
Learning Scheduling Algorithms for Data Processing Clusters

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, Mohammad Alizadeh

MIT Computer Science and Artificial Intelligence Laboratory
{hongzi, malte, bjjvnkt, zili, alizadeh}@csail.mit.edu

Abstract. Efficiently scheduling data processing jobs on dis-
tributed compute clusters requires complex algorithms. Cur-
rent systems, however, use simple generalized heuristics and
ignore workload structure, since developing and tuning a be-
spoke heuristic for each workload is infeasible. In this paper,
we show that modern machine learning techniques can gen-
erate highly-efficient policies automatically.

Decima uses reinforcement learning (RL) and neural
networks to learn workload-specific scheduling algorithms
without any human instruction beyond specifying a high-
level objective such as minimizing average job completion
time. Off-the-shelf RL techniques, however, cannot handle
the complexity and scale of the scheduling problem. To build
Decima, we had to develop new representations for jobs’ de-
pendency graphs, design scalable RL models, and invent new
RL training methods for continuous job arrivals.

Our prototype integration with Spark on a 25-node cluster
shows that Decima outperforms several heuristics, includ-
ing hand-tuned ones, by at least 21%. Further experiments
with an industrial production workload trace demonstrate
that Decima delivers up to a 17% reduction in average job
completion time and scales to large clusters.

1 Introduction
Efficient utilization of their expensive compute clusters mat-
ters for enterprises: even small improvements in utilization
can save millions of dollars at scale [6, §1.2]. Cluster sched-
ulers are key to realizing these savings. A good scheduling
policy packs work tightly to reduce fragmentation [18; 19;
46], prioritizes jobs according to high-level metrics such as
user-perceived latency [47], and avoids inefficiencies due to
incorrect job configurations [14].

Current cluster schedulers, however, rely on heuristics that
prioritize generality, ease of understanding, and straightfor-
ward implementation over achieving the ideal performance
on a specific workload. By using general heuristics like
fair scheduling [3; 15], shortest-job-first, and simple packing
strategies [18], current systems forego potential performance
optimizations. For example, widely-used schedulers do not
use readily available information about job structure (i.e., the
internal dependency graph) to make better decisions. Unfor-
tunately, the workload-specific scheduling policies that could
use this information require expert knowledge and take sig-
nificant effort to devise, implement, and validate. For many
organizations, these skills are either unavailable or uneco-

nomic because the labor cost exceeds potential savings.
In this paper, we show that modern machine-learning tech-

niques can help side-step this trade-off by automatically
learning highly efficient, workload-specific scheduling poli-
cies. We present Decima1, a general-purpose scheduling ser-
vice for data processing jobs with dependent stages. We fo-
cus on these jobs for two reasons: (i) many systems encode
job stages and their dependencies as directed acyclic graphs
(DAGs) [5; 9; 23; 50]; and (ii) scheduling DAGs is a hard
algorithmic problem whose optimal solutions are intractable
and difficult to capture in good heuristics [19].

Given only a high-level goal (e.g., minimal average job
completion time), Decima uses existing cluster monitoring
information and past workload logs to automatically learn
sophisticated scheduling policies. For example, instead of a
rigid fair sharing policy, Decima learns to give jobs shares of
resources that optimize overall performance; it learns to use
jobs’ dependency structure to plan ahead and avoid waiting
at “choke points”; and it learns job-specific parallelism lev-
els that avoid wasting resources on diminishing returns for
jobs with little inherent parallelism. The right algorithms and
thresholds for these policies are all workload-dependent, and
achieving them with a current scheduler requires painstaking
manual customization.

Decima learns scheduling policies entirely from experi-
ence using modern deep reinforcement learning (RL) tech-
niques. Decima uses a neural network to encode its schedul-
ing policy; it trains this neural network through a large num-
ber of simulated experiments, where it schedules a work-
load, observes the outcome, and gradually improves its pol-
icy. We built Decima using neural networks and RL because
these techniques have achieved remarkable recent success on
challenging decision-making tasks, such as learning Go and
Chess purely through self-play [41]. To apply these tech-
niques to complex cluster scheduling problems, however, we
had to solve several key problems.

First, neural networks require flat, numerical vectors as in-
puts, but the inputs to the scheduler are DAGs with attributes
attached to nodes and edges. We developed a new embed-
ding technique for mapping job DAGs with arbitrary size and
shape to vectors that neural networks can process (§5.1). Our
approach builds upon recent work on learning graph embed-
dings [10; 11; 26], but is tailored to the scheduling domain.

1Decima makes decisions and spins threads of life in Roman mythology.

1

ar
X

iv
:1

81
0.

01
96

3v
2

 [
cs

.L
G

]
 1

2
O

ct
 2

01
8

For example, existing embeddings cannot capture path-based
properties such as a DAG’s critical path, and we created new
embedding methods for this purpose.

Second, cluster schedulers must scale to hundreds of jobs
(each with dozens of stages) and thousands of machines, and
must decide among potentially hundreds of configurations
per job (e.g., different levels of parallelism). This makes
for a significantly larger RL problem than typical game-play
tasks, both in terms of the amount of information available to
the scheduler (the state space), and the number of choices it
must make (the action space).2 We therefore had to design a
scalable RL formulation, and our models include several in-
novations (§5.2). For example, our neural network architec-
ture processes any number of jobs with the same underlying
parameters. We also factor actions into separate models for
(i) picking a stage to schedule, and (ii) configuring the job’s
parallelism, which significantly reduces model complexity
compared to a naı̈ve action encoding. These scalability inno-
vations affect both the models’ ability to learn successfully
and the performance of training and decision making.

Third, continuous, streaming job arrivals introduce unde-
sirable variance that the conventional RL training approaches
cannot tolerate [42, §3.7]. This variance exists because con-
ventional RL training algorithms cannot tell whether two re-
ward values differ due to different underlying job arrival pat-
terns, or due to the quality of the learned scheduling policy’s
decisions. To counter this effect, we build upon recent work
on new RL training techniques for variance reduction in set-
tings with stochastic inputs [30]. By conditioning training
feedback on the actual sequence of job arrivals experienced,
we isolate the contributions of the scheduling policy in the
overall feedback, making it feasible to learn policies that
handle continuous job arrivals (§5.3).

We integrated Decima with Spark and evaluated it on both
an experimental testbed and an industrial workload trace.
Our evaluation (§7) shows that (i) Decima outperforms exist-
ing heuristics on a 25-node Spark cluster, reducing average
job completion time of TPC-H query mixes by 21% or more;
(ii) Decima can offer efficiency gains of 5–17% on a pro-
duction workload from a large (anonymized) company; and
(iii) using the same trace, Decima’s core learning framework
can easily adapt to packing resources in multiple dimensions
(CPU and RAM), achieving a 37% improvement over metic-
ulously designed heuristics such as Graphene’s [19].
In summary, we make the following key contributions:
1. A novel scalable graph processing technique that converts

job DAGs of arbitrary shape and size into vectors suitable
for neural network and end-to-end RL (§5.1–§5.2).

2. A set of variance reduction techniques to make RL train-
ing feasible for unbounded job arrival sequences (§5.3).

3. Decima, the first generalizable, RL-based scheduler that
schedules complex data processing jobs and learns high-
2For example, the state of the game of Go can be represented by 19 ×

19 = 361 numbers, which also bound the number of legal moves per turn.

1 50 1001 5 10 201 50 100 200Number of tasks Duration (sec) Data shuffle (MB)1 50 100 200 1 5 10 20
1 50 100

Query 21

Query 20

Query 17

Query 8

Query 2

Figure 1: Data-parallel jobs have complex data-flow graphs like
the ones shown (TPC-H queries in Spark), with each node having a
distinct number of tasks, task durations, and input/output sizes.

quality scheduling policies without human-encoded in-
put, and a prototype implementation of it (§6).

4. An evaluation of Decima both in simulation and in a
real Spark cluster, and a comparison with state-of-the-art
scheduling heuristics (§7).

2 Motivation
Data processing systems and query compilers such as Hive,
Pig, SparkSQL, and DryadLINQ create DAG-structured
jobs, which consist of processing stages connected by in-
put/output dependencies (Figure 1). For recurring jobs,
which are common in batch-processing clusters [2], it may
also have reasonable estimates of runtimes and intermediate
data sizes. Most cluster schedulers, however, ignore this job
structure in their decisions and use e.g., coarse-grained fair
sharing [3; 7; 15; 16], rigid priority levels [47], and man-
ual encoding of each stage’s parallelism in the job specifica-
tion [39, §5]. Existing schedulers choose to largely ignore
this rich, easily-available job structure information because
designing scheduling algorithms that make use of it is a com-
plex task. We illustrate the challenges of using job-specific
information in scheduling decisions with two concrete ex-
amples: (i) dependency-aware scheduling, and (ii) automati-
cally choosing the right number of parallel tasks.

2.1 Dependency-aware task scheduling

Many job DAGs in practice have tens or hundreds of stages
with varying durations and numbers of parallel tasks in a
complex dependency structure. An ideal schedule ensures
that independent stages run in parallel as much as possible,
and that no stage ever blocks on a dependency if there are
available resources. Ensuring this requires the scheduler to
understand the dependency structure and plan ahead. Writ-
ing a heuristic to this end is feasible, albeit non-trivial, even
for a single DAG. However, a cluster runs multiple DAGs
in parallel; an ideal scheduler must hence figure out a com-
bined schedule for all of them. Such a schedule shifts re-
sources between DAGs and their parallel stages as neces-
sary to always keep them busy, while completing stages at a
rate that avoids “choke points”. This “DAG packing prob-
lem” is algorithmically hard: see, e.g., the illustrative ex-
ample by Grandl et al. [19, §2.2] and the one we describe
in detail in Appendix A. Hence, writing a heuristic to gen-

2

0 10 20 30 40 50 60 70 80 90 100
Degree of parallelism

0

100

200

300

Jo
b

ru
nt

im
e

[s
ec

] Q9, 2 GB
Q9, 100 GB
Q2, 100 GB

Figure 2: TPC-H queries scale differently with parallelism: Q9 on
a 100 GB input sees speedups up to 40 parallel tasks, while Q2 stops
gaining at 20 tasks; Q9 on a 2 GB input needs only 5 tasks. Picking
“sweet spots” on these curves for a mixed workload is non-trivial.

erate optimal schedules for all possible DAG combinations
is intractable [19; 31]. Existing schedulers therefore ignore
this challenge: they enqueue tasks from a stage as soon as it
becomes available, or run stages in an arbitrary topological
order.

2.2 Setting the right level of parallelism

In addition to understanding dependencies, an ideal sched-
uler must also understand how to best split limited resources
between jobs. Jobs vary in the amount of data that they pro-
cess, and in the amount of parallel work available when dif-
ferent stages run. A job with large input or large interme-
diate data can efficiently harness additional parallelism; by
contrast, a job running on small input data, or one with less
efficiently parallelizable operations, sees diminishing returns
beyond modest parallelism.

Figure 2 illustrates this with the job runtime of two TPC-
H [43] queries running on Spark as they are given additional
resources to run more parallel tasks. Even when both process
100 GB of input, Q2 and Q9 exhibit widely different scala-
bility: Q9 sees significant speedup up to 40 parallel tasks,
while Q2 only obtains marginal returns beyond 20 tasks.
When Q9 runs on a smaller input of 2 GB, however, it needs
no more than ten parallel tasks. For all jobs, assigning addi-
tional parallel tasks beyond a “sweet spot” in the curve adds
only diminishing gains. Hence, the scheduler should reason
about which job will see the largest marginal gain from ex-
tra resources and accordingly pick the sweet spot for each
job. In principle, this is a straightforward application of Am-
dahl’s Law [21], but given a mixed workload, the specific
curves and sweet spots are difficult to predict.

Existing schedulers largely side-step this problem. Most
burden the user with the choice of how many parallel tasks
to use [39, §5], or rely on a separate “auto-scaling” compo-
nent based on coarse heuristics [4; 14]. Indeed, many fair
scheduling policies [15; 24] divide resources without paying
attention to their decisions’ efficiency: sometimes, an “un-
fair” schedule results in a more efficient overall execution.

2.3 An illustrative example on Spark

The aspects described are just two examples of how sched-
ulers can exploit knowledge of the workload. To achieve the
best performance, schedulers must also respect other con-
siderations, such as the execution order (e.g., favoring short
jobs) and avoiding resource fragmentation [18; 47]. Con-
sidering all these dimensions together — as Decima does —
makes a substantial difference. We illustrate this by running
a mix of ten randomly chosen TPC-H [43] queries with in-
put sizes drawn from a long-tailed distribution on a Spark
cluster with 50 parallel task slots.3 Figure 3 visualizes the
schedules imposed by (a) Spark’s naı̈ve FIFO scheduling;
(b) a shortest-job-first (SJF) policy that strictly prioritizes
short jobs; (c) a more realistic, fair scheduler that dynami-
cally divides task slots between jobs; and (d) a scheduling
policy learned by Decima. We measure average job comple-
tion time (JCT) over the ten jobs. Having access to the graph
structure helps Decima improve average JCT by 45% over
the naı̈ve FIFO scheduler, and by 19% over the fair sched-
uler. It achieves this speedup (i) by completing short jobs
quickly, as five jobs finish in the first 40 seconds; and (ii)
by maximizing parallel-processing efficiency. SJF naı̈vely
dedicates all task slots to the next-smallest job in order to
finish it early (but inefficiently); by contrast, Decima runs
jobs near their parallelism sweet spot. By controlling paral-
lelism, Decima reduces the total time to complete all jobs by
30% compared to SJF. Further, unlike fair scheduling, Dec-
ima partitions task slots non-uniformly across jobs, improv-
ing average JCT by 19%.

Designing general-purpose heuristics to achieve these
benefits is difficult, as each additional dimension (DAG
structure, parallelism, job sizes, etc.) increases complexity
and introduces new edge cases. It may be feasible to tune a
heuristic for a specific workload, but rarely happens in prac-
tice, since devising, implementing, and testing a scheduling
policy requires expert knowledge and significant effort. Dec-
ima opens up a new option: using data-driven techniques, it
automatically learns workload-specific policies that can reap
these gains. Decima does so without requiring human guid-
ance beyond a high-level goal (e.g., minimal average JCT),
and without explicitly modeling the system or the workload.

3 The DAG scheduling problem in Spark
Decima is a general framework for learning scheduling al-
gorithms for DAG-structured jobs. For concreteness, we de-
scribe its design in the context of the Spark system.

A Spark job consists of a DAG whose nodes are depen-
dent stages. Each stage represents an operation that the sys-
tem runs in parallel over many shards of the stage’s inputs.
The inputs are the outputs of one or more parent stages, and
each shard is processed by a single task. A stage’s tasks be-
come runnable as soon as all parent stages have completed.

3See §7 for details of the workload and our cluster setup.

3

Ta
sk

 s
lo

ts

FIFO, avg. job duration 111.4 sec

Time (seconds)
0 200100 15050

(a) FIFO scheduling.

Ta
sk

 s
lo

ts

SJF, avg. job duration 81.7 sec

Time (seconds)
0 200100 15050

(b) SJF scheduling.

Ta
sk

 s
lo

ts

Fair, avg. job duration 74.9 sec

0 200100 15050
Time (seconds)

(c) Fair scheduling.

Ta
sk

 s
lo

ts

Decima, avg. job duration 61.1 sec

0 200100 15050
Time (seconds)

(d) Decima.
Figure 3: Decima improves average JCT of 10 randomly sample TPC-H queries by 45% over Spark’s naı̈ve FIFO scheduler, and by 19%
over a fair scheduler on a cluster with 50 task slots (executors). Different queries in different colors; vertical red lines are job completions.

How many tasks can run in parallel depends on the number
of executors (i.e., parallel task slots) that the job holds. Usu-
ally, a stage has more tasks than there are executors, and the
tasks therefore run in several “waves”. Executors are typ-
ically assigned by the Spark master based on user-requests
(and subject to available resources in the cluster). However,
Spark’s scheduling design also supports “dynamic resource
allocation”, which dynamically allocates executors based on
pending tasks’ wait time [4].

Spark must therefore handle three kinds of scheduling de-
cisions: (i) deciding how many executors to give to each job;
(ii) deciding which stages’ tasks to run next, and (iii) decid-
ing which task to run next when an executor becomes idle.
When a stage completes, its job’s high-level DAG sched-
uler handles the activation of dependent child stages and en-
queues their tasks with a lower-level task scheduler. The task
scheduler maintains task queues from which it assigns a task
every time an executor becomes idle.

We allow the scheduler to move executors between job
DAGs as it sees fit (dynamic allocation). Decima thus fo-
cuses on DAG scheduling (i.e., which stage to run next) and
executor allocation (i.e., each job’s degree of parallelism).
Since tasks in a stage run identical code and request identi-
cal resources, we use Spark’s existing task-level scheduling.

4 Overview and Design Challenges
Decima represents the scheduler as an agent that uses a neu-
ral network to make decisions. On scheduling events — e.g.,
a stage completion (which frees up executors), or a job ar-
rival (which adds a DAG) — the agent takes as input the cur-
rent state of the cluster and outputs a scheduling action. At
a high level, the state captures the status of the DAGs in the
scheduler’s queue and the executors, while the actions assign
executors to work on different DAG stages across time.

Decima trains its neural network through a large num-
ber of offline (simulated) experiments, where it attempts to
schedule a workload, observes the outcome, and uses a RL
algorithm to gradually improve the scheduling policy. To
guide the RL algorithm, Decima gives the agent a reward af-
ter each action based on a high-level scheduling objective.
The goal of the RL algorithm is to maximize the total sum of
rewards. For example, if the objective is to minimize average

JCT, Decima penalizes the agent −τ × J at each time step,
where τ is the absolute time (in seconds) since last action
and J is the number of jobs in the system [28]. For a set of
jobs, these penalties add up to the sum of the job completion
times; hence the agent learns to minimize average JCT.

Decima’s RL framework (Figure 4) is general and it can
be applied to a variety of systems and objectives. For con-
creteness, we describe the design for scheduling DAGs on a
set of executors to minimize average JCT. Our results in §7
will show how to apply the same design to schedule multiple
resources (e.g., CPU and memory), optimize for other ob-
jectives like makespan [37], and learn qualitatively different
polices depending on the underlying system artifacts (e.g.,
different costs for moving jobs between machines).

Challenges. Decima’s design tackles three key challenges:
1. Scalable information processing. The scheduler must

consider a large amount of information to make schedul-
ing decisions: hundreds of job DAGs, each with dozens of
stages, and executors with different job locality. Process-
ing all of this information via neural networks is challeng-
ing, particularly because neural networks usually require
fixed-sized numerical vectors as input.

2. Efficient encoding of scheduling decisions as actions.
The scheduler effectively maps runnable stages to avail-
able executors. The exponentially large space of possi-
ble mappings poses a challenge for RL algorithms, which
must “explore” the action space to learn a good policy.

3. Handling continuous stochastic job arrivals. Jobs con-
tinuously arrive to the scheduler, and randomness in the
job arrival pattern can lead to large performance varia-
tions that make RL training difficult. For example, a pe-
riod of high load is likely to increase JCT, reducing the
agent’s rewards compared to a low-load period. But such
variations in reward have little to do with scheduling de-
cisions, and therefore create noise for RL algorithms that
seek to identify good actions based on the rewards.

5 Design
This section describes Decima’s design, structured accord-
ing to how it address the three aforementioned challenges:
scalable processing of job DAGs (§5.1), encoding scheduling
decisions as actions (§5.2), and RL training with continuous

4

State

Job DAG 1 Job DAG n

Executor 1 Executor m

Scheduling Agent

p[

Policy
Network
(§5.2)

DAG
Processing

(§5.1)

Environment
Schedulable

Nodes
Objective

Reward

Observation of jobs and cluster status

Figure 4: In Decima’s RL framework, a scheduling agent observes
the cluster state to decide on a scheduling action to invoke on the
environment (the cluster), and receives a reward based on a high-
level objective. The agent uses a graph embedding to turn job DAGs
into vectors for policy neural networks, which output actions.

entity symbol entity symbol
job i per-node embedding eiv

stage (DAG node) v per-job embedding yi

job i’s DAG Gi global embedding z
per-node feature vector xi

v non-linear functions f, g, q

Table 1: Notation used throughout §5.

stochastic job arrivals (§5.3).

5.1 Scalable DAG processing

On each state observation, Decima converts the DAGs (of
arbitrary shapes and sizes) to vectors using a novel graph
embedding technique. The goal of the graph embedding
is to encode or “embed” information about the DAG (e.g.,
stage attributes, parent-child relationships, etc.) in these vec-
tors. Our method is based on graph convolutional neural net-
works [26], but it is customized for scheduling. Table 1 de-
fines the notation we use.

The graph embedding takes as input the job DAGs whose
nodes carry features in the form of stage attributes (e.g., the
number of remaining tasks, expected task duration, etc.), and
outputs three different types of embeddings:
1. per-node embeddings, which capture the graph structure

by embedding information about the node and its children
(containing, e.g., aggregated work along critical path);

2. per-job embeddings, which aggregate information across
an entire job DAG (containing, e.g., the total work in the
job); and

3. a global embedding, which combines information from
all job-level summaries into a cluster-level summary (con-
taining, e.g., the current cluster load).

Importantly, what information to store in these embeddings
is not hard-coded—Decima automatically learns what is sta-
tistically important and how to compute it from the input
DAGs through end-to-end training. In other words, the em-
beddings can be thought of as feature vectors that the graph
embedding learns without manual feature engineering.

Per-node vectors. Given the vectors xiv of raw features for
the nodes in DAG Gi, Decima builds a per-node embedding
(Gi,x

i
v) 7−→ eiv . The result eiv captures information from all

nodes reachable from v (i.e., v’s child nodes, their children,

Job DAG 1

Job DAG n Step 1 Step 2

Step 1 Step 2

(a) Per-node embedding.

Job DAG n

Job DAG 1

DAG n
summary

Global
summary

DAG 1
summary

(b) Summarizations.

Figure 5: Graph embedding transforms raw information each node
of job DAGs into a vector representation. This example shows two
steps of local message passing and two levels of summarizations.

etc.). To achieve this, Decima propagates information from
children to parent nodes in a sequence of message passing
steps, starting from the leaves of the DAG (Figure 5a). In
each message passing step, a node v whose children have
aggregated messages from all of their children (shaded nodes
in Figure 5a’s examples) computes its own embedding as:

ev = g

 ∑
w∈ξ(v)

f(ew)

+ xv, (1)

where f(·) and g(·) are non-linear transformations over vec-
tor inputs implemented as neural networks, and ξ(v) denotes
the set of v’s children. The first term is a general, non-linear
aggregation operation that summarizes the embeddings of
v’s children; adding this summary term to v’s feature vec-
tor (xv) yields the embedding for v.

The key to a scalable embedding, i.e., one that works for
DAGs of any size and shape, is to use the same non-linear
transformations f(·) and g(·) at all nodes, and in all message
passing steps. Equation (1) meets this requirement by using
a sum to aggregate information across the children nodes;
hence it can be applied to any number of children in ξ(v).

Taking a sum across neighbors is a common technique in
graph embeddings [10; 11; 26]. A typical approach is to
compute the embedding of a node using an operation of the
form ev =

∑
w∈ξ(v) f(ew). However, we found that adding

the second non-linear transformation g(·) in Eq. (1) is crit-
ical for learning strong scheduling policies. The reason is
that without g(·), the aggregation operation cannot express
some useful computations for scheduling. For example, it
cannot compute the critical path [25] of a DAG, which re-
quires computing the maximum of values across the children
of each node. Combining two non-linear transforms f(·) and
g(·) enables Decima to express a wide variety of aggregation
functions. For example, if f and g are identity transforma-
tions, the aggregation sums the child node embeddings; if
f ∼ log(·/n), g ∼ exp(n× ·) and n→∞, the aggregation
takes the maximum of the child node embeddings.

Per-job and global vectors. The graph embedding also
includes a summary of all node features for each DAG,

5

{(xiv, eiv), v ∈ Gi} 7−→ yi; and a global summary across
all DAGs, {y1,y2, . . .} 7−→ z. To compute these sum-
maries, Decima adds DAG-level summary nodes (squares in
Figure 5b) that have all the nodes in their DAG as children,
and which are in turn children of a single global summary
node (the triangle in Figure 5b). These summarizations also
use generic non-linear transformations similar to local mes-
sage passing in Equation (1) to compute their embeddings.
Each level of summarization has its own non-linear transfor-
mations (and thus, neural networks) f and g; in other words,
the graph embedding uses six neural networks in total, two
for each level of summarization.

5.2 Encoding scheduling decisions as actions

The key challenge of encoding scheduling decisions lies
in the learning and computational complexities of dealing
with large action spaces. As a naive approach, consider
an “executor-centric” solution, which invokes the schedul-
ing agent to pick a stage every time an executor becomes
available. This provides exact control, but it requires long
sequences of actions to schedule a given set of jobs. On
the other extreme, a solution that partitions available execu-
tors between waiting jobs and returns the joint assignment
in one shot has to choose from an exponentially large set of
combinations. Large action spaces or long action sequences
both require significantly more exploration during training
and can make RL algorithms prohibitively slow [42].

Decima balances the size of the action space and the
length of action sequences by decomposing scheduling deci-
sions into a series of two-dimensional actions, which output
(i) a stage designated to be scheduled next, and (ii) a cap on
the maximum allowed parallelism for that stage’s job.

Scheduling events. Decima invokes the scheduling agent
when the set of runnable stages — i.e., stages whose parents
are completed and which have at least one waiting task — in
any job DAG changes. Such scheduling events happen when
(i) a stage runs out of tasks (i.e., needs no more executors),
(ii) a stage completes, unlocking the tasks of one or more of
its children, or (iii) a new job arrives in the system.

At each scheduling event, the agent schedules a set of free
executors in one or more actions. Specifically, it passes the
processed vectors from §5.1 as input to a policy neural net-
work, which outputs of a composite action 〈v, li〉 of a stage
v and a maximum level of parallelism li for v’s job i. If job
i currently has fewer than li executors, Decima assigns ex-
ecutors to v up to the limit. If free executors remain, Decima
invokes the agent again to select another stage and a paral-
lelism limit. This process repeats until all the executors have
been assigned, or there are no more runnable stages.

Stage selection. Figure 6 visualizes the stage selection
process that occurs on a scheduling event. For a scheduling
event at time step t, during which the system is in state st,
the selection computes — using the graph embedding vec-

Job DAG 1

Job DAG n

Message	
Passing

Message	
Passing

DAG	
Summary

DAG	
Summary

Global	
Summary

Softm
ax

Graph Embedding

Figure 6: For each node v in job i, the node selection network uses
the message passing summary ei

v , DAG summary yi and global
summary z to compute a priority score qi

v used to sample a node.

tors ejv,y
j , and z— a score q(·) that encodes the priority of

each node (i.e., stage) in a job DAG. Decima uses a stan-
dard “softmax” operation [8] to compute the probability of
selecting node v in job j(v) from the priority scores:

P (at = v) =
exp

{
q(e

j(v)
v ,yj(v), z)

}
∑
u∈At

exp
{
q(e

j(u)
u ,yj(u), z)

} , (2)

where q : {(ej(u)u ,yj(u), z)} → R denotes a non-linear map-
ping of the embedding vectors to a scalar value, implemented
via a neural network that learns the priority function, andAt
is the set of nodes that can be scheduled at time t.

Parallelism limits on jobs. The stage selection model can
decide the order in which stages are scheduled, but it can-
not control the level of parallelism for a job. Thus, we aug-
ment Decima’s action space to explicitly include a paral-
lelism limit. The limit specifies a bound in {1, 2, . . . , N},
where N is the total number of executors. For maximum
control, we could assign parallelism limits for each stage.
But this would require O(D×N) possible actions, where D
is total number of nodes, adding prohibitive complexity with
tens of thousands of executors.

We exploit a basic insight to achieve the same effective
parallelism control with onlyO(D+N) actions: parallelism
levels of individual nodes can be unrestricted so long as the
parallelism for the overall job is controlled. Therefore, the
probability of choosing a node and a limit at state st can be
simplified as:

P (node, limit|st) = P (node|st)× P (limit|node, st)

= P (node|st)× P (limit|job, st), (3)

where Equation (3) follows from the observation that the
limit value is a property of the job and not the node. The
action priorities can now be described by the pair of simple
probability functions —P (node|st) and P (limit|job, st) —
instead of one complex joint distribution function. Conse-
quently Decima outputs actions via two samplings: first a

6

DAG n
summary

DAG 1
summary

Jo
b

D
AG

 1
Jo

b
D

AG
 n

N
od

e
se

le
ct

io
n

ne
tw

or
k

(F
ig

ur
e

6,
 §

5.
2)

Pe
r-j

ob
 e

m
be

dd
in

gs
(F

ig
ur

e
5b

, §
5.

1)

Figure 7: Decima’s policy for jointly sampling a node and paral-
lelism limit is implemented as the product of a node distribution,
computed from graph embeddings (§5.1), and a limit distribution,
computed from the DAG summaries.

node, and then a limit for the node’s job (Figure 7). Con-
cretely, node selection occurs using the graph embedding
vectors as before (Figure 6). For limit selection, we use a
similar model to the node selection (a non-linear score q(·)
and then softmax) that acts based on the per-job embeddings
of the respective jobs. In a later experiment, we demonstrate
that this formulation significantly reduces Decima’s infer-
ence time, i.e., scheduling decision latency (§7.5).

5.3 Training

All of the above operations, from graph embedding (§5.1)
to selecting stages and parallelism limits (§5.2), are differen-
tiable. Moreover, they are all part of the same (large) neural
network, which we can train end-to-end using RL. The learn-
ing process consists of simulating multiple runs of schedul-
ing experiments (§6.2). Each run (or “episode”) begins with
a sequence of jobs, and ends with completion of all jobs.
We use standard policy gradient methods that have recently
been applied to multiple domains [29; 36; 40] for our learn-
ing algorithm. The main idea in policy gradient is to learn by
performing gradient descent on the policy parameters using
empirically observed rewards.

Consider a sequence of interactions with the scheduling
environment of length T , where the agent collects (state, ac-
tion, reward) experiences, i.e., (st, at, rt), at each step t. It
then updates the parameter θ of its policy πθ(st, at) (defined
as the probability of taking action at in state st) using the
well-known REINFORCE algorithm [49]:

θ ← θ + α

T∑
t=1

∇θ log πθ(st, at)

(
T∑
t′=t

rt′ − bt

)
, (4)

where α is the step size and bt is a baseline used to reduce
the variance of the estimated gradient [48]. An example of a
baseline is a “time-based” baseline [20; 28], which sets bt to
the cumulative reward from time t onwards, averaged over
all training episodes. Intuitively, (

∑
t′ rt′ − bt) estimates

how much better (or worse) the total reward is in a particular
episode compared to the average case; and∇θ log πθ(st, at)
provides a direction to increase the probability of choosing
action at at state st. As a result, the net effect of this equation
is to reinforce the probability of choosing an action that leads
to a large reward. We implement Decima’s training frame-

work using TensorFlow [1] and we defer the implementation
details and hyperparameter settings in Appendix B.

Handling continuous stochastic job arrivals. Training
Decima for continuous job arrivals creates two challenges.
First, the standard RL objective of maximizing the expected
sum of rewards is not a good fit. For a set of N jobs
J1, J2, . . . , JN sampled from a training set, the standard ob-
jective minimizes E[

∑N
i=1 T (Ji)], where T (·) denotes the

completion time of a job. However, with continuous job
arrivals, our real objective is to minimize the average job
completion time over a large time horizon, i.e., to mini-
mize E[limN→∞

∑N
i=1 T (Ji)/N]. We originally attempted

to train using the standard sum-of-rewards objective. But we
found that the scheduler learns to systematically defer large
jobs when scheduling a finite set of jobs, as this results in the
lowest sum of JCTs (highest sum of rewards). With continu-
ous job arrivals, this scheduler starves the large jobs.

Fortunately, there is an alternative RL formulation that op-
timizes for the average reward in problems with an infinite
time horizon [20; 42, §10.3, §13.6]. Operationally, this for-
mulation replaces the standard reward with a differential re-
ward: at every step t, the agent receives the reward rt − r̂,
where rt is the standard reward at time t (as defined in §4)
and r̂ is a moving average of the rewards rt across a large
number of previous time steps (across many training itera-
tions). Intuitively, such a reward signal ‘normalizes’ the sum
completion times of jobs in an RL episode by the length of
the episode to counter any bias arising due to varying episode
lengths. The net result is an objective that closely correlates
to the average number of concurrent jobs in the system. We
refer the readers to Sutton and Barto [42, §10.3] for details
on how this approach optimizes average reward.

For a policy to generalize well with stochastic job arrivals,
the training episodes must include many different job arrival
sequences.4 This creates a second challenge: different job ar-
rival patterns have a large impact on performance, and hence
on the rewards. Since this variance is due to randomness in
the job arrival process, not the quality of scheduling deci-
sions, it adds significant noise to the reward feedback and
distorts the policy gradient estimation in Equation (4).

To account for the variance caused by the arrival process,
we build upon recently-proposed variance reduction tech-
niques for “input-driven” environments [30]. Specifically,
we use “input-dependent” baselines that are customized for
each instance of the job arrival sequence used in training.
To implement these input-dependent baselines, the RL agent
schedules the same job arrival sequence multiple times (i.e.,
multiple rollouts) during training. For the same job arrival
sequence, we synchronously terminate all rollouts at the
same step τ , where we draw τ randomly from a (memory-
less) geometric distribution with a large mean (e.g., a few

4Training Decima in a “batch” setting without jobs arriving over time
does not generalize to continuous job arrivals; see Figure 20 in Appendix H.

7

hundreds of job arrivals on average). We then compute the
baseline at time step t, i.e., the value of bt to use in Eq. (4),
as the cumulative reward from t onwards, averaged over the
rollouts of that particular job arrival sequence. This method
enables us to correctly account for differences between re-
wards caused by different job arrival sequences, significantly
improving the quality of the policy gradients (Figure 14b).
The training repeats this procedure for a large number of
randomly-sampled job arrival sequences.

These two techniques are crucial for Decima to achieve
good performance in streaming setting. We also empirically
evaluate the importance of each component in §7.5.

6 Implementation
We have implemented Decima as a pluggable scheduler ser-
vice that parallel data processing platforms (e.g., Spark,
Dryad, or YARN) can communicate with over an RPC inter-
face. The Decima service consists of 1389 lines of Python,
of which 647 lines comprise the TensorFlow model served.
§6.1 describes our prototype integration of the Decima ser-
vice with Spark.

In addition, our Python-based training infrastructure (§5)
consists of 1654 lines of code and includes a faithful cluster
simulator (§6.2), which we drive with TPC-H inputs and a
workload trace from a large company’s production clusters.

6.1 Spark integration

A Spark cluster5 runs multiple parallel applications, which
contain one or more “jobs” that together form a DAG of pro-
cessing stages. The Spark master manages application exe-
cution and monitors the health of many workers, which each
split their resources between multiple executors. Executors
are created for, and remain associated with, a specific ap-
plication, which handles its own scheduling of work to ex-
ecutors. Internally to an application, two levels of schedul-
ing exist: the application’s DAG scheduler chooses stages to
work on and submits their tasks to a lower-level task sched-
uler that maps running stages’ fine-grained parallel tasks to
executors. Once an application completes, its executors ter-
minate. Figure 8 illustrates this architecture.
To integrate Decima in Spark, we made two major changes:
1. Each application’s DAG scheduler contacts Decima on

startup and whenever a scheduling event occurs. Decima
responds with the next stage to work on and the paral-
lelism limit.

2. The Spark master contacts Decima when a new job ar-
rives to determine how many executors to launch for it,
and whether to preempt any existing executors.

Our changes amount to a 901-line patch to Spark v2.2.

State observations. In Decima, the feature vector (§5.1) xiv
of a node v in job DAG i consists of: (i) the number of tasks

5We discuss Spark’s “standalone” mode of operation here (http://spark.
apache.org/docs/latest/spark-standalone.html); YARN-based deployments
can, in principle, use Decima, but require modifying both Spark and YARN.

DAG	
Scheduler

Task	
Scheduler

App 1
App 2 Spark	

Master

Decima
Agent

N
ew

 jo
b:

U
pd

at
e

jo
b

in
fo

Submit tasks Jo
b

en
ds

:

M
ov

e
ex

ec
ut

or
s

Figure 8: Spark standalone cluster architecture, with Decima addi-
tions highlighted.

remaining in the stage, (ii) the average task duration, (iii)
the number of executors currently working on the node, (iv)
the number of available executors, and (v) whether available
executors are local to the job. These features are raw, i.e.,
chosen without a human design intention. However, they
intuitively capture some useful information. For example,
the task count and average task duration can help estimate
the remaining work in a stage. To learn a good scheduling
policy, Decima must learn to exploit this raw information.

6.2 Faithful simulation

Decima’s training happens offline using a faithful simulator
that has access to profiling information (e.g., task durations)
from a real Spark cluster (§7.2) and the job run time char-
acteristics from an industrial trace (§7.3). To faithfully rep-
resent the effect of Decima’s decisions on a cluster environ-
ment, our simulator models several real-world effects:

1. The first “wave” of tasks from a particular stage often
runs slower than subsequent tasks. This is due to Spark’s
pipelined task execution [35], JIT compilation [27] of task
code, and warmup costs (e.g., making TCP connections to
other executors). Decima’s simulated environment thus
picks the actual runtime of first-wave tasks from a differ-
ent distribution than later waves.

2. Adding an executor to a Spark job involves launching a
JVM process, which takes 2–3 seconds. Executors are
tied to a job for isolation and because Spark assumes
them to be long-lived. Decima’s environment therefore
imposes idle time reflecting the startup delay every time
Decima moves an executor across jobs.

3. A high degree of parallelism can slow down individual
Spark tasks, as wider shuffles require additional TCP con-
nections and create more work when merging data from
many shards. Decima’s environment captures these ef-
fects by picking task durations from distributions sampled
at different levels of parallelism if this data is available.

The Decima agent is initially unaware of these effects, it
learns to anticipate them in its decisions durings training.
In Appendix C, we validate the fidelity of our simulator by
comparing it with real Spark executions (e.g., Figure 2).

8

http://spark.apache.org/docs/latest/spark-standalone.html
http://spark.apache.org/docs/latest/spark-standalone.html

7 Evaluation
We evaluated Decima on a real Spark cluster testbed and in
simulations with a production workload from a large com-
pany. Our experiments address the following questions:
1. How does Decima perform compared to human-

engineered heuristics in a real Spark cluster, both on batch
and streaming job arrivals? We find that Decima outper-
forms all schemes we compare to in both settings, achiev-
ing 21% to 3.1× lower average JCTs (§7.2).

2. Does Decima offer improvements over existing heuristics
on a real-world industry workload? Our simulated results
suggest that Decima consistently rivals or outperforms ex-
isting schemes for this realistic workload (§7.3).

3. Can Decima’s learning framework generalize to other
scheduling problems — e.g., packing multi-dimensional
resources such as CPU and memory? In an augmented
multi-resource Spark environment, we find that Decima
uses resources efficiently and outperforms state-of-the-art
heuristic like those in Graphene [19] (§7.4).

4. What polices does Decima learn, and how does each of
our key ideas contribute to Decima’s performance? We
find that Decima learns a range of qualitatively different
policies for different goals, and that all key ideas matter
to achieving good performance in practice (§7.5).

7.1 Existing baseline algorithms

In our evaluation, we compare Decima’s performance to that
of seven baseline algorithms:
1. Spark’s default, naı̈ve FIFO scheduling, which runs jobs

in the same order they arrive in and grants as many execu-
tors to each job as the user requested.

2. A shortest-job-first critical-path heuristic (SJF-CP),
which prioritizes jobs based on their total work (in task-
seconds), and within each job runs tasks from the next
stage on its critical path.

3. Simple fair scheduling, which gives each job an equal fair
share of the executors and round-robins over tasks from
runnable stages to drain all branches concurrently.

4. Naı̈ve weighted fair scheduling, which assigns executors
to jobs proportional to their total work.

5. A carefully-tuned weighted fair scheduling, which gives
each job Tαi /

∑
i T

α
i of total executors, where Ti is the

total work of each job i and α is a tuning factor. No-
tice that α = 0 reduces to simple fair scheme and
α = 1 means naive weighted fair. We sweep through
α ∈ {−2,−1.9, ..., 2} for the optimal factor.

6. The standard multi-resource packing algorithm from
Tetris [18], which greedily schedules the stage that maxi-
mizes the dot product of the requested resource vector and
the available resource vector.

7. Graphene∗, an adaptation of Graphene [19] for Decima’s
discrete executor classes. Graphene∗ detects and groups
“troublesome” nodes using Graphene’s algorithm [19,
§4.1], but keeps them unscheduled until all trouble-

Figure 9: Decima’s learned scheduling policy achieves 21%–3.1×
lower average job completion time than baseline algorithms for 100
batches of 20 concurrent TPC-H jobs in a real Spark cluster.

some nodes are runnable, thus achieving the essence of
Graphene’s planning strategy (cf. Appendix D).

7.2 Spark cluster

We use a cluster running Spark v2.2, modified as described
in §6.1. The cluster runs on OpenStack in the Chameleon
Cloud testbed6, and consists of 25 worker VMs, each run-
ning two executors on an m1.xlarge instance (8 CPUs, 16
GB RAM) and a master VM on an m1.xxxlarge instance
(16 CPUs, 32 GB RAM). We run experiments for two ar-
rival processes: (i) batched, in which a batch of multiple jobs
arrives, and (ii) continuous, in which jobs arrivals follow a
stochastic inter-arrival time distribution.

Batched arrivals. We randomly sample jobs from six dif-
ferent input sizes (2, 5, 10, 20, 50, and 100 GB) and all 22
TPC-H [43] queries, producing a heavy-tailed distribution:
23% of the jobs contain 82% of the total work. A combina-
tion of 20 jobs (unseen in training) arrives as a batch at the
start of the experiment (i.e., no further jobs arrive), and we
measure their average JCT. Figure 9 shows a cumulative dis-
tribution of the average JCT achieved over 100 experiments.

There are three key observations. First, SJF-CP and fair
scheduling, albeit simple, outperform the naı̈ve FIFO pol-
icy by 1.6× and 2.5× on average. This is expected, since
these heuristics prioritize shorter jobs and constraint the par-
allelism of each job, while FIFO grants the entire cluster.

Second, the fair scheduling policies outperform SJF-
CP since they work on multiple jobs, while SJF-CP fo-
cuses exclusively on the shortest job. Perhaps surpris-
ingly, unweighted fair scheduling outperforms fair schedul-
ing weighted by job size (“naı̈ve weighted fair”). This is
because weighted fair scheduling grants small jobs fewer ex-
ecutors than their fair share, slowing them down and increas-
ing average JCT. Our tuned weighted fair heuristic (“opt.
weighted fair”) counters this effect by calibrating the weights
for each job on each experiment (as per §7.1). The best α
is usually around −1, i.e., the heuristic grants executors in-
versely proportional to job size. This policy effectively fair-
shares the cluster between small jobs in the beginning, but
later works on large jobs in parallel; it outperforms naı̈ve fair

6https://www.chameleoncloud.org

9

https://www.chameleoncloud.org

(a) (b)

(c)

Figure 10: Streaming job arrival of 1,000 TPC-H jobs over 12
hours in a real Spark cluster. Decima achieves 29% better aver-
age JCT than the best heuristic (other heuristics cannot keep up)
and has fewer active jobs at most points in time.

scheduling by 11% on average. These results illustrate the
difficulty of balancing the conflicting goals of prioritizing
small jobs to improve average JCT, and dividing the cluster
fairly while running jobs at efficient parallelism levels.

Third, Decima outperforms all baseline algorithms and
improves the average JCT by 21% over the closest heuris-
tic (“opt. weighted fair”). This comes because Decima
prioritizes jobs better, assigns efficient executor shares to
different jobs, and leverages the job DAG structure (§7.5
breaks down the benefit of each of these factors). Decima
learned this highly efficient scheduling policy completely on
its own through end-to-end RL training here, while the best-
performing baseline algorithms required careful tuning.

Continuous arrivals. We randomly sample 1,000 TPC-H
jobs, and model their arrival as as a Poisson process with
an average inter-arrival time of 25 seconds. The resulting
cluster load is about 85%. We record all job durations, and,
in 10-second intervals, the concurrent number of jobs and
the executor usage. We train Decima using both the average
reward and synchronized termination techniques (§5.3) and
evaluate with an unseen sequence of job arrivals.

A busy period 8h into the experiment causes some
scheduling policies to fall behind as they cannot finish jobs
fast enough. Figure 10 shows the results for Decima and
the only baseline algorithm that can keep up (“opt. weighted
fair”). Decima achieves a 29% better average JCT than the
carefully-tuned weighted fair scheduler (Fig. 10a). More-
over, Decima uses the executors more efficiently: it has a
higher executor usage (Fig. 10b) and consistently maintains a
lower active job count (Fig. 10c) as it completes jobs sooner.

7.3 Industrial workload

To evaluate Decima’s ability to learn scheduling policies that
benefit complex, real-world workloads, we evaluate it using
a workload trace from a large company. The one month-
trace includes about 20,000 jobs in a batch-processing clus-
ter. Many jobs have complex DAGs: 59% have four or more
stages, and some are as large as hundreds of stages. On av-
erage, the cluster runs around 150 concurrent jobs that use
about 60% of the peak resource consumption. We run the

30 25 20 15 10 5
Number of executors (×1000)

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

JC
T

(1
00

0
se

co
nd

s) SJF-CP
Fair
Naive weighted fair
Opt. weighted fair
Decima

(a) Batch setting. (b) Streaming setting.
Figure 11: On a simulated industrial workload, Decima outper-
forms all baselines on randomly-sampled batches of 150 real-world
industry jobs at different load levels (a); and replaying the industrial
trace directly for different effective loads, Decima outperforms the
best alternative by 5–12%; algorithms not shown are unstable with
continuous arrivals (b). Error bars: ± one standard deviation.

experiments using our simulator (§6.2). Since the trace con-
tains no information about cluster capacity, we use the max-
imum number of concurrently active tasks (27,986) to guide
our setup and simulate cluster sizes up to 30,000 executors.

Job batches. We synthesize batches of real-world jobs to
compare the relative performance of Decima and other algo-
rithms to the TPC-H experiment in a setting that allow all al-
gorithms to finish the workload. We sample sets of 150 jobs
from the first 2/3 of the trace and train models with different
numbers of executors, representing different cluster loads.
Figure 11a shows the average JCT over 100 experiments,
testing on the remaining (unseen) 1/3 of jobs. Decima con-
sistently outperforms all baseline algorithms, improving by
12–17% over hand-tuned weighted fair scheduling, a result
similar to the one for the TPC-H DAGs.

Trace replay. Next, we replay the continuous job arrival
pattern recorded in the real-world cluster. In the actual in-
dustrial cluster, the average JCT of these jobs was 396.1 sec-
onds. We successively shrink the cluster similar to increase
the effective load. For each load, we train Decima on only
the first half of the trace. Specifically, each training iteration
randomly samples a starting point in the first half of the trace
and simulates the next 1,000 job arrivals.

During testing, we evaluate each algorithm on the second
half of the trace (unseen by Decima during training). Fig-
ure 11b shows the average JCTs they achieve. First, Dec-
ima outperforms the best baseline heuristics by 5–12% for
all cluster loads we simulated. Second, at 45% cluster load
Decima achieves the same average JCT (396s) as the real
cluster, despite having only 20k executor slots available (vs.
up to 28k parallel tasks in the real cluster). Moreover, Dec-
ima’s gain over other algorithms grows as the cluster load
increases and the scheduling problem becomes harder.

7.4 Multi-dimensional resource packing

Many cluster managers allow users to specify task resource
requests using two or more resource dimensions (e.g., 〈CPU,

10

(a) TPC-H workload. (b) Industrial trace replay.

Figure 12: In a multi-resource scheduling environment, Decima learns a policy that outperforms Graphene∗ by 37% to 53% in average JCT.
“Memory usage” (task memory/executor memory) indicates how much memory is wasted due to fragmentation; Decima performs similarly
to Graphene∗. The “stretch” of a job is the JCT normalized to its JCT on an otherwise idle cluster; Decima consistently has the lowest stretch.

memory〉). Packing tasks efficiently in multiple resource di-
mensions requires complex heuristics [18; 19]. We inves-
tigate if, after modifying only the information it observes,
Decima learns a good multi-dimensional resource packing
policy using the same core approach as before.

Multi-resource environment. We modify our environment
to provide executors of several discrete classes with different
memory sizes. A DAG stage’s tasks now require a minimum
amount of CPU and memory, i.e., a task must fit into the ex-
ecutor that runs it. Tasks can run in executors larger than or
equal to their resource request. The Decima scheduler now
chooses a DAG stage to schedule, a parallelism level, and
an executor class to use. The discretization to fixed executor
classes is needed to maintain Decima’s discrete action space;
we find that it imposes only a moderate overhead over con-
tinuous resource allocations of arbitrary sizes.

Results. We run simulated multi-resource experiments
for both TPC-H and the industrial trace. The experi-
ments use four executor types, each with 1 CPU core and
(0.25, 0.5, 0.75, 1) unit of normalized memory; each execu-
tor class makes up 25% of total cluster executors. The
TPC-H experiments use 200 total executors, and the indus-
trial trace experiment uses 30,000 executors. In TPC-H, we
uniformly sample each DAG node’s memory request from
(0, 1], while the industrial trace has resource requests. Fig-
ure 12 shows results for Decima and three other algorithms.

We make three key observations. First, Decima outper-
forms all other algorithms in both settings, achieving a 37%–
53% lower average JCT. This suggests that Decima’s learn-
ing techniques are sufficiently general to learn good poli-
cies in a complex, multi-dimensional resource environment.
Second, since Tetris greedily packs the tasks into the best-
fitting executor class, Tetris achieves the highest memory us-
age (i.e., lowest fragmentation) in both experiments. Dec-
ima, however, achieves significantly improved JCTs while
maintaining a memory usage within 4%–13% of Tetris’s.
Thus, Decima learns to trade-off resource utilization for bet-

ter JCTs (e.g., temporarily borrowing large executors to fin-
ish a nearly-completed job). Third, Decima achieves a sig-
nificantly lower job stretch (i.e., JCT normalized to their run-
time on an idle cluster) than all other algorithms, including
next-best Graphene∗. Graphene∗ tries to combine several
concerns (DAG structure, priority for short jobs, etc.) via ad-
ditive score functions, and does not control parallelism well,
so Decima can outperform it by better fitting the workload.
Decima tailors each job’s parallelism and resource use to the
current cluster utilization, ensuring that jobs operate at effi-
cient parallelism levels without fragmenting resources.

7.5 Decima drill down

Finally, we demonstrate the wide qualitative range of
scheduling policies Decima can learn, and break down the
impact of our key ideas and scalable RL techniques on
Decima’s performance. In appendices, we further evaluate
Decima’s optimality via an exhaustive search of job order-
ings (Appendix E), its learned policies’ robustness to chang-
ing environments (Appendix F), and Decima’s sensitivity to
incomplete information (Appendix G).

Learned policies. Decima outperforms other algorithms
because it can learn different policies depending on the
high-level objective, the workload, and environmental condi-
tions. When Decima optimizes for average JCT (Figure 13a),
it learns to share resources for small jobs to finish them
quickly, but defers “going wide” on large jobs until the end.
Decima also keeps the executors working on tasks from the
same job to avoid the overhead of moving executors (§6.1).
For a workload of long tasks that easily amortize this over-
head, or if executors could run tasks from multiple jobs, ex-
ecutor motion is effectively free. In such a setting, Decima
learns a policy that more eagerly moves executors among
jobs (cf. the frequent color changes in Figure 13b), reduc-
ing both overall average JCT and makespan. Finally, given a
different objective of minimizing the overall makespan for a
batch of jobs, Decima learns yet another qualitatively differ-
ent policy (Figure 13c). Since only the final job’s completion

11

Ex
ec

ut
or

s

Avg. JCT 67.3 sec, makespan 119.6 sec

Time (seconds)
0 12060 9030

(a) Average JCT objective.

Ex
ec

ut
or

s

Avg. JCT 61.4 sec, makespan 114.3 sec

Time (seconds)
0 12060 9030

(b) Avg. JCT, with zero-cost executor motion.

Ex
ec

ut
or

s

Time (seconds)
0 12060 9030

Avg. JCT 74.5 sec, makespan 102.1 sec

(c) Minimal makespan objective.

Figure 13: Decima learns qualitatively different policies depending on the environment (e.g., costly (a) vs. free executor migration (b)) and
the objective (e.g., average JCT (a) vs. makespan (c)). Red lines at job completions, colors indicate tasks in different jobs, dark purple is idle.

0

40

80

120

Av
er

ag
e

JC
T

(s
ec

on
ds

)

Decima
Decima w/o graph embedding
Decima w/o parallelism control
Opt. w. fair

(a) Batch setting.
0

40

80

120

Av
er

ag
e

JC
T

(s
ec

on
ds

)

Decima
Decima w/o avg. rew.
Decima w/o sync. seq.
Opt. w. fair

(b) Streaming setting.
Figure 14: Breakdown of the contributions due to key ideas in Dec-
ima. Omitting any of these idea results in Decima underperforming
the tuned weighted fair policy.

time matters for a makespan objective, Decima no longer
works to finish jobs early if given this objective. Instead,
many jobs complete together at the end of the workload,
which gives the scheduler more choices of jobs throughout
the execution, increasing cluster utilization.

Contributions breakdown. To validate that Decima uses all
the raw information provided in the state and benefits from
all its key components, we consider variant models that each
omit a piece of information.

We run an experiment with batched arrivals of 20 TPC-
H jobs (as in §7.2) and using 50 executors. First, we re-
move the graph embedding by only supplying raw informa-
tion on each node — i.e., skipping the message-passing step
and using the raw feature vector on each node x directly
(§5.1). Second, we use the model without parallelism control
(§5.2). Figure 14a shows that removing either component
degrades Decima’s performance to be worse than the com-
paring heuristic. Disabling parallelism control has a larger
impact (14% worse average JCT) than removing the graph
embedding (8% worse), as the TPC-H DAGs are fairly sim-
ple, but choosing efficient parallelism levels is crucial.

Next, we repeat the continuous job arrival setup from §7.2
in simulation, but remove the key ideas needed for training
on continuous arrivals (§5.3). Figure 14b shows the results:
training with a regular reward results in a poorer learned pol-
icy that degrades performance by 32%. Further, disabling the
synchronized termination of workload sequences in training
increases variance, which doubles the average JCT. Hence,
variance reduction is key to learning high-quality policies in

0

0.1

0.2

0.3

0.4

0 5000 10000 15000 20000 25000 30000

In
fe
re
nc
e	
tim

e	
(s
ec
on

ds
)

Number	of	executors

Decima	without	faster	learning	(§5.2)
Decima

Figure 15: Without the domain-specific conditional probability in-
sight (§5.2), Decima’s inference time grows with cluster size.

long-horizon scheduling problems.

Scalability. The inference time of Decima’s model is cru-
cial to scheduling latency and must therefore scale well with
cluster size. The original model in §5.2 — without our in-
sight that P (limit|node) = P (limit|job) — has an inference
time of O(#nodes×#executors). Figure 15 shows that this
grows to 400ms of scheduling delay for a cluster with 30k
executors. Our domain-specific insight that the parallelism
level is independent of node choice, however, reduces the in-
ference time to a more scalable O(#nodes + #executors).

8 Related Work
There is little prior work on applying machine learning tech-
niques to cluster scheduling. DeepRM [28], which uses
reinforcement learning to train a neural network for multi-
dimensional resource packing, is closest to Decima in aims
and approach. However, DeepRM’s learning model only
works with simple resource time simulator, and does not
support real jobs involving graph structure. Mirhoseini et
al.’s work on learning device placement in TensorFlow (TF)
computations [33] also uses reinforcement learning. How-
ever, instead of a graph embedding, it relies on recurrent
neural networks (RNNs), to scan through all nodes for RL
inputs. Such model does not generalize the policy to unseen
job combinations [32]. Moreover, the objective is to sched-
ule a single TF job well, rather than a general job mix.

Paragon [12] and Quasar [13] use collaborative filter-
ing to match workloads to difference machine types and
avoid interference; their goal is complementary to Decima’s.
Tetrisched [44], like Decima, plans ahead in time, but uses
a constraint solver to optimize job placement and requires

12

user to supply explicit constraints with their jobs. Firma-
ment [17] also uses a constraint solver and achieves high-
quality placements, but requires an administrator to config-
ure an intricate scheduling policy. Graphene [19] use heuris-
tics to schedule job DAGs, but cannot set appropriate par-
allelism levels. Some systems “auto-scale” parallelism lev-
els to meet job deadlines [14] or opportunistically accelerate
jobs using spare resources [39, §5]. As general-purpose clus-
ter managers like Borg [47], Mesos [22], or YARN [45] sup-
port many different applications, workload-specific schedul-
ing policies are difficult to apply at this level. However, Dec-
ima could run as a framework atop Mesos or Omega [39].

9 Conclusion
Decima demonstrates that automatically learning complex
cluster scheduling policies using reinforcement learning is
feasible, and that the learned policies are flexible and effi-
cient. Decima’s learning innovations, such as its graph em-
bedding technique and the training framework for streaming,
may be applicable to other systems processing DAGs (e.g.,
query optimizers). We will open-source Decima, our mod-
els, and our experimental infrastructure.

References
[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, et
al. “TensorFlow: A System for Large-scale Machine
Learning”. In: Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implemen-
tation (OSDI). Savannah, Georgia, USA, Nov. 2016,
pp. 265–283.

[2] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno,
Ming-Chuan Wu, Ion Stoica, and Jingren Zhou. “Re-
optimizing Data-parallel Computing”. In: Proceed-
ings of the 9th USENIX Conference on Networked Sys-
tems Design and Implementation (NSDI). San Jose,
California, USA, 2012, pp. 281–294.

[3] Apache Hadoop. Hadoop Fair Scheduler. Accessed
13/03/2014. URL: http://hadoop.apache.org/common/
docs/stable1/fair scheduler.html.

[4] Apache Spark. Spark: Dynamic Resource Allocation.
Spark v2.2.1 Documentation. URL: http : / / spark .
apache.org/docs/2.2.1/job-scheduling.html#dynamic-
resource-allocation (visited on 01/17/2018).

[5] Apache Tez. https://tez.apache.org/.

[6] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle.
“The Datacenter as a Computer: An Introduction to
the Design of Warehouse-Scale Machines, Second
edition”. In: Synthesis Lectures on Computer Archi-
tecture 8.3 (July 2013), pp. 1–154.

[7] Arka A. Bhattacharya, David Culler, Eric Friedman,
Ali Ghodsi, Scott Shenker, and Ion Stoica. “Hier-
archical Scheduling for Diverse Datacenter Work-
loads”. In: Proceedings of the 4th Annual Symposium
on Cloud Computing (SoCC). Santa Clara, California,
Oct. 2013, 4:1–4:15.

[8] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer, 2006.

[9] Craig Chambers, Ashish Raniwala, Frances Perry,
Stephen Adams, Robert R. Henry, Robert Bradshaw,
and Nathan Weizenbaum. “FlumeJava: Easy, Efficient
Data-parallel Pipelines”. In: Proceedings of the 2010
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI). Toronto,
Ontario, Canada, June 2010, pp. 363–375.

[10] Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilk-
ina, and Le Song. “Learning Combinatorial Optimiza-
tion Algorithms over Graphs”. In: NIPS. 2017.

[11] Michaël Defferrard, Xavier Bresson, and Pierre
Vandergheynst. “Convolutional Neural Networks on
Graphs with Fast Localized Spectral Filtering”. In:
CoRR (2016).

[12] Christina Delimitrou and Christos Kozyrakis.
“Paragon: QoS-aware Scheduling for Heterogeneous
Datacenters”. In: Proceedings of the Eighteenth
International Conference on Architectural Support
for Programming Languages and Operating Systems.
ASPLOS ’13. Houston, Texas, USA: ACM, 2013,
pp. 77–88.

[13] Christina Delimitrou and Christos Kozyrakis.
“Quasar: Resource-efficient and QoS-aware Cluster
Management”. In: Proceedings of the 19th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems.
ASPLOS ’14. Salt Lake City, Utah, USA: ACM,
2014, pp. 127–144.

[14] Andrew D Ferguson, Peter Bodik, Srikanth Kandula,
Eric Boutin, and Rodrigo Fonseca. “Jockey: guaran-
teed job latency in data parallel clusters”. In: Proceed-
ings of the 7th ACM european conference on Com-
puter Systems. ACM. 2012.

[15] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. “Dominant
Resource Fairness: Fair Allocation of Multiple Re-
source Types”. In: NSDI’11. Boston, MA: USENIX
Association, 2011, pp. 323–336.

[16] Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion
Stoica. “Choosy: max-min fair sharing for datacen-
ter jobs with constraints”. In: Proceedings of the
8th ACM European Conference on Computer Sys-
tems (EuroSys). Prague, Czech Republic, Apr. 2013,
pp. 365–378.

13

http://hadoop.apache.org/common/docs/stable1/fair_scheduler.html
http://hadoop.apache.org/common/docs/stable1/fair_scheduler.html
http://spark.apache.org/docs/2.2.1/job-scheduling.html#dynamic-resource-allocation
http://spark.apache.org/docs/2.2.1/job-scheduling.html#dynamic-resource-allocation
http://spark.apache.org/docs/2.2.1/job-scheduling.html#dynamic-resource-allocation
https://tez.apache.org/

[17] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert
N. M. Watson, and Steven Hand. “Firmament: fast,
centralized cluster scheduling at scale”. In: Proceed-
ings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). Savan-
nah, Georgia, USA, Nov. 2016, pp. 99–115.

[18] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. “Multi-
resource Packing for Cluster Schedulers”. In: SIG-
COMM. 2014.

[19] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya
Akella, and Janardhan Kulkarni. “Graphene: Packing
and dependency-aware scheduling for data-parallel
clusters”. In: OSDI. USENIX Association. 2016,
pp. 81–97.

[20] Evan Greensmith, Peter L Bartlett, and Jonathan Bax-
ter. “Variance reduction techniques for gradient esti-
mates in reinforcement learning”. In: Journal of Ma-
chine Learning Research 5.Nov (2004), pp. 1471–
1530.

[21] Mark D Hill and Michael R Marty. “Amdahl’s law in
the multicore era”. In: Computer 41.7 (2008).

[22] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott
Shenker, et al. “Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center”. In: NSDI. 2011.

[23] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Bir-
rell, and Dennis Fetterly. “Dryad: Distributed Data-
parallel Programs from Sequential Building Blocks”.
In: Proceedings of the 2Nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007.
EuroSys ’07. Lisbon, Portugal: ACM, 2007, pp. 59–
72.

[24] Michael Isard, Vijayan Prabhakaran, Jon Currey,
Udi Wieder, Kunal Talwar, and Andrew Goldberg.
“Quincy: fair scheduling for distributed computing
clusters”. In: ACM SIGOPS. 2009.

[25] James E Kelley Jr and Morgan R Walker. “Critical-
path planning and scheduling”. In: Papers presented
at the December 1-3, 1959, eastern joint IRE-AIEE-
ACM computer conference. ACM. 1959, pp. 160–173.

[26] Thomas N. Kipf and Max Welling. “Semi-Supervised
Classification with Graph Convolutional Networks”.
In: CoRR abs/1609.02907 (2016).

[27] Prasad A Kulkarni. “JIT compilation policy for mod-
ern machines”. In: ACM SIGPLAN Notices. Vol. 46.
10. ACM. 2011, pp. 773–788.

[28] Hongzi Mao, Mohammad Alizadeh, Ishai Menache,
and Srikanth Kandula. “Resource Management with
Deep Reinforcement Learning”. In: Proceedings of
the 15th ACM Workshop on Hot Topics in Networks
(HotNets). Atlanta, GA, 2016.

[29] Hongzi Mao, Ravi Netravali, and Mohammad Al-
izadeh. “Neural Adaptive Video Streaming with Pen-
sieve”. In: Proceedings of the 2017 conference on
ACM SIGCOMM 2017 Conference. ACM. 2017.

[30] Hongzi Mao, Shaileshh Bojja Venkatakrishnan,
Malte Schwarzkopf, and Mohammad Alizadeh.
“Variance Reduction for Reinforcement Learning
in Input-Driven Environments”. In: arXiv preprint
arXiv:1807.02264 (2018).

[31] Monaldo Mastrolilli and Ola Svensson. “(Acyclic) job
shops are hard to approximate”. In: Foundations of
Computer Science, 2008. FOCS’08. IEEE 49th An-
nual IEEE Symposium on. IEEE. 2008, pp. 583–592.

[32] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit
Steiner, Quoc V Le, and Jeff Dean. “A Hierarchical
Model for Device Placement”. In: (2018).

[33] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit
Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Ku-
mar, et al. “Device Placement Optimization with
Reinforcement Learning”. In: Proceedings of The
33rd International Conference on Machine Learning.
2017.

[34] Andrew Y Ng and Michael Jordan. “PEGASUS: A
policy search method for large MDPs and POMDPs”.
In: Proceedings of the Sixteenth conference on Un-
certainty in artificial intelligence. Morgan Kaufmann
Publishers Inc. 2000, pp. 406–415.

[35] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott
Shenker, and Byung-Gon Chun. “Making Sense of
Performance in Data Analytics Frameworks”. In: Pro-
ceedings of the 12th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI).
Oakland, California, USA, May 2015, pp. 293–307.

[36] Xue Bin Peng, Glen Berseth, and Michiel van de
Panne. “Terrain-Adaptive Locomotion Skills Using
Deep Reinforcement Learning”. In: ACM Transac-
tions on Graphics (Proc. SIGGRAPH 2016) 35.4
(2016).

[37] Chandrasekharan Rajendran. “A no-wait flowshop
scheduling heuristic to minimize makespan”. In: Jour-
nal of the Operational Research Society 45.4 (1994),
pp. 472–478.

[38] John Schulman, Sergey Levine, Philipp Moritz,
Michael I Jordan, and Pieter Abbeel. “Trust re-
gion policy optimization”. In: CoRR, abs/1502.05477
(2015).

14

[39] Malte Schwarzkopf, Andy Konwinski, Michael Abd-
El-Malek, and John Wilkes. “Omega: flexible, scal-
able schedulers for large compute clusters”. In: Pro-
ceedings of the 8th ACM European Conference on
Computer Systems. ACM. 2013, pp. 351–364.

[40] David Silver, Aja Huang, Christopher J. Maddison,
Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, et al. “Mastering the game
of Go with deep neural networks and tree search”. In:
Nature 529 (2016), pp. 484–503.

[41] David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, et al. “Mastering the game of go
without human knowledge”. In: Nature 550.7676
(2017), p. 354.

[42] R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing: An Introduction, Second Edition. MIT Press,
2017.

[43] The TPC-H Benchmarks. www.tpc.org/tpch/.

[44] Alexey Tumanov, Timothy Zhu, Jun Woo Park,
Michael A Kozuch, Mor Harchol-Balter, and Gre-
gory R Ganger. “TetriSched: global rescheduling with
adaptive plan-ahead in dynamic heterogeneous clus-
ters”. In: Proceedings of the Eleventh European Con-
ference on Computer Systems. ACM. 2016, p. 35.

[45] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris
Douglas, Sharad Agarwal, Mahadev Konar, Robert
Evans, Thomas Graves, et al. “Apache Hadoop
YARN: Yet Another Resource Negotiator”. In: SOCC
’13. Santa Clara, California: ACM, 2013, 5:1–5:16.

[46] A. Verma, M. Korupolu, and J. Wilkes. “Evaluating
job packing in warehouse-scale computing”. In: Pro-
ceedings of the 2014 IEEE International Conference
on Cluster Computing (CLUSTER). Madrid, Spain,
Sept. 2014, pp. 48–56.

[47] Abhishek Verma, Luis Pedrosa, Madhukar R. Ko-
rupolu, David Oppenheimer, Eric Tune, and John
Wilkes. “Large-scale cluster management at Google
with Borg”. In: Proceedings of the European Con-
ference on Computer Systems (EuroSys). Bordeaux,
France, 2015.

[48] Lex Weaver and Nigel Tao. “The optimal reward base-
line for gradient-based reinforcement learning”. In:
Proceedings of the Seventeenth conference on Un-
certainty in artificial intelligence. Morgan Kaufmann
Publishers Inc. 2001, pp. 538–545.

[49] Ronald J Williams. “Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning”. In: Machine learning 8.3-4 (1992),
pp. 229–256.

[50] Matei Zaharia, Mosharaf Chowdhury, Michael J
Franklin, Scott Shenker, and Ion Stoica. “Spark: clus-
ter computing with working sets.” In: HotCloud 10
(2010), pp. 10–10.

15

www.tpc.org/tpch/

Appendices
A An illustrative example of dependency-

aware job scheduling
Figure 16 shows a common example: a DAG with two
branches that converge in a join stage. A simple critical path
heuristic would choose to work on the right branch, which
contains a larger aggregate work: 90 task-seconds vs. 10 in
the left branch. Once the orange stage finishes, however, the
final join stage cannot yet run, since its other parent stage (in
green) is still incomplete. Completing it next, followed by
the join stage — as a critical-path schedule would — results
in an overall makespan of 28 + 3ε. The optimal schedule,
by contrast, completes this DAG in 20 + 3ε time, a 29% im-
provement. Intuitively, an ideal schedule allocates resources
such that both branches reach the final join stage at the same
time, and execute it without blocking.

B Implementation details of training
We represent the scheduling policy as a neural network
(called policy network) which takes as input processed vec-
tors from the graph embedding step (§5.1), and outputs a
probability distribution over all possible actions (i.e., com-
bination of stage and parallelism, §5.2). We train the policy
network in an episodic setting. In each episode, a fixed num-
ber of jobs arrive and are scheduled based on the policy, as
described in §3. The episode terminates when all jobs finish
executing or a synchronized termination step arrives (§5.3).

To train a policy that generalizes well, we consider mul-
tiple examples of job arrival sequences during training. In
each training iteration, we simulate N independent episodes
for the same job sequence to explore the probabilistic space
of possible actions using the current policy, and use the re-
sulting rewards to improve the policy for all job sequences.
Specifically, we record the state, action, and reward informa-
tion for all timesteps of each episode, and use these values
to compute the cumulative reward, Rt, at each timestep t of
each episode. We then train the neural network using a vari-
ant of the REINFORCE algorithm described in §5.3 (more
details in [28; 49, §2].

Recall that REINFORCE estimates the policy gradient us-
ing Equation (4). A drawback of vanilla REINFORCE is that
the gradient estimates can have high variance. To reduce the
variance, it is common to subtract a baseline value (bt in
equation (4)) from the returns, Rt. The baseline can be cal-
culated in different ways. A simple approach that we adopt is
to use the average of the return values,Rt, where the average
is taken at the same timestep t across all episodes7 with the
same job sequence (a similar approach has been used in [28;
34; 38]). Algorithm 1 shows the pseudo-code for the training
algorithm.

7Some episodes terminate earlier, thus we zero-pad them to make every
episode equal-length L.

Critical path: 28 + 3ϵ
(# tasks, task duration)

(5, ϵ)

(5, ϵ)

(1, 10)

(40, 1)

(5, ϵ)

(5, 10)

(5, ϵ)

Optimal: 20 + 3ϵ

8 ϵ 10 2ϵ 10 ϵ

Time

Ta
sk

 s
lo

ts

Time

Ta
sk

 s
lo

ts

2ϵ 10 ϵ 10 ϵ

Figure 16: By planning ahead, the optimal, DAG-aware schedule
avoids the “choke point” that occurs for the green node using the
critical path heuristic, and improves completion time by 29%.

Algorithm 1 Policy gradient method for RL training.

1: for each iteration do
2: ∆θ ← 0
3: for each job sequence do
4: run episode i = 1, . . . , N :
5: {si1, ai1, ri1, . . . , siLi

, aiLi
, riLi
} ∼ πθ

6: compute returns: Rit =
∑Li

s=t r
i
s

7: for t = 1 to L do
8: compute baseline: bt = 1

N

∑N
i=1R

i
t

9: for i = 1 to N do
10: ∆θ ← ∆θ + α∇θ log πθ(s

i
t, a

i
t)(R

i
t − bt)

11: end for
12: end for
13: end for
14: end for

The hyperparameter setting of Decima is the following.
The graph embedding transformation functions f and g
in §5.1 are implemented with a two hidden-layer neural net-
work, with 32 and 16 hidden units on each layer. The same
network architectures are used across per-node, per-job and
global embedding. During training, there are 16 parallel
workers to compute rollouts for speedup. For streaming
training (§5.3) specifically, the moving window for estimat-
ing r̂ spans 105 time steps; the number of incoming jobs is
capped at 500; and the episode termination probability de-
cays linearly from 5×10−7 to 5×10−8 throughout training.
We train Decima for at least 50,000 iterations for all exper-
iments. Evaluations in §7 are all performed on unseen test
job sequences (e.g., unseen TPC-H job combinations, unseen
part of the company trace, etc.). Our simulator and train-
ing method (§5.3) are efficient. For example, every batch
training (50 executors 20 jobs as in §7.2) iteration (including
interaction in simulation, model inference and model update
from all training workers) takes roughly 1.5 seconds on a ma-
chine with Intel Xeon E5-2640 CPU and Nvidia Tesla P100
GPU.

16

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

50
100

Du
ra

tio
n

 (s
ec

on
ds

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
TPC-H query index

-10%
-5%

0
5%

10%

Er
ro

r

(a) Single job.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

250
500

Du
ra

tio
n

 (s
ec

on
ds

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
TPC-H query index

-20%
-10%

0
10%
20%

Er
ro

r

(b) Mixture of jobs.

Figure 17: Testing the fidelity of our Spark simulator. The schedul-
ing agent is Decima. The error bar in real spark job duration (blue
bars in upper figures) spans one standard deviation across 10 exper-
iments. The span in simulation error (orange bars in lower figures)
denotes 95% confidence interval. (a) Each of the 22 TPC-H jobs
runs along in the cluster. The discrepancy between simulated and
actual job duration is at most ±5%. (b) Running mixture of all 22
TPC-H jobs. The mean error is at most ±9%.

C Simulator fidelity
Figure 17 shows how simulated and real Spark differs in
terms of job completion time for 10 runs of TPC-H job
sets (§7.2). The results show that the simulator closes
matches the actual run time of each job, even we run multiple
jobs together in the clusters. Importantly, capturing all first-
order effect in the Spark environment is crucial to achieve
such accuracy (§6.2). For example, without modeling the
executor moving delay, the simulated runtime incurs a con-
sistent negative offset. Training in such environment would
therefore result in a policy that moves executor more often
than intended (§7.5). Also, omitting the waves and stretches
artifacts significantly increase the variance in simulated run-
time, making it unfaithful to reflect the real cluster. Only
when all the factors are consider, can we achieve the small
discrepancy between real and simulation as shown in Fig-
ure 17.

D Competing heuristics in multi-resource
scheduling environment

When evaluating Decima’s performance in multi-resource
scheduling environment (§7.4), we compare with several
heuristics. First, we consider the optimally tuned weighted
fair heuristic from §7.2. This heuristic grants each job an
executor quota based on the total work in the job. Then the
heuristic chooses a stage the same way as in §7.2. Among

the available executor types, the heuristic exhausts the best-
fitting category before choosing any others. The scheduler
ensures that the aggregate allocated resources (across differ-
ent executor types) do not exceed the job’s quota.

Second, we compare to the standard resource-packing al-
gorithm from Tetris [18]. To maximize resource utilization,
we select the DAG node that yields the largest dot product of
requested resource vector and available resource vector for
each executor type. Then we greedily grant as much paral-
lelism as the tasks need in this node.

The two heuristics lack each other’s key scheduling in-
gredients (fairness and packing), and neither understands
the DAG structure. Finally, we compare to Graphene [19],
whose hybrid heuristic combines these factors, Our multi-
resource scheduling environment with discrete executor
classes differs from the original Graphene setting, which as-
sumes continuous, infinitely divisible resources. We adapted
the Graphene algorithm for discrete executors, but kept its
essence: specifically, we estimate and group the “trouble-
some” nodes the same way [19, §4.1]. To ensure that trou-
blesome nodes are scheduled at the same time, we dynam-
ically suppress the priority on all troublesome nodes of a
DAG until all of these nodes are available in the frontier.
We also include parallelism control by sharing the executors
according to the weighted partition heuristic; and we pack
resources by prioritizing the executor type that best fits the
resource request. In the end, we perform a grid search on all
the hyperparameters (e.g., threshold for picking troublesome
nodes) in this heuristic for the best scheduling performance
in each of the experiments in §7.4.

E Optimality of Decima
In §7, we show Decima is able to rival or outperform ex-
isting scheduling schemes in a wide range of complex clus-
ter environments, including a real Spark testbed, real-world
cluster trace simulations and a multi-resource packing envi-
ronment. However, the optimality of Decima in those envi-
ronments remains unknown due to the intractability of com-
puting exact optimal scheduling solutions [19; 31], or tight
lower bounds.8 Nevertheless to understand Decima’s opti-
mality, we test Decima in simplified settings where a brute-
force search over different scheduling configurations is pos-
sible as a near-optimal baseline for comparison.

We consider the Spark executor based scheduling frame-
work simulated in §6.2 with average JCT objective for a
batch of jobs. To simplify the environment, we turn off the
“wave” effect, executor startup delays and the artifact of task
slowdowns at high degrees of parallelism. As a result, the
duration of a stage has a strict inverse relation to the number
of executors the stage runs on; the scheduler is also free to
move executors across jobs without any overhead. The dom-

8In our scheduling settings (e.g., Spark’s executor based scheduling),
we find lower bounds based on total work or critical path to be too loose to
unveil meaningful information of how optimal Decima stands.

17

Figure 18: Comparing Decima with near optimal heuristics in a
simplified scheduling environment.

inating challenge in this environment is to pack jobs tightly
and favor short jobs first as much as possible.

To find a good schedule for a batch of n jobs, we con-
sider exhaustive search over all n! possible job orderings,
and select the ordering having the lowest average JCT. To
make the exhaustive search feasible, we reduce the number
of batch jobs to 10. For a fixed job ordering, at each schedul-
ing event (§5.2), we select the unfinished job appearing ear-
liest in the order (we use critical path to choose the order of
nodes within each job) to assign to available executors. By
enumerating over all possible job orderings, the algorithm
is guaranteed to find a schedule where jobs finish in order of
their respective sizes thus resulting in small average JCT. We
believe this policy to be close to optimal, as we have empir-
ically observed job orderings to have a dominating effect on
the average JCT in TPC-H workloads (§7.5).

Next, we train an unmodified Decima agent in this envi-
ronment with the same batch setting as in §7.2. We compare
the performance of Decima with our exhaustive search base-
line, a shortest-job-first critical-path heuristic, and the opti-
mally tuned weighted fair scheduler (described in §7.2). The
results are shown in Figure 18.

We make three key observations. First, different from the
results in real spark (Figure 9), the SJF-CP scheme outper-
forms the optimally tuned weighted fair scheduler. This is
expected because SJF-CP strictly favors small jobs to opti-
mize for the average JCT (any misassignment of executors
off the shortest job would hurt the performance). Second,
the exhaustive search heuristic performs better than SJF-CP
scheme. This is due to SJF-CP not exploiting information
about the DAG structure or the current cluster state—beyond
just the critical path or total work—resulting in a subopti-
mal packing. Whereas by trying out different job orderings,
the exhaustive search heuristic is able to find a schedule in
which jobs are not only ordered correctly, but also pack well.
Third, remarkably, Decima matches or achieves slightly bet-
ter average JCT — on average, Decima reduces the JCT by
9%. We found that Decima is better at dynamically packing
jobs based on their current structure at run time (e.g., how
much work remains on each dependency path). It enables
Decima to outperform the heuristic that strictly follows the

Decima training scenario average JCT (1k seconds)
Decima trained with 10 jobs 3.54± 0.45
Decima trained with 150 jobs 3.29± 0.68
Decima trained with 1k executors 0.63± 0.07
Decima trained with 10k executors 0.61± 0.09

Table 2: Decima generalizes well to deployment scenarios in which
the workload or cluster differ from the training setting.

Figure 19: Decima performs worse on unseen jobs without task
duration estimates, but still outperforms the best heuristic.

order determined in a static exhaustive search. This experi-
ment hallmarks Decima’s ability to automatically search for
a near optimal scheduling algorithm, by interacting with the
cluster with only the raw observation of the job states.

F Generalizing Decima to different deploy-
ment environments

Practical clusters often have verying workloads, and their
available resources also change over time. Ideally, Decima
would generalize from a model trained for a specific load and
cluster size to similar workloads with different parameters.
To test this, we train Decima’s agent on a scaled-down ver-
sion of the industrial workload, using with 15× fewer con-
current jobs and 10× fewer executors than in the test setting.
Table 2 shows how the performance of this agent compares
with that of one trained on the real workload and cluster size.
Decima is robust to changing parameters: it generalizes to
15× more jobs with a 7% worse average JCT, and to a 10×
larger cluster with a 3% worse average JCT. Generalization
to a larger cluster is robust as the policy correctly limits jobs’
parallelism even if vastly more resources are available. By
contrast, generalizing to a workload with many more jobs is
harder, as the smaller-scale training lacks experiences with
complex job combinations.

G Decima with incomplete information
In a real cluster, Decima will occasionally encounter unseen
jobs without reliable task duration estimates. Unlike heuris-
tics that fundamentally rely on profiling information (e.g.,
weighted fair scheduling based on total work), Decima can
still work with the remaining information and extract a rea-
sonable scheduling policy. Running the same setting in §7.2,
Figure 19 shows that training without task durations yields a
policy that still outperforms the best heuristic, as Decima can
still exploit the graph structure and other information such

18

Figure 20: Decima trained with batch jobs does not trivially gen-
eralize to streaming. With streaming training techniques (§5.3) en-
abled, Decima is able to outperform the best comparing heuristics
by at least 5–12%. However, Decima trained in batch setting per-
forms worse than the heuristics, especially with large cluster load—
e.g., 19% worse than the best heuristic in 85% cluster load.

as the correlation between number of tasks and the efficient
parallelism point.

H Using Decima ’s batch policy in streaming
Decima outperforms comparing heuristics in streaming set-
tings (§7.2, §7.3, §7.4) as shown in Figures 10, 11b, 12.
In §5.3 we have mentioned that new training techniques
are required to achieve this—Decima’s scheduling policies
trained with batch job settings do not directly generalize to
the streaming case. To illustrate this point, in Figure 20
we repeat the streaming experiments on the industrial work-
load (§7.3), and compare with a Decima policy trained on
batches of jobs (with no arrival of new jobs beyond the initial
batches). As shown, Decima trained on batch jobs consis-
tently underperforms Decima trained directly over streaming
scenarios; it even performs worse than the comparing heuris-
tic. The difference is larger when the cluster load increases,
which creates a harder scheduling problem. For example,
batch Decima scheduling policy performs 19% worse than
the best heuristic at 85% cluster load.

19

	1 Introduction
	2 Motivation
	2.1 Dependency-aware task scheduling
	2.2 Setting the right level of parallelism
	2.3 An illustrative example on Spark

	3 The DAG scheduling problem in Spark
	4 Overview and Design Challenges
	5 Design
	5.1 Scalable DAG processing
	5.2 Encoding scheduling decisions as actions
	5.3 Training

	6 Implementation
	6.1 Spark integration
	6.2 Faithful simulation

	7 Evaluation
	7.1 Existing baseline algorithms
	7.2 Spark cluster
	7.3 Industrial workload
	7.4 Multi-dimensional resource packing
	7.5 Decima drill down

	8 Related Work
	9 Conclusion
	A An illustrative example of dependency-aware job scheduling
	B Implementation details of training
	C Simulator fidelity
	D Competing heuristics in multi-resource scheduling environment
	E Optimality of Decima
	F Generalizing Decima to different deployment environments
	G Decima with incomplete information
	H Using Decima ’s batch policy in streaming

