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It has been more than a decade since David Clark published his proposal for
a knowledge plane (KP) for the Internet, in which he proposed integrating
“intelligence” into the fabric of the Internet itself, as opposed to sequestering
it at the endpoints. While KP has inspired numerous research projects and
is prolifically cited, Clark’s vision has yet to be fully realized in deployment.
In this paper, the authors ask why this is, and whether recent developments
in networked and distributed systems give cause to revisit KP.

In short, the authors argue the answer is yes. Namely, they make the case
that advances in machine learning, data analytics, and software-defined net-
working enable a paradigm they call “knowledge defined networking” that
can achieve the goals of a KP. This paper identifies an architecture for their
approach and provides several case studies demonstrating the potential ben-
efits in deployment. The authors identify numerous challenges that must
be addressed before the KDN paradigm is ready for widespread adoption,
with perhaps the biggest open question being: will this be the next big step
toward Clark’s KP vision?
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I start by applauding the authors of Knowledge-Defined Networking for pub-
licly sharing the datasets and scripts used in the experiments presented in the
paper, at http://knowledgedefinednetworking.org. This is not only im-
portant for reproducibility, but for the particular context of Machine Learn-
ing (ML) having standardised datasets has been shown fundamental in other
areas, as the authors correctly point out, so this is an excellent first step
towards that goal in networking.
The website provides two main types of artefacts: datasets and neural net-
works software. The datasets include all data used for the two use cases
discussed in the paper. For the virtual network functions they include the
CPU consumption of an OVS connected to an SDN controller, of an OVS
configured with firewall rules, and of SNORT. For the network characterisa-
tion use case, the authors include several delay measurements for di↵erent
network topologies. The datasets have shown to be good and useful.
The authors also released neural networks software scripts, but they require
a specific version of a commercial software that was not available to the
reviewer. The open-source alternative could not be used to reproduce all
the experiments, only a subset of them. The first version of the website
did not include enough documentation to help reproducing the results, but
the authors kindly provided the necessary information, which the reviewer
recommends to be included in the website (alongside the precise software
requirements).
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this paper.
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ABSTRACT
The research community has considered in the past the ap-
plication of Artificial Intelligence (AI) techniques to control
and operate networks. A notable example is the Knowledge
Plane proposed by D.Clark et al. However, such techniques
have not been extensively prototyped or deployed in the field
yet. In this paper, we explore the reasons for the lack of
adoption and posit that the rise of two recent paradigms:
Software-Defined Networking (SDN) and Network Analyt-
ics (NA), will facilitate the adoption of AI techniques in the
context of network operation and control. We describe a
new paradigm that accommodates and exploits SDN, NA
and AI, and provide use-cases that illustrate its applicabil-
ity and benefits. We also present simple experimental results
that support, for some relevant use-cases, its feasibility. We
refer to this new paradigm as Knowledge-Defined Network-
ing (KDN).

CCS Concepts
•Networks ! Network design principles; Network ser-
vices; Network performance modeling;

Keywords
Knowledge Plane, SDN, Network Analytics, Machine Learn-
ing, NFV, Knowledge-Defined Networking

1. INTRODUCTION
D. Clark et al. proposed “A Knowledge Plane for the

Internet” [1], a new construct that relies on Machine Learn-
ing (ML) and cognitive techniques to operate the network.
A Knowledge Plane (KP) would bring many advantages to
networking, such as automation (recognize-act) and recom-
mendation (recognize-explain-suggest), and it has the po-
tential to represent a paradigm shift on the way we operate,
optimize and troubleshoot data networks. However, at the
time of this writing, we are yet to see the KP prototyped or
deployed. Why?

One of the biggest challenges when applying ML for net-
work operation and control is that networks are inherently
distributed systems, where each node (i.e., switch, router)
has only a partial view and control over the complete sys-
tem. Learning from nodes that can only view and act over a
small portion of the system is very complex, particularly if
the end goal is to exercise control beyond the local domain.
The emerging trend towards logical centralization of control

will ease the complexity of learning in an inherently dis-
tributed environment. In particular, the Software-Defined
Networking (SDN) paradigm [2] decouples control from the
data plane and provides a logically centralized control plane,
i.e., a logical single point in the network with knowledge of
the whole.
In addition to the “softwarization” of the network, current

network data plane elements, such as routers and switches,
are equipped with improved computing and storage capa-
bilities. This has enabled a new breed of network moni-
toring techniques, commonly referred to as network teleme-
try [3]. Such techniques provide real-time packet and flow-
granularity information, as well as configuration and net-
work state monitoring data, to a centralized Network An-
alytics (NA) platform. In this context, telemetry and an-
alytics technologies provide a richer view of the network
compared to what was possible with conventional network
management approaches.
In this paper, we advocate that the centralized control of-

fered by SDN, combined with a rich centralized view of the
network provided by network analytics, enable the deploy-
ment of the KP concept proposed in [1]. In this context, the
KP can use various ML approaches, such as Deep Learning
(DL) techniques, to gather knowledge about the network,
and exploit that knowledge to control the network using
logically centralized control capabilities provided by SDN.
We refer to the paradigm resulting from combining SDN,
telemetry, Network Analytics, and the Knowledge Plane as
Knowledge-Defined Networking.
This paper first describes the Knowledge-Defined Net-

working (KDN) paradigm and how it operates. Then, it
describes a set of relevant use-cases that show the appli-
cability of such paradigm to networking and the benefits
associated with using ML. In addition, for some use-cases,
we also provide early experimental results that show their
feasibility. We conclude the paper by analyzing the open
research challenges associated with the KDN paradigm.

2. A KNOWLEDGE PLANE FOR SDN AR-
CHITECTURES

This paper restates the concept of Knowledge Plane (KP)
as defined by D. Clark et al. [1] in the context of SDN ar-
chitectures. The addition of a KP to the traditional three
planes of the SDN paradigm results in what we call Know-
ledge-Defined Networking.
The Data Plane is responsible for storing, forwarding and
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processing data packets. In SDN networks, data plane el-
ements are typically network devices composed of line-rate
programmable forwarding hardware. They operate unaware
of the rest of the network and rely on the other planes to
populate their forwarding tables and update their configu-
ration.

The Control Plane exchanges operational state in order
to update the data plane matching and processing rules.
In an SDN network, this role is assigned to the –logically
centralized– SDN controller that programs SDN data plane
forwarding elements via a southbound interface. While the
data plane operates at packet time scales, the control plane
is slower and typically operates at flow time scales.

The Management Plane ensures the correct operation and
performance of the network in the long term. It defines the
network topology and handles the provision and configura-
tion of network devices. In SDN this is usually handled
by the SDN controller as well. The management plane is
also responsible for monitoring the network to provide crit-
ical network analytics. To this end, it collects telemetry
information from the control and data plane while keeping a
historical record of the network state and events. The man-
agement plane is orthogonal to the control and data planes,
and typically operates at larger time-scales.

The Knowledge Plane, as originally proposed by Clark, is
redefined in this paper under the terms of SDN as follows:
the heart of the knowledge plane is its ability to integrate be-
havioral models and reasoning processes oriented to decision
making into an SDN network. In the KDN paradigm, the
KP takes advantage of the control and management planes
to obtain a rich view and control over the network. It is
responsible for learning the behavior of the network and, in
some cases, automatically operate the network accordingly.
Fundamentally, the KP processes the network analytics col-
lected by the management plane, either preprocessed data
or raw data, transforms them into knowledge via ML, and
uses that knowledge to make decisions (either automatically
or through human intervention). While parsing the informa-
tion and learning from it is typically a slow o↵-line process,
using such knowledge automatically can be done at a time-
scales close to those of the control and management planes.
However, the trend is towards on-line learning for applica-
tions such as those described in section 4.

3. KNOWLEDGE-DEFINED NETWORKING
The Knowledge-Defined Networking (KDN) paradigm op-

erates by means of a control loop to provide automation,
recommendation, optimization, validation and estimation.
Conceptually, the KDN paradigm borrows many ideas from
other areas, notably from black-box optimization [4], neural-
networks in feedback control systems [5], reinforcement learn-
ing [6] and autonomic self-* architectures [7]. In addition,
recent initiatives share the same vision stated in this pa-
per1 [8], [9]. Fig. 2 shows the basic steps of the main KDN
control. In what follows we describe these steps in detail.

Forwarding Elements & SDN Controller ! Analytics

Platform.

The Analytics Platform aims to gather enough informa-
tion to o↵er a complete view of the network. To that end,
it monitors the data plane elements in real time while they

1Cognet project: http://www.cognet.5g-ppp.eu/
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Figure 1: KDN operational loop

forward packets in order to access fine-grained tra�c infor-
mation. In addition, it queries the SDN controller to obtain
control and management state. The analytics platform re-
lies on protocols, such as NETCONF (RFC 6241), NetFlow
(RFC 3954) and IPFIX (RFC 7011), to obtain configura-
tion information, operational state and tra�c data from the
network. The most relevant data collected by the analytics
platform is summarized below.

• Packet-level and flow-level data: This includes Deep
Packet Inspection (DPI) information, flow granularity
data and relevant tra�c features.

• Network state: This includes the physical, topological
and logical configuration of the network.

• Control & management state: This includes all the
information included both in the SDN controller and
management infrastructure, including policy, virtual
topologies, application-related information, etc.

• Service-level telemetry: This is relevant to learn the
behavior of the application or service, and its relation
with the network performance, load and configuration.

• External information: This is relevant to model the
impact of external events, such as activity on social
networks (e.g., amount of people attending a sports
event), weather forecasts, etc. on the network.

In order to e↵ectively learn the network behavior, besides
having a rich view of the network, it is critical to observe
as many di↵erent situations as possible. As we discuss in
Section 5, this includes di↵erent loads, configurations and
services. To that end, the analytics platform keeps a histor-
ical record of the collected data.

Analytics Platform ! Machine Learning.

ML algorithms (such as Deep Learning techniques) are
the heart of the KP, which are able to learn from the net-
work behavior. The current and historical data provided by
the analytics platform are used to feed learning algorithms
that learn from the network and generate knowledge (e.g.,
a model of the network). We consider three approaches: su-
pervised learning, unsupervised learning and reinforcement
learning.
In supervised learning, the KP learns a model that

describes the behavior of the network, i.e., a function that
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Table 1: KDN applications
Closed Loop Open Loop

Supervised
Automation

Optimization

Validation

Estimation

What-if analysis

Unsupervised Improvement Recommendation

Reinforcement
Automation

Optimization
N/A

relates relevant network variables to the operation of the
network (e.g., the performance of the network as a function
of the tra�c load and network configuration). It requires
labeled training data and feature engineering to represent
network data.

Unsupervised learning is a data-driven knowledge dis-
covery approach that can automatically infer a function that
describes the structure of the analyzed data or can highlight
correlations in the data that the network operator may be
unaware of. As an example, the KP may be able to discover
how the local weather a↵ects the link’s utilization.

In the reinforcement learning approach, a software
agent aims to discover which actions lead to an optimal con-
figuration. As an example the network administrator can set
a target policy, for instance the delay of a set of flows, then
the agent acts on the SDN controller by changing the con-
figuration and for each action receives a reward, which in-
creases as the in-place policy gets closer to the target policy.
Ultimately, the agent will learn the set of configuration up-
dates (actions) that result in such target policy. Recently,
deep reinforcement learning techniques have provided im-
portant breakthroughs in the AI field that are being applied
in many network-related fields (e.g., [10]).

Please note that learning can also happen o✏ine and ap-
plied online. In this context knowledge can be learned o✏ine
training a neural network with datasets of the behavior of
a large set of networks, then the resulting model can be
applied online.

Machine Learning ! Northbound controller API.

The KP eases the transition between telemetry data col-
lected by the analytics platform and control specific actions.
Traditionally, a network operator had to examine the met-
rics collected from network measurements and make a deci-
sion on how to act on the network. In KDN, this process
is partially o✏oaded to the KP, which is able to make -or
recommend- control decisions taking advantage of ML tech-
niques.

Depending on whether the network operator is involved or
not in the decision making process, there are two di↵erent
sets of applications for the KP. We next describe these
potential applications and summarize them in table 1.

Closed loop: When using supervised or reinforcement
learning, the network model obtained can be used first for
automation, since the KP can make decisions automatically
on behalf of the network operator. Second, it can be used
for optimization of the existing network configuration, given
that the learned network model can be explored through
common optimization techniques to find (quasi)optimal con-
figurations. In the case of unsupervised learning, the knowl-
edge discovered can be used to automatically improve the
network via the interface o↵ered by the SDN controller. For

instance the relation between tra�c, routing, topology and
the resulting delay can be modeled to then apply optimal
routing configurations that minimize delay.
Open loop: In this case the network operator is still in

charge of making the decisions, however it can rely on the
KP to ease this task. When using supervised learning, the
model learned by ML can be used for validation (e.g., to
query the model before applying tentative changes to the
system). The model can also be used as a tool for perfor-
mance estimation and what-if analysis, since the operator
can tune the variables considered in the model and obtain
an assessment of the network performance. When using un-
supervised learning, the correlations found in the explored
data may serve to provide recommendations that the net-
work operator can take into consideration when making de-
cisions.

Northbound controller API ! SDN controller.

The northbound controller API o↵ers a common interface
to, human, software-based network applications and policy
makers to control the network elements. The API o↵ered
by the SDN controller can be either a traditional impera-
tive language or a declarative one [11]. In the latter case,
the users of the API express their intentions towards the
network, which then are translated into specific control di-
rectives.
The KP can operate both on top of imperative or declara-

tive languages as long as it is trained accordingly. However,
and at the time of this writing, developing truly expres-
sive and high-level declarative northbound APIs is an open
research question. Such intent-based declarative languages
provide automation and intelligence capabilities to the sys-
tem. In this context, we advocate that the KP represents
an opportunity to help on their development, rather than an
additional level of intelligence. As a result, we envision the
KP operating on top of imperative languages, while help-
ing on the translation of the intentions stated by the policy
makers into network directives.

SDN controller ! Forwarding Elements.

The parsed control actions are pushed to the forwarding
devices via the controller southbound protocols in order to
program the data plane according to the decisions made at
the KP.

4. USE-CASES
This section presents a set of specific uses-cases that illus-

trate the potential applications of the KDN paradigm and
the benefits a KP based on ML may bring to common net-
working problems. For two representative use-cases, we also
provide early experimental results that show the technical
feasibility of the proposed paradigm. All the datasets used in
this paper, as well as codes and relevant hyper-parameters,
can be found at [12].

4.1 Routing in an Overlay Network
The main objective of this use-case is to show that it is

possible to model the behavior of a network with the use of
ML techniques. In particular, we present a simple proof-of-
concept example in the context of overlay networks, where
an Artificial Neural Network (ANN) is used to build a model
of the delay of the (hidden) underlay network, which can
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later be used to improve routing in the overlay network.
Overlay networks have become a common solution for de-

ployments where one network (overlay) has to be instanti-
ated on top of another (underlay). This may be the case
when a physically distributed system needs to behave as
a whole while relying on a transit network, for instance a
company with geo-distributed branches that connects them
through the Internet. Another case is when a network has
to send tra�c through another for which it is not interoper-
able, for example when trying to send Ethernet frames over
an IP-only network.

In such cases, an overlay network can be instantiated by
means of deploying overlay-enabler nodes at the edge of the
transit network and then tunneling overlay tra�c using an
encapsulation protocol (e.g., LISP (RFC 6830), VXLAN
(RFC 7348), etc.). In many overlay deployments, the un-
derlay network belongs to a di↵erent administrative domain
and thus its details (e.g., topology, configuration) are hidden
to the overlay network administrator (see fig. 2 inset).

Typically, overlay edge nodes are connected to the under-
lay network via several links. Even though edge nodes have
no control over the underlay routing, they can distribute
the tra�c among the di↵erent links they use to connect to
it. Edge nodes can use overlay control plane protocols (e.g.,
LISP) to coordinate tra�c balancing policies across links.
However, a common problem is how to find best/optimum
per-link policies at the edge such that the global performance
is optimized. An e�cient use of edge nodes links is critical
since it is the only way the overlay operator can control –to
a certain extent– the tra�c path over the underlay network.

Overlay operators can rely on building a model of the
underlay network to optimize the performance. However,
building such a model poses two main challenges. First, nei-
ther the topology nor the configuration (e.g., routing policy)
of the underlay network are known, and thus it is di�cult
to determine the path that each flow will follow. Second,
mathematical or theoretical models may fall short to model
such a complex scenario.

ML techniques o↵er a new tool to model hidden networks
by analyzing the correlation of inputs and outputs in the
system. In other words, ML techniques can model the hid-
den underlay network by means of observing how the out-
put tra�c behaves for a given input tra�c (i.e., f (routing
policy, tra�c) = performance). For instance, if two edge
node links share a transit node within the -hidden- under-
lay network, ML techniques can learn that the performance
decreases when both of those links are used at the same
time and therefore recommend tra�c balancing policies that
avoid using both links simultaneously.

4.1.1 Experimental Results

To assess the validity of this approach, we carried out
the following simple experiment. We have simulated (Om-
net++2) a network with 12 overlay nodes, 19 underlay ele-
ments and a total of 72 links. The simulation has the follow-
ing tra�c characteristics: overlay nodes randomly split the
tra�c independently of the destination node, the underlay
network uses shortest path routing with constant link capac-
ity, constant propagation delay and Poisson tra�c genera-
tion. From the KP perspective, only the overlay nodes that
send and receive tra�c are seen, while the underlay network
is hidden.
2https://omnetpp.org/

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

120

140

160

180

200

Samples in the training set

M
SE

 [µ
s2 ]

Global view
Local view

Overlay network with a hidden underlay

Overlay
nodes

Overlay
nodes

Figure 2: Prediction error (Mean Square Error) as a
function of the size of the training set in an overlay-
underlay scenario, both for global and local view.

We train an ANN using Pylearn2–Theano 0.7 with one
hidden layer and a sigmoid activation function. The ANN
is trained using the following input features: the tra�c vol-
ume, defined as the aggregated bytes for the simulated time
among source-destination pairs of the overlay nodes, and
the routing of the overlay, defined as the ratio of tra�c that
is sent through each edge link. The average delays among
paths obtained in the simulation are used as output features.
We train the network with 9,600 training samples and we use
300 –separate samples– to validate the results.
With this use-case, we aim to learn the function that re-

lates the tra�c and the routing configuration of the overlay
network with the resulting average delay of each path. That
is, we train the ANN using the dataset that has as inputs
tra�c and routing configuration, and as output the average
delay. Thus, the resulting ANN models the average delay of
the packets for any tra�c and routing configuration.
Fig. 2 shows the error (the accuracy) of the model as a

function of the training set size (solid line). This error rep-
resents how accurately the model predicts the delay when
the routing and tra�c is known, but not the topology. As
shown by the figure, the relative error is roughly 1% when
using 6,400 training samples, equivalent to a mean square
error of 20 ms2. In addition to this, fig. 2 also shows (dashed
line) when the model is trained only using local information.
The main reason behind this experiment is that we aim to
validate the main hypothesis stated in this paper: ML ap-
plied to a global view renders better results than when only
local information is available. For this, each overlay node is
trained only with local tra�c, routing and delay and as the
results show, the accuracy in this case is strongly degraded.
This is because the delay between two nodes depends on the
state of the queues of the underlay network, which in turns
depends on the total tra�c of the network.
Similar scenarios has been addressed before in the past

(e.g., [13]) using network optimization techniques. Such
mechanisms rely on models that represent the network built
using either analytical techniques (e.g., Markov Chains) or
computational models. In this paper we advocate that ML
techniques represent a third pillar in network modeling, en-
abled by the global view and control o↵ered by SDN and
NA techniques. It provides important advantages: ML is
data-driven, does not require simplifying assumptions typi-
cally found in traditional network modeling, works well with
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complex systems (e.g., non-linearities and multi-dimensional
dependencies) and, if trained well, can be general. Further
information about this can be found at section 5.

4.2 Resource Management in an NFV scenario
This use-case shows how the KDN paradigm can also be

useful in the context of Network Function Virtualization
(NFV). NFV [14] is a networking paradigm where network
functions (e.g., firewalls, load-balancers, etc.) no longer
require specific hardware appliances but rather are imple-
mented in the form of Virtual Network Functions (VNFs)
that run on top of general purpose hardware.

The resource management in NFV scenarios is a complex
problem since VNF placement may have an important im-
pact on the overall system performance. The problem of
optimal Virtual Machine (VM) placement has been widely
studied for Data Center (DC) scenarios (see [15] and the
references therein), where the network topology is mostly
static. However, in NFV scenarios the placement of a VNF
modifies the performance of the virtualized network. This
increases the complexity of the optimal placement of VNFs
in NFV deployments.

Contrary to the overlay case, in the VNF placement prob-
lem all the information is available, e.g., virtual network
topology, CPU/memory usage, energy consumption, VNF
implementation, tra�c characteristics, current configuration,
etc. However, in this case the challenge is not the lack of in-
formation but rather its complexity. The behavior of VNFs
depend on many di↵erent factors and thus developing accu-
rate models is challenging.

The KDN paradigm can address many of the challenges
posed by the NFV resource-allocation problem. For exam-
ple, the KP can characterize, via ML techniques, the be-
havior of a VNF as a function of the collected analytics,
such as the tra�c processed by the VNF or the configura-
tion pushed by the controller. With this model, the resource
requirements of a VNF can be modeled by the KP without
having to modify the network. This is helpful to optimize
the placement of this VNF and, therefore, to optimize the
performance of the overall network.

4.2.1 Experimental results

To validate this use-case we model the CPU consumption
of real-world VNFs when operating under real tra�c. We
have chosen two di↵erent network elements, an Open Virtual
Switch (OVS v2.0.23) and Snort (v2.9.6.04). We have tested
OVS with two di↵erent set of rules and controller configu-
rations: as a SDN-enabled firewall and as a SDN-enabled
switch. In both cases, we have aimed to have a representa-
tive configuration of real-world deployments. With this we
have three di↵erent VNFs: SNORT, Firewall and Switch.

To measure the CPU consumption of both VNFs, we have
deployed them in VMs (Ubuntu 14.04.1) running on top of
a hypervisor (VMware ESXi v5.5), which provides a virtual
network to interconnect the VNFs using 1 Gbps links. Two
VMs generate and receive tra�c, and are connected to the
VNF. The tra�c used in this experiment was replayed using
tcpreplay (version 3.4.4) from an on-campus DPI infrastruc-
ture. The campus network serves around 30k users, further
details about the tra�c traces can be found in [16]. To repre-
sent the tra�c, we extract o↵-line a set of 86 tra�c features
3http://openvswitch.org/
4https://www.snort.org/
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in 20 second batches: number of packets, number of 5-tuple
flows, average length, number of di↵erent IPs or ports, ap-
plication layer information, among others. The complete set
of features can be found in [12]. In the learning process, we
use the Matlab ANN toolbox with one hidden layer, where
the input are the 86 tra�c features and the output is the
measured CPU consumption. In this case, we aim to learn
the function that relates the tra�c features with the CPU
consumption.
In this experiment, we use a dataset of 750 samples (600

for training and 150 for test-set) for the Firewall learning
model and a dataset of 1,100 samples (900 for training and
200 for test-set) for the Snort and the Switch learning mod-
els. First we aim to understand if the model is complex
(e.g., non-lineal) and thus, requires the use of ML. For this
we show in fig. 3 the model when only a single feature is
used, specifically we pick the input tra�c feature that is
more relevant to predict CPU of each of the VNFs, this is
the result of a PCA analysis. The figure plots the predicted
CPU consumption (line) and the measured data (dots) as
a function of the tra�c feature used for prediction. As the
plot shows, training with a single feature leads to poor ac-
curacy while showing non-linear dependencies, motivating
the use of neural networks. Finally, fig. 4 shows the CDF of
the relative error ((ypred � yreal)/yreal) of the models when
trained with all the 86 features defined previously, achieving
very good accuracy.
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4.3 Knowledge extraction from network logs
Operators typically equip their networks with a logging in-

frastructure where network devices report events (e.g., link
going down, packet losses, etc.). Such logs are extensively
used by operators to monitor the health of the network and
to troubleshoot issues. Log analysis is a well-known research
field and, in the context of the KDN paradigm, it can also
be used in networking [17]. By means of unsupervised learn-
ing techniques, a KDN architecture can correlate log events
and discover new knowledge. This knowledge can be used
by the network administrators for network operation using
the open-loop approach, or to take automatic decisions in
a closed-loop solution. These are some specific examples of
Knowledge Discovery using Network Logging and unsuper-
vised learning:

• Node N is always congested around 8pm and Services
X and Y have an above-average number of clients.

• Abnormal number of BGP UPDATES messages sent
and Interface 3 is flapping.

• Fan speeds increase in node N when interface Y fails.

4.4 5G mobile communications networks
The fifth generation of mobile communications networks

will provide higher data rates, lower latencies, among other
advances together with an important update of the net-
work [18]. The 5G network is, by design, a Wireless SDN
(WSDN), which o↵ers a flexible network architecture, re-
quired by the specifications of 5G. Moreover, 5G is com-
plemented by the use of Network Function Virtualization
(NFV), to increase the flexibility of the 5G network and
to create virtual networks over the same physical network.
Within this context, KDN can be easily applied as in a con-
ventional SDN+NFV network.

Additionally, 5G networks require novel technical solu-
tions in which the KDN paradigm can also be helpful. The
high scalability required makes necessary the design of in-
telligent routing algorithms for a large number of users, es-
pecially when these users are mobile [18]. The design of
reliable hando↵s, as well as the design of dynamic routing
algorithms may take advantage of the data collected to pre-
dict the user movement to increase the performance of these
algorithms. Moreover, this can also be used to increase the
e�ciency of the beam-steering techniques, which will facili-
tate the increase of the throughput in the physical layer.

5. CHALLENGES AND CONCLUSIONS
The KDN paradigm brings significant advantages to net-

working, but at the same time it also introduces important
challenges that need to be addressed. In what follows we
discuss the most relevant ones.

New ML mechanisms: Although ML techniques provide
flexible tools to computer learning, its evolution is partially
driven by existing ML applications (e.g., Computer Vision,
recommendation systems, etc.). In this context the KDN
paradigm represents a new application for ML and as such,
requires either adapting existing ML mechanisms or develop-
ing new ones. Graphs are a notable example, they are used
in networking to represent topologies, which determine the
performance and features of a network. In this context, only
preliminary attempts have been proposed in the literature
to create sound ML algorithms able to model the topology

of systems that can be represented through a graph [19]. Al-
though such proposals are not tailored to network topologies,
their core ideas are encouraging for the computer networks
research area. In this sense, the combination of modern
ML techniques, such as Q-learning techniques, convolutional
neural networks and other deep learning techniques, may be
essential to make a step further in this area.
Non-deterministic networks: Typically networks operate

with deterministic protocols. In addition, common analyti-
cal models used in networking have an estimation accuracy
and are based on assumptions that are well understood. In
contrast, models produced by ML techniques do not pro-
vide such guarantees and are di�cult to understand by hu-
mans. This also means that manual verification is usually
impractical when using ML-derived models. Nevertheless,
ML models work well when the training set is representative
enough. Then, what is a representative training set in net-
working? This is an important research question that needs
to be addressed. Basically, we need a deep understanding
of the relationship between the accuracy of the ML mod-
els, the characteristics of the network, and the size of the
training set. This might be challenging in this context as
the KP may not observe all possible network conditions and
configurations during its normal operation. As a result, in
some use-cases a training phase that tests the network un-
der various representative configurations can be required. In
this scenario, it is necessary to analyze the characteristics of
such loads and configurations in order to address questions
such as: does the normal tra�c variability occurring in net-
works produce a representative training set? Does ML re-
quire testing the network under a set of configurations that
may render it unusable?
New skill set and mindset: The move from traditional

networks to the SDN paradigm has created an important
shift on the required expertise of networking engineers and
researchers. The KDN paradigm further exacerbates this
issue, as it requires a new set of skills in ML techniques or
Artificial Intelligence tools.
Standardized Datasets: In many cases, progress in ML

techniques heavily depends on the availability of standard-
ized datasets. Such datasets are used to research, develop
and benchmark new AI algorithms. And some researchers
argue that the cultivation of high-quality training datasets
is even more important that new algorithms, since focus-
ing on the dataset rather than on the algorithm may be a
more straightforward approach. The publication of datasets
is already a common practice in several popular ML applica-
tion, such as image recognition5. In this paper, we advocate
that we need similar initiatives for the computer network
AI field. For this reason, all datasets used in this paper are
public and can be found at [12]. This datasets have proven
useful in routing and VNF experiments, it is our hope that
help kick-o↵ a community contributing with larger datasets.
Summary: We advocate that in order to address such

important challenges and achieve the vision shared in this
paper, we require a truly inter-disciplinary e↵ort between
the research fields of Artificial Intelligence, Network Science
and Computer Networks.
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