obtained
by topology inference approaches [5]. However, currently de-
veloped technologies for distributed services, as part of cloud-
based operating systems, enable to also record tracing data
information about all of the individual components involved
in a particular user request (initiator) or remote procedure call
[6].

The current state-of-the-art systems for anomaly detection
using log data model the normal system behavior out of a
single data type, which is either the textual log keys, or real-
valued performance parameters. Commonly, they use separate
models for both types of data and build an ensemble to
generate the final prediction [3]. Other approaches operate
solely on one data modality [1], [2] or apply separate modeling
techniques for multiple modalities, which are later integrated
into an unified indicator [7].

However, such additive models do not utilize the existing
correlation between the data sources. They learn the normal
system behavior from partial and limited data which might
affect the overall performance. The learning from fused rep-
resentations of multimodal data has provided good results in



various tasks, matching or outperforming other deep learning
models [8]. Therefore, we investigate methods for unsuper-
vised anomaly detection out of sequential, multimodal data.

The tracing data collected during execution of system ac-
tions consist of two modalities:

o service response time in the form of real-valued data

o causal relationships with other related services repre-

sented as a sequence of textual labels.

As shown in Figure 1, if user request (e.g., create virtual
machine) involves the services {11,21, 31,32}, then a trace
contains events representing the intra-service calls produced
when each service is invoked. We believe that such data
can improve the anomaly detection, root-cause analysis, and
remediation in the system, since it contains very detailed
information about the state of the system from a service
perspective. Therefore, we transfer and compile the tracing
data into an abstract structure, which is similar to structures for
anomaly detection in processes, logs, natural languages, or any
sequential data in order to exploit and improve sophisticated
analysis methods developed in these domains.
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Fig. 1. Overall system architecture showing communication between services
and the three system observability components. We combine two modalities of
tracing data in a single model for anomaly detection in cloud infrastructures.

Contributions. This work addresses anomaly detection in
large cloud infrastructures by using LSTM neural networks [9]
with data from distributed tracing technologies. We present a
deep learning model for sequence learning to model the causal
relationship between the services in a trace using the single-
modality, sequential text data. We show the importance of the
response time as a second type of data in a trace and challenges
for its modelling. We extend the single-modality architecture
by introducing a model, which utilizes the multimodal tracing
data as a combination of a text and real-valued sequence. We
show that the multimodal approach can be used to model the
normal system behavior and detect anomalies considering not
only the causality of the services but also their response times
within a trace. Furthermore, we detect dependent and parallel
tasks using the model to reconstruct the execution path.
Through an exhaustive experimentation on data from a real
production cloud, we show that our approaches outperform
the baselines with an accuracy larger than 90%, and that the
multimodal LSTM achieves the best overall accuracy.

Outline. The rest of the paper is structured as follows. In
section II we discuss the related work. The proposed method-

ology is presented in section III, while section IV shows the
evaluation results. Section V presents the conclusions of this

paper.
II. RELATED WORK

The anomaly detection in large-scale systems is widely
studied. We review past research of unsupervised methods,
as the labelling by experts or injection of anomalies directly
into the cloud platforms to obtain labeled data do not meet
the requirements of real-word systems. This owes to the
appearance of new patterns or possible harm to the running
system by an intentional fault injection.

The recent advancement of deep learning has led to
performance breakthroughs for various problems including
sequence-to-sequence learning tasks [10], [11]. Specifically,
LSTM Networks [9] are most commonly utilized in related
applications. Malhotra et al. [12] used stacked recurrent hidden
layers to enable learning of higher level temporal features.
They presented a model of stacked LSTM networks for
anomaly detection in time series. A network was trained on
non-anomalous data and was used as a predictor over a number
of time steps. Taylor et al. [13] proposed an anomaly detector
based on an LSTM neural network to detect network attacks.
The detector operates by learning to predict the next data word
originating from each sender on the network. If there is a
difference between the prediction and the actual data word,
an anomaly is flagged.

Brown et al. [14] presented recurrent neural network (RNN)
language models augmented with attention for anomaly de-
tection in system logs. Du et al. [3] proposed the state-of-
the-art DeepLog. It models the recent history of log events as
a sequence, outperforming other traditional machine learning
algorithms on various datasets. DeepLog splits the log key
information from the values in the logs and models the data
using two different models. The log keys are formulated as a
multiclass classification task over the recent context. They use
history h of recent log keys as input, and try to predict the
next log key in the sequence. For a given sequence of log keys
{k1,ka2,...,k,} and a history window of size h, the input and
the output for training are: {ki, ko, ks — ka}, {ko, ks, ka —
k’5} . {k‘n,g, k’n,Q, kn_1— kn}

In contrast to the above anomaly detection systems, we
aim to develop a single model that utilizes the multimodal
nature of system data. We explain our approaches through
anomaly detection in tracing data. Nonetheless, they can
be generally employed in many other applications involving
anomaly detection for multimodal system data.

In multimodal deep learning, Ngiam et al. [15] proposed
a novel application of deep networks to learn features over
multiple modalities. They presented a series of tasks for
multimodal learning and showed how to train deep networks
that learn features to address these tasks. Srivastava et al. [8]
proposed a probabilistic method for multimodal deep learning
with Deep Boltzmann Machine (DBM). They showed how
to extract a meaningful representation of multimodal data,
later used for classification and information retrieval tasks.



These studies paved the way for further progress in the field.
Park et al. proposed a LSTM-variational autoencoder to detect
anomalies in robot-assisted feeding. They showed that learning
from multimodal sensory signals can be helpful for detection
of a wide range of anomalies, overcoming the challenges from
the fusion of high-dimensional and heterogeneous modalities.
These approaches have ultimately demonstrated that learning
from multimodal data opens new perspectives, but were not
yet investigated for anomaly detection in complex and large
systems.

III. MULTIMODAL ANOMALY DETECTION FROM
TRACING DATA

This section explains the parsing of the tracing data, the
single-modality LSTM, its extension to the multimodal LSTM
neural network, and describes the method for reconstruction of
the execution path in order to detect concurrent or dependent
events providing characteristic insights from the tracing data
that allow to perform better root-cause analysis. Both proposed
approaches for anomaly detection model the normal system
behavior and detect anomalies by flagging any deviations.

A. Trace Data and Parsing

Traces in microservice architectures are composed of events
(spans) [16]. An event is a vector of key-value pairs (k;,v;)
describing the state, performance, and further service char-
acteristics at a given time ¢;. Each time a user executes a
command to request a record to be inserted, updated, deleted
from a database, or when it calls an external server using, e.g.,
remote procedure calls (RPCs), one or more events within a
trace are generated, as shown in Figure 1.

A trace T = {eg,e1,...,¢e;} is represented as an enu-
merated collection of events sorted by the timestamps. The
analogy to the natural languages as type of sequential data
originates from this representation, where one can map the
trace to a sequence of words, the events inside a trace to words,
and the causal relationship between events to a language
grammar. Each event in the trace contains at least the following
attributes:

« trace ID (identifier that assigns an event to a trace), event
ID (unique event identifier), parent ID (event ID of the
parent service)

¢ protocol (can be either HTTP or function protocol), host
IP, HTTP return code, HTTP URL

« response time (time difference between start and stop of
the execution of the service) and timestamp (when the
particular service was invoked)

Depending on the executed action, the traces can have different
lengths and events representing various services. Two sample
traces T), = {ef, e, eh, ... et} and T, = {el, ed,ef, ... el}
are different in structure (e; and e, are swapped), but orig-
inate from the same system activity. This type of behavior
occurs frequently in real systems, where the events ¢! and
ed originate from concurrently invoked services. The order of
events depends on the concurrent invocation of the recording

component, so that both traces represent the same execution
path.

The key-value pairs from an event are recorded as JSON
objects. We parse the entries into a structured, vector repre-
sentation, which then serves as an input into the LSTM neural
network. For each event we extract two data modalities: textual
label, characterizing the type of the event, and response time,
describing the service performance. Before the computation
of the label, we extract the service endpoint information from
the HTTP URL by applying regular expression filter. For
example, https:/1.1.1.11/v2/a16d/servers/detail is transformed
into v2/id/servers/detail. We denote the post-regex expression
as HTTP pattern. The final label is then formed by concate-
nating the HTTP code, the HTTP pattern, and the host IP
(e.g., 200_v2_id_servers_detail_126.75.191.253). The label is
then added to a dictionary. In order to increase the robustness
of the algorithm, we avoid labels that appear only few times
by considering the top-M most frequent labels. Finally, an
additional label (’!0) is reserved for padding and trace ending.
This symbol maps to the zeroth index in the dictionary.

We denote the number of unique labels in the dictionary
as N;. The unique numerical indices in the dictionary are
used to represent the event’s attributes. To this end, the traces
are represented by numerical vectors with different size. We
then create vectors with a predefined fixed length by applying
padding up to 73, which represents the maximum allowed trace
length. Traces, which are longer than T}, are truncated. This
makes the traces equally sized, but still they contain different
number of non-zero elements. The vector representation is then
converted into a one-hot categorical encoding [17] making the
data format ready for training with shape Dy = (Ny, T3, Ny),
where N, is the number of all recorded traces. 1D describes
the structure of the traces, i.e., contains information for the
execution path of the events in the trace.

The response times of the events in all traces are grouped by
label and min-max scaled between zero and one, so they can be
viewed as a time-series. These real-valued numbers provide an
additional dataset with a shape of Dy = (INV;, T}, 1). For each
event we have one float value representing the its response
time.

In following, we propose a single-modality architecture
using only the labels, motivate the use of the response time
as a second data modality, and describe the design changes
needed to train models with this type of data.

B. Single-Modality LSTM network

We denote the set of all traces recorded within a period
as Tget = {To,Tl, .. 7TNt}v while L = {lo,ll, ce alNz} is
the set of unique labels in the data. Furthermore, e; denotes
the one-hot encoding value of the label [; € L positioned at
index ¢ in the trace Ty for k € {0,1,..., N;}. The value of
e; depends on the trace structure prior to e;, as the events
in a trace originate from the execution of services upon a
user request, where the events have a parent-child causal
relationship [16]. We model the structural anomaly detection
in traces as a sequence-to-sequence, multi-class classification



problem, where each distinct label represents a class. Figure
2 shows a single-modality architecture for both types of data
Dy (Structural Anomaly Detection, SAD) and Dy (Response
Time Anomaly Detection, RTAD). The detection of anomalies
from a sequence of labels enables to capture the errors during
the execution as well as to detect unexpected execution paths.

The input to the model are the event labels from a trace
Tr = {eo,€e1,...,eq }. Each e; is fed as input in the corre-
sponding timestep time = 7. The output at time = ¢, for the
current inputs {eg,€e1,...,€;,—1}, is a probability distribution
over the V; unique labels from L, representing the probability
for the next label e; in the sequence. The detection phase uses
this model to make a prediction and compares the predicted
output against the observed label value. The LSTM network is
trained to maximize the probability of each e; (i € {1,2..T;})
to appear as a next label. Every LSTM block in Figure 2 at
time = i is composed of A LSTM cells. It has a memory state
that encodes all of the information from the previous timesteps
together with the input fed at the same timestep. LSTMs use
different types of trainable gates [9], which together with the
the input label at time = ¢ and the output from the previous
block H;; are used to decide:

o how much of the previous cell state C;; should retain in
its own state,

« how to use the current input and the previous output 1;_;
to influence the state, and

o how to construct the output H;.

In this manner, the possible extracted non-linear and temporal
information is passed between adjacent LSTM blocks.

The stacking of layers as shown in Figure 2 is a common
practice in order to achieve better results by extracting highly-
abstract features. We formulate each input-output pair from D;
as

Tinput = {60,61, cee eTl} — Toutput = {61, €2,... eTlv’!O,}}

where the output is shifted by one event and concluded with
the ’!10’ label. These pairs are used to incrementally update
the network’s weights through categorical cross-entropy loss
minimization via gradient descent.

Detection. In order to evaluate, if a trace 7j.,; represents
an anomaly and to discover, which events support the deci-
sion, Tiest = {e€o,€1,...,eq} is clamped to the network’s
input. In each timestep, the network calculates a probability
distribution:

P={ly:po,ly:p1.--»In, 10N}

describing the probability for each label from L to appear as
the next label value in the trace, given the previous values.
The output layer of the network is composed of a soft-max
function. It distributes the probability over the labels and
ensures that val pi = 1.

Previously, we described that two or more events can be
a result of multiple concurrent actions; therefore few of the
possible labels can appear as the next label in the sequence.
Comparison of the input label only to the most probable
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Fig. 2. Single-modality LSTM network architecture

label can be a measure for the performance of the model in
terms of the ability to capture the normal execution paths. For
robustness, we compare the observed label to the k predicted
most probable labels: if the input label observed in the next
timestep from the original sequence is not one of the top-
k labels with the maximum probability, then an anomaly is
reported, i.e. the trained network has not observed a normal
trace with the same or similar structure. Along with the
information that the trace contains an anomalous execution
path, we also provide the user with information which events
contributed to the decision. This enables a better root-cause
analysis.

1) Response Time Anomaly Detection (RTAD): The re-
sponse time characterizing intra-service calls is decisive for
the anomaly detection, as a sudden increase may indicate
a problem with the involved service or with the underlying
distributed system. Unfortunately, the response time values
grouped as a time-series exhibit a low signal-to-noise ra-
tio and typically include multiple frequencies, distributions,
and concept drifts. The low signal-to-noise ratio is a result
of the different components affecting the response time of
microservices such as switches, routers, memory capacity,
CPU performance, programming languages, thread/process
concurrency, bugs, and volume of user requests. Moreover,
the dependencies between the events in a trace affect the
response times. Assume a service A calls other service B,
collects the result, and proceeds with the execution (parent-
child relationship). In this case, the second service is a service-
child. Therefore, an increase or decrease in the child’s response
time will correspondingly lead to a change in the parent’s
response time. The ability to detect specific events that are
anomalous in such perspective provides more insights and
extends the range of the anomaly detection from the tracing
data.

The training of neural networks requires normalized values.
When grouped by labels, the response times from different
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Fig. 3. Multimodal LSTM neural network architecture for anomaly detection from complete tracing data

services will be even more similar in terms of values. There-
fore, learning a model only from the response times without
coupling with the labels of the services is a hard task and
leads to a poor performance. However, in order to extend the
single-modality architecture to the multimodal LSTM, we need
to describe how to model the response time independently of
the labels. Therefore, we reuse the neural network architecture
presented in Figure 2 and model the inter-event, response time
dependencies in a trace using RTAD (D) data. The difference
is that instead of the multi-class classification, the task is
regression where the input and the output are real-valued num-
bers. In each timestep time = i, with {rtg,rty,...,rt;_1},
the network predicts the response time r¢; for the next event.
In contrast to SAD, the weight updates are obtained through
minimization of the mean squared loss via gradient descent.
The detection is carried out by computing the squared error
distance error; = (rt; — rt¥)?, where rt¥ is the predicted
value at timestep time = <. Furthermore, we separately
model the error values for each label by fitting the Gaussian
distribution and produce a trace T}.s; predicted by the model.
If the squared error between the prediction and the input at
time = 1 is out of the 95% confidence interval obtained from
the Gaussian, the event and the trace are flagged as anomalous.

C. Multimodal LSTM

The response time together with the event’s label completely
characterizes a single event. The correlation between these two
types of data motivates the need to use both modalities of the
data in a single model aiming to extend the anomaly detection
for tracing data and to achieve a better overall accuracy.

The proposed multimodal LSTM architecture is assembled
as a horizontal concatenation of both single-modality archi-
tectures, as shown in Figure 3. The model contains two
data modalities as inputs: D; and Ds. From the bottom-up
perspective of the architecture, we have layer with LSTM
blocks for each input. We perform the concatenation in the
second hidden layer. The concatenation can be carried out in
any hidden layer chosen by cross-validation. The merging of
the two modalities is done in the following way: LSTM outputs
from the first layer in {ime = ¢ are joined and forwarded into

the same timestep in the next LSTM layer. In Figure 3, the
color-coding scheme represents the concatenated pairs.

Starting from the concatenated layer, the information is
jointly encoded and flows between modalities. From this
joint representation, the many-to-many neural network learns
the mapping to the outputs. The input-output pairs can be
formalized as:

rtr, }]
riTy, O}]

In the training phase, we use different cost functions for
the modalities. The input-output pairs are used to learn the
weight updates through minimization of a joint loss which is
the sum of the mean squared error for the response time and
the categorical cross-entropy for the labels.

Detection. The detection in the multimodal setting is per-
formed by comparing the output element-wise with the input
for both modalities using the strategy developed in the single-
modality architectures. An advantage is that with a single
model we can detect anomalies in both modalities, overcoming
the limitations of not having a single-modality response time
anomaly detection. For example, when there is an increased
response time in one of the events, and the computed error
between the prediction and the input is out of the confidence
interval, the method reports an anomaly. Similarly to the
SAD, if the observed input labels of the sequence are not in
the top-k element-wise predictions, an anomaly is reported.
Considering the both modalities, the anomaly type can be
either: response time anomaly, structural anomaly, or anomaly
in both modalities. It is worth noting that the anomaly in the
response time can be independent of the structure and vice
versa.

[{eo,e1,-..,en}, {rto,rt1,...,

er,, 107}, {rty,rta, ...,

mput =

— output = [{ey,ea,...,

D. Detection of Dependent and Concurrent Events

The output of structured anomaly detection model encodes
the underlying execution path. Every label predicted as the
label for the next event in the trace describes a probability
distribution of all possible labels. As described before, the



events have a parent-child relationship, which can be extracted
from the recorded data. However, the challenge of recognition
of concurrent and dependent events in the execution path is
not solved yet and has to be addressed.

Considering that the neural network learns the underly-
ing execution paths (i.e. the causal relationship between the
events), we can reconstruct them using the predicted prob-
ability distribution over the labels, similar to the approach
presented in Figure 4. Assume we aim to predict the event
in the trace next to the vertical, dashed line. The input at
timestep time = 3 is {l1,13,1s,l12}. Let the top-2 predictions
for the next label in the sequence be {pg = 0.55, p11 = 0.45},
while for the rest of them, the probability is zero. In order to
determine if these two events are produced as a result from
concurrently invoked services we analyze two different inputs:
{ll, lg, lg, 112, l(;} and {ll, 13, lg, 112, lll}- If for both sequences
the probability for the next label is ps = 1.0, the events
(services) are concurrent as both of them lead to the same
event.

We also propose a mechanism to detect dependent events. In
this case, if the probability to observe [ as a label for the next
event in the sequence e; 1 is one, considering {eg, e1,...,€ei}
as input, then e¢; and e;y; are dependent.

Fig. 4. Trace execution path with concurrent events, where the numbers
represent the indices of the labels I; € L

In summary, the core approach from the described method-
ology is the multimodal LSTM network. As mentioned, it uses
different data modalities, forms a joint representation, and
utilizes the possible highly non-linear relationships between
the data modalities in addition to the features extracted from
the long-term dependencies using the LSTMs. This helps to
achieve a higher accuracy than that for the single-modality
architecture.

On the other hand, the detection of dependent and concur-
rent events helps to perform a better root-cause analysis and
provides more insights from the observed data. In general, the
multimodal approach is generic and can be used for anomaly
detection in sequential data when multiple data modalities are
available.

IV. EVALUATION

The deep learning methods were implemented in Python
using Keras [18]. The experiments on the collected dataset
were carried out on regular personal computer using GPU-
NVIDIA GTX 1060. For all models we used batch size of
512, learning rate of 0.001, and 400 epochs.

A. Experimental Setup

The data was collected from a production cloud platform
which runs Openstack [19] with Zipkin [16] as a tracing
technology. With more than 1000 micro services, the under-
lying system enables an exhaustive and realistic evaluation
of our approach. To the best of our knowledge, there is
no publicly available data set containing distributed traces,
whereas Openstack log data can be easily generated using
CloudLab [20]. The collected traces are recorded over a period
of 50 days, yielding over 4.5 million events distributed in more
than one million traces with different lengths.

The JSON objects representing the events, are parsed and
the two different data modalities D; and Ds are compiled.
In order to avoid outliers, we select labels that appear more
than 1000 times in the data, making a total of 105 unique
labels. The distribution of the trace lengths in our dataset is
imbalanced; more than 90% of the traces have lengths smaller
than 10 events. This is compensated by selecting only 1000
samples of each trace length, where the trace lengths with
less samples are completely included into the dataset. In this
regard, our approach requires approximately less than 1% of
all the recorded data, which makes it efficient and fast for
training. For robustness, we also select the traces with lengths
between 4 and 20. Traces with larger lengths appear only few
times in the given time-period. We consider them as outliers
and do not insert into the final training data set.
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Anomaly Injections and Measurement of Accuracy for SAD.
The accuracy evaluation for detected anomalies is carried
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Fig. 7. Comparison of the accuracy of the two best models, evaluated for
different positions 0, 20 of the injected anomaly and k € {1, 3,5}.

out by artificially injecting anomalies in the data. For SAD,
we performed anomaly injections as follows: given a trace
Tiest = {eo,e€1,...,en}, with N, non-zero elements and
top-k predictions for each position ¢ in the trace, we select
a label, which is not in the top-k predictions, and inject
it at the position of the normal observed label. We then
run the prediction with the model and determine a decision
anomaly/normal by comparing the non-corrupted sample with
the prediction. In case of output true and the label in the
corrupted event position is not in the top-k predictions, the
injected anomaly is successfully detected.
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Fig. 8. Response time anomaly detection accuracy comparison of the
multimodal LSTM and the baseline deep learning architecture evaluate for
different trace lengths.

Anomaly Injections and Measurement of Accuracy for
RTAD. We perform the anomaly injections by selecting the
event response time rt; at a position ¢ of the trace. The
anomaly is injected by increasing the response time of the
event by a random value r € (2xrt;, 5*7rt;). Once the anomaly
is injected, we compute the mean squared error between the
input and the predicted output. If the error is not in the 95%
confidence interval computed from the Gaussian fitted on the
training set, then the anomaly is detected successfully.

The accuracy is computed as the ratio of the number of
successfully detected anomalies and the number of injected
anomalies.

In practice, the anomaly may not appear only in a single
event. We assume that a trace is anomalous if at least one event
inside deviates from the normal behavior, making our approach
applicable when the anomaly is spread across multiple events.

Baselines. We have two baseline models for comparison,
single- and multimodal deep learning architectures composed
of simple feed-forward neural networks. The architecture for
the single-modality network is input, dense(50), dense(20),
output, while for the multimodal is [D;-input, Ds-input],
dense(50) for Dy, dense(50) for D5, concatenation, dense(20)
for each, output for each. The decision for anomaly is done
in the same way as previously described.

B. Results and Discussion

As shown in Figure 5, the best results in terms of accuracy
for the task of structural anomaly detection are achieved using
the multimodal LSTM predictions. The bar plot shows the
accuracy of all models when different values of k are used.
We observe that that the single-modality LSTM achieves a
comparable accuracy, while the other two single- and mul-
timodal dense architectures have low accuracies. The dense
models can not take into account the temporal information.
Compared to that of the single-modality LSTM architecture,
the multimodal LSTM achieves a better accuracy owing to the
additional response time information. The results for £ = 3
and k£ = 5 are comparable, while the results for £k = 1 show
that the multimodal approach outperforms the single-modality
by a large margin of 16%. Because of the low percentages
obtained from the traditional models, we do not compare them
below.

We evaluated the accuracy when the anomaly is injected in
traces with different sizes, as shown in Figure 6, while ignor-
ing the position of injection of the anomaly. Both proposed
architectures achieve high accuracies for k& € {3,5}. The mul-
timodal slightly outperforms the single-modality approach in 9
out of 15 trace lengths for both k. Significantly better results
are achieved for £k = 1 for almost all of the trace lengths.
The plot demonstrates that both approaches are stable, without
performance reduction when the trace length is increased.

Further, for SAD, we compared the two best models when
the anomaly is injected in different positions in the trace for
k € 1,3,5, while ignoring the trace length. Similarly, Figure
7 shows a significantly better performance of the multimodal
approach for k = 1. Furthermore, the accuracy is also stable
at all of the different positions of the trace. This implies that
the model successfully detects injected anomalies for different
events in different positions of the trace.

RTAD. The single-task models for sequential response time
modelling have quite low performances than those of both
multimodal models, and thus we discuss only those results.
Figures 9 and 8 show comparisons of the two multimodal
approaches for different positions of the injected anomaly and
different trace lengths. In both figures, the multimodal ap-
proach achieves a higher accuracy for response time anomaly
detection. Figure 8 shows that the accuracy slightly decreases
when the trace length is larger. In Figure 9, the reason why
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Fig. 9. Response time anomaly detection accuracy comparison between the
multimodal LSTM and the baseline deep learning architecture, evaluated for
different positions of the injected anomaly.

the accuracy drops at position 7 is probably because of the
small signal-to-noise ratio and the existence of outliers. In
our approaches, we have not applied any preprocessing or
outlier removal techniques, but we assumed that the recorded
data represent the normal behavior. The use of preprocessing
techniques for the response time may eventually help improve
the accuracy for the response time in critical positions.

The models are consistent and have high accuracy even
when the length of the trace increases. This is because of
the LSTMs which are able to learn long-term dependencies in
sequential tasks.

Performance. The time needed to train the multimodal
LSTM on the 1% representative sub-sample of over one mil-
lion traces was approximately 30 min. The model is applicable
for real-time anomaly detection with a prediction time per
trace below 50 ms.

V. CONCLUSION AND FUTURE WORK

This paper addressed an important and growing challenge
from the field of AIOps: the anomaly detection in large-scale
cloud infrastructures using tracing data that contains detailed
information about inter-service calls.

We addressed the problem using sequential deep networks
for structural anomaly detection and presented approaches to
recognize dependent or concurrently invoked services. We fur-
ther extended the approach by an architecture for multimodal
anomaly detection. This approach enables to detect structural
and response time anomalies by simultaneously considering
the trace structure and the latency of the services.

Our evaluation with data from a real-world production cloud
showed that our multimodal LSTM approach achieved over
90% accuracy in multiple experiments, outperforming the
single-modality and the baseline dense neural networks, al-
though the single-modality LSTM yielded comparable results
in structural anomaly detection.

Our approach paves the way for development of new tech-
niques that simultaneously consider application logs, resource
metrics, or other observability data to create a joint represen-
tation of states to enable the anomaly detection in large-scale

complex microservice systems. These achievements are fun-
damental for the development of zero-touch AIOps solutions
for the automated anomaly detection, root-cause analysis, and
remediation.
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