
Unveiling Clusters of Events for Alert and Incident
Management in Large-Scale Enterprise IT

Derek Lin
Pivotal Software, Inc.
3495 Deer Creek Rd
Palo Alto, CA, USA

dlin@gopivotal.com

Rashmi Raghu
Pivotal Software, Inc.
3495 Deer Creek Rd
Palo Alto, CA, USA

rraghu@gopivotal.com

Vivek Ramamurthy
Pivotal Software, Inc.
3495 Deer Creek Rd
Palo Alto, CA, USA

vramamurthy@gopivotal.com

Jin Yu
Pivotal Software, Inc.

570 Bourke street
Melbourne, VIC, Australia
jyu@gopivotal.com

Regunathan
Radhakrishnan

Pivotal Software, Inc.
3495 Deer Creek Rd
Palo Alto, CA, USA

rradhakrishnan1@gopivotal.com

Joseph Fernandez
Visa Inc

900 Metro Center Blvd
Foster City, CA, USA

lazferna@visa.com

ABSTRACT
Large enterprise IT (Information Technology) infrastructure
components generate large volumes of alerts and incident
tickets. These are manually screened, but it is otherwise
difficult to extract information automatically from them to
gain insights in order to improve operational efficiency. We
propose a framework to cluster alerts and incident tick-
ets based on the text in them, using unsupervised machine
learning. This would be a step towards eliminating man-
ual classification of the alerts and incidents, which is very
labor intense and costly. Our framework can handle the
semi-structured text in alerts generated by IT infrastruc-
ture components such as storage devices, network devices,
servers etc., as well as the unstructured text in incident tick-
ets created manually by operations support personnel. Af-
ter text pre-processing and application of appropriate dis-
tance metrics, we apply different graph-theoretic approaches
to cluster the alerts and incident tickets, based on their
semi-structured and unstructured text respectively. For au-
tomated interpretation and read-ability on semi-structured
text clusters, we propose a method to visualize clusters that
preserves the structure and human-readability of the text
data as compared to traditional word clouds where the text
structure is not preserved; for unstructured text clusters, we
find a simple way to define prototypes of clusters for easy
interpretation. This framework for clustering and visualiza-
tion will enable enterprises to prioritize the issues in their
IT infrastructure and improve the reliability and availability
of their services.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623360 .

Categories and Subject Descriptors
H.2.8 [Database Applications]: [Data Mining]; I.5.3 [Pattern
Recognition]: [Clustering]

Keywords
Hierarchical clustering; Connected Components; Graph cut;
Complete Linkage; kd-tree; Non-Negative Matrix Factoriza-
tion; Tickets Analysis; Alerts and Incidents management

1. INTRODUCTION
Organizations of all sizes struggle with a common problem

in Infrastructure and Operational Management. Thousands
of automated alerts with semi-structured text are generated
every day from hundreds of infrastructure tools. Similarly,
thousands of incident tickets (or incidents) with manually
entered unstructured text are created daily by support per-
sonnel. These alerts and incidents are centrally collected
(eg. IBM Netcool [5]); however, maintenance of these alerts
and incidents is costly and labor intensive, and requires de-
tailed analysis from subject matter experts. The classic
problem enterprises repeatedly encounter is the identifica-
tion of important alerts and incidents, on which attention
can be focussed. We desire an alert and incident discov-
ery and classification process that can be automated and is
data agnostic. It benefits the downstream processing steps
by helping to reduce false positive alerts [16] or improving
operational efficiency to answer questions such as What are
the topics of alerts and incidents? what are the topics or
clusters that generate the most volumes of alerts? What is
the mean-time-to-repair for a cluster?

Toward addressing this need, we propose two distinct frame-
works: one framework to cluster alerts with semi-structured
text, and another framework to cluster incidents with un-
structured text. The text within alert and incident data are
each preprocessed using token normalization and stop-word
removal - two common approaches used in text mining. The
text within each alert or incident is now represented as a
bag of words.

To cluster alerts comprised of semi-structured text, we
first choose a distance metric, then apply a top-down clus-

1630

tering approach using connected components and graph-cut.
Related work in [6] used Levenshtein edit distance and DB-
SCAN for text clustering; similarly [14] used Levenshtein
distance for simple clustering based on dissimilarity. Re-
sulting clusters are then visualized with a novel visualization
technique for automated interpretation.

Compared to the clustering of alerts, clustering of inci-
dents is more computationally demanding. Alerts are gen-
erated by technology components (a database, or an appli-
cation) and are already broadly tagged by their component
names. Alerts generated from a technology component are
clustered independently from those from another technol-
ogy component. Clustering of all alerts within a technology
component is manageable, especially after the token normal-
ization step which reduces the space of alerts substantially.
Clustering of incidents, however, is more computationally
challenging as there is no high-level grouping of incidents.
To cluster incidents, we develop an approach based on ma-
trix factorization and KD-tree to create a preliminary group-
ing of incidents before applying complete linkage clustering
per group and later performing cluster merging in a post-
processing step.

Based on the clustering output, we compute several in-
teresting business intelligence metrics or key performance
indicators per cluster and visualize them. In this paper,
we also address the need for automated interpretation of
alert clusters. For alert cluster interpretation, we propose a
novel visualization that preserves the structure and human-
readability of the text data as compared to traditional word
clouds where the text structure is not preserved. For in-
cident cluster interpretation, we simply find prototypes of
clusters. KPI visualization and cluster interpretation would
help enterprises prioritize the issues in their IT infrastruc-
ture and improve the reliability and availability of their ser-
vices.

The rest of the paper is organized as follows. In the fol-
lowing two sections, we will describe the details of the frame-
work. Then, we present the results of these clustering ap-
proaches that provide insights into the top issues in the IT
infrastructure.

2. HIERARCHICAL CLUSTERING OF SEMI-
STRUCTURED ALERTS TEXT BASED ON
CONNECTED COMPONENTS DETECTION
AND GRAPH-CUT

Figure 1 illustrates the 5 high level steps in the proposed
framework to cluster semi-structured alerts text.

• Step 1: Token normalization of alert and incident sum-
mary texts.

• Step 2: Stopword removal.

• Step 3: Pairwise distance metric computation to com-
pare any two summaries.

• Step 4: Hierarchical clustering based on computed
pairwise distance matrix.

• Step 5: Post-processing and Visualization.

In the following sub-sections we will describe these steps
in detail.

Figure 1: Steps in the clustering framework

2.1 Token Normalization of Alerts Text
Tokens are individual words within alerts. For the purpose

of clustering, we are only interested in the textual structural
information in alerts. Tokens exhibiting high variability such
as IP address, date and time are either removed or replaced
by another common string. For instance, two alerts A and
B may report the same issue at specific IP address (e.g Alert
A: service is not running at 10.2.34.56 and Alert B: service
is not running at 10.12.2.54). For the purpose of clustering
these two alerts based on the issue they refer to (a particular
service not running), the specific IP address (e.g 10.12.2.54)
in the alert string is not important. By replacing the IP
address with a string “ipaddr”, both of these alerts end up
containing the same ’normalized’ text. Which particular to-
kens to normalize, depends on the problem domain. In our
enterprise data set, we performed the following token nor-
malizations to bring together alerts that originally appeared
to be very different.

• Replace various date formats with the text “date”

• Replace various time formats with the text “time”

• Replace various URLs with the text “url”

• Replace various file paths with the text “filepath”

• Replace various server (node) names with “nodename”

• Remove application names that provided no insight on
the type of an alert

• Replace numbers with �, and punctuations with whites-
pace

• Remove trailing whitespace

Token normalization substantially reduced the alert space
and eliminated a lot of noise in the data. It was now a lot
easier to detect structural patterns within the normalized
alerts and to apply suitable distance metrics for clustering.

1631

2.2 Stopword Removal
Stopwords are words that commonly occur in all of the

alert groups. These words do not help in clustering alerts
as they are present in a large proportion of the alerts. For
instance, every alert originating from a certain service com-
ponent contains the word: “service”. In order to cluster
alerts coming out of this component based on its content,
this word (“service”) is not helpful and hence can be consid-
ered as a stopword and removed.

In order to identify the stopwords, we perform the follow-
ing steps:

• Split the alerts text into unigrams (words or tokens)

• For each distinct unigram, compute its total count
across all alerts, as well as the total number of dis-
tinct token normalized alerts that it appears in.

• Sort the unigrams in descending order of total count
across all alerts, and then in descending order of total
number of distinct token normalized alerts that they
appear in. Choose the top “k” unigrams from this
sorted list as the stopwords to be removed. “k”, is
chosen by visual inspection, using domain knowledge,
to remove only words that are not useful for clustering.

2.3 Distance Metric to Compare Alerts
Before we can perform any clustering, we need to be able

to compare any two alerts where each alert is represented
as a bag of words . We propose to use Jaccard distance
as a metric to compare any two alerts. In order to compute
Jaccard distance, each alert is represented as a bag of words.
Let us denote one such set from alert A as A and another
set of words from alert B as B. Then, Jaccard distance is
defined as below:

JaccardDistance(A,B) = 1− (
|A ∩B|
|A ∪B|) (1)

Jaccard distance is a number between 0 and 1 and is not
sensitive to the position of the matching word in the two
alerts that are being compared.

Given N alerts that need to be clustered, we create at
NxN distance matrix using the Jaccard distance metric to
compare any two alerts.

It is possible to apply other distance metrics such as Rank-
Biased Overlap [17], which takes into account the position
of the match when comparing two alerts.

2.4 Clustering Alerts based on Distance Ma-
trix

In the previous section, we described how we create a
NxN distance matrix that summarizes how the alerts re-
late to each other. Given the NxN distance matrix, various
clustering methods potentially apply, but each with differ-
ent assumptions and advantages. For example, hierarchical
clustering with minimax linkage [1] tended to produce over-
fragmented clusters in our experiments by assuming that
similar events within a cluster are within a certain radius
distance from the centroid. Not assuming any cluster shape
is a criterion in our clustering method choice. We propose
using a graph-theoretic approach that uses connected com-
ponent detection to generate initial clusters before applying
the graph-cut algorithm to further refine the clusters.

Figure 2: Size of Connected Components from a
Graph (Graph A)

Figure 3: Size of Connected Components from a
Graph (Graph B)

2.4.1 Top-down Clustering based on Connected Com-
ponents Detection

Given the NxN distance matrix, we can create a graph
where the vertices of the graph correspond to alerts. We
can establish an edge between any two vertices (alerts) if the
Jaccard distance between the two alerts is less than a thresh-
old (e.g 0.5). After creating this graph, we run a connected
components detection algorithm on it to identify parts of
the graph that are not connected to other parts.

A connected component [4] is a sub-graph in which there
exists at least one path that connects any two vertices, and
which is connected to no additional vertices in the complete
graph. One advantage of using connected components is
that it doesn’t assume any cluster shape.

Figure 2 below shows the number of connected compo-
nents detected from a graph (say Graph A) representing
few hundred alerts. There are 5 to 6 significant clusters or
connected components detected from this group of alerts.

Similarly, we detected 196 connected components from
the another graph (say Graph B) representing few thousand
alerts. The size of top 3 or 4 connected components in the
case of Graph B tended to be much larger than in the case of
Graph A. The sizes of detected connected components from
Graph B are shown below in Figure 3.

For instance, the top connected component in Graph B
was of size 1717. It was desirable to break this large con-
nected component (cluster) into smaller clusters. Toward
this end, we employed normalized cut, which is a hierarchi-
cal graph partitioning algorithm. In the following subsec-
tion, we describe the details of this graph-cut algorithm.

2.4.2 Graph Cut
Given a NxN distance matrix (C) of a connected com-

ponent, we perform the following steps to derive smaller

1632

Figure 4: Affinity matrices of large connected com-
ponents

clusters from this connected component:

• Compute an affinity matrix W of the same size as dis-

tance matrix where W = exp
(− C

σ2)
. Here σ is a pa-

rameter that controls how quickly affinity (similarity)
falls off with distance [7]. σ2 was empirically chosen
to be 0.5.

• Compute a diagonal degree matrix D whose diagonal
is d(i, i) =

∑
j W (i, j)

• Solve the following eigen system: D−1/2(D−W)D−1/2x =
x

• Here x is the cluster indicator vector that partitions
the input graph into two parts A and B such that
within-cluster affinity is maximized while between cluster-
affinity is minimized.

• Compute cluster radii for the new partitions A and B
and their sizes.

• If clusterradius > radiusthreshold and clustersize >
sizethreshold, then continue partitioning either A or
B recursively.

Figure 4 below shows affinity matrices of two such large
connected components (clusters). Note that the block struc-
ture along the main diagonal of the affinity matrices, indi-
cating the presence smaller clusters within the connected
component.

After recursive partitioning of Graph B, it is broken down
to 4 significant smaller clusters as shown in Figure 5.The

Figure 5: Graph cut based recursive partitioning of
Graph B into 4 smaller clusters

connected component of size 1717 is partitioned into 4 clus-
ters of sizes 296,246,174 and 166 respectively and other smaller
clusters. Note the cluster radii for the smaller clusters from
the graph-cut partitions are smaller than the radius of the
large connected component.

If the largest connected component is greater than say
10000 alerts, then computing the full distance matrix and
performing Graph cut may not scale. We propose to use
the Nystrom method to perform graph cut, in which you
randomly sample say5% of the distance matrix and compute
an approximation to the dense solution of the eigen system
using the Nystrom approximation as suggested in [2]

3. HIERARCHICAL CLUSTERING OF UN-
STRUCTURED INCIDENT TICKETS

To account for the complexity arising from the unstruc-
tured nature of the incident tickets, we extend the frame-
work for clustering semi-structured Netcool alerts by incor-
porating two new elements: non-negative matrix factoriza-
tion and KD-tree data structure. The resulting framework
consists of the following high-level steps:

1. Token normalization and stopword removal.

2. High-level grouping of tickets based on non-negative
matrix factorization and KD-tree.

3. Hierarchical clustering within each group of incidents.

4. A refinement step to merge similar clusters.

3.1 Token Normalization and Stopword Re-
moval

We take the same token normalization approach as ap-
plied to Netcool alerts except that timestamps, file paths,
URLs, punctuations, and digits are removed from incident
summaries, instead of being replaced by common strings.
This is based on the observation that unlike semi-structured
alerts, ticket descriptions generally do not conform to cer-
tain formats, hence semantically non-meaningful strings like
timestamps and file paths are unlikely to contribute to the
formation of clusters.

In addition, we also remove common English stopwords
such as “the” and “is” as well as a custom list of words such
as “please” and “following” to further clean the data.

3.2 High-Level Grouping of Tickets
For Netcool data, clustering is performed within each sub-

group of alerts. However, sub-group information is not avail-
able for incident tickets. This presents a potential compu-
tational challenge, due to the need to compute pairwise dis-

1633

Figure 6: A binary term-incident matrix.

tances between each pair of tickets. In what follows we intro-
duce a novel approach to the creation of high-level grouping
of incident tickets. Underlying the approach are two tech-
niques: non-negative matrix factorization and KD-tree.

3.2.1 Non-Negative Matrix Factorization
As the first step towards generating a preliminary group-

ing of incident tickets, we construct feature vectors to rep-
resent tickets. Using bag-of-words representation, we collect
the entire set of tickets in a binary matrix. Each row repre-
sents a term (word), and each column represents an incident
ticket, with the value 1 indicating the presence of a term;
and 0 otherwise. As shown in Figure 6, the term-incident
matrix is highly sparse. This calls for a dimensionality re-
duction step to obtain a more compact representation of the
data. Towards this end, we factorize the term-incident ma-
trix via non-negative matrix factorization [9, 12].

Non-negative matrix factorization (NMF) is a popular
technique for dimensionality reduction and underlies a wide
range of machine learning applications such as text min-
ing [13, 15, 18], image analysis [10], recommender systems
[19], etc. It refers to the factorization of a non-negative ma-
trix Am×n into the product of two low-rank matrices Wm×k

and Hk×n, whose elements are also non-negative. The rank
parameter k is typically chosen to be much smaller than
min(m,n). Given the input matrix A and the rank k, NMF
can be formulated as the following constrained optimization
problem:

min
W,H

‖ A−WH ‖2F , s.t. W,H ≥ 0, (2)

where ‖ · ‖F denotes Frobenius norm, and the constraints:
W,H ≥ 0, enforce W and H to take only non-negative ele-
ments. This problem is non-convex in both W and H, but
becomes a convex problem when either W or H is fixed.
There are many different approaches to solving (2). Alter-

nating Least Squares (ALS) [12] is among the most popular
ones, due to its simplicity and good practical performance;
see Alg. 1 for an outline of the algorithm. Starting with an
initial estimation of W , ALS first solves the least squares
problem minH ‖ A −WH ‖2F for H, which is equivalent to
solving the matrix equation at Step 5 of Alg. 1. The subse-
quent Step 6 is a truncation step to ensure non-negativity
of the solution. It is clear that the closed-form solution
to the matrix equation at Step 5 is H = (W�W)−1W�A.
Although matrix inversion is computationally expensive in
general, here the size of the positive-semidefinite matrix
(W�W) is only k×k. Hence, the cost of inverting this small
matrix is almost negligible. The rest of the operation to ob-
tain H involves sparse matrix multiplication, which can be

Algorithm 1 Alternating Least Squares for NMF

1: input a matrix Am×n ≥ 0 and an integer 0 < k �
min(m,n).

2: output two low-rank factors: Wm×k ≥ 0 andHk×n ≥ 0.
3: Initialize W , e.g. using methods introduced in [8].
4: repeat
5: fix W , solve W�WH = W�A for H.
6: set all negative elements in H to 0.
7: fix H, solve HH�W� = HA� for W .
8: set all negative elements in W to 0.
9: until a convergence criterion is met.
10: optional standardize the solution: normalize each col-

umn of W (resp. each row of H) to have norm 1, adjust
H (resp. W) accordingly to absorb scaling coefficients.

efficiently implemented in an MPP database [3]. Similarly,
given the current H, W is updated via a two-step procedure
(Steps 7 and 8). The algorithm proceeds in an alternating
fashion until a convergence criterion is met. In our imple-
mentation, we also standardize the solution as shown at Step
10 of Alg. 1 by normalizing H.

A known limitation of ALS is that its convergence is dif-
ficult to analyze, due to the ad-hoc enforcement of the non-
negativity constraints. Nevertheless, ALS and many of its
variants (see e.g. [19]) have seen great success in real-world
applications. In practical implementations, it is a common
strategy to monitor changes in the elements of W and H,
and stop the algorithm when the changes fall below a pre-
specified threshold, or the maximum number of allowed iter-
ations is reached. Another practical aspect of ALS is initial-
ization. Due to the non-convex nature of the NMF problem,
ALS (and in fact any NMF algorithm) is bound to be sen-
sitive to the initial estimate of W . We use an initialization
strategy suggested in [8], which is to initialize each column
of W by averaging a certain number of random columns in
A. This simple and intuitive approach has been shown [8]
to strike a good balance between performance and compu-
tational cost, and worked well in our experiments.

The resulting low-rank factors effectively encode the orig-
inal matrix A (term-incident matrix) in a k-dimensional la-
tent space. The columns of W are the basis vectors of the
latent space. Let ai be a column (an incident ticket) in A,
and hi the corresponding column in H. Then, an ai can be
approximated by ai ≈ W hi, meaning that the approxima-
tion is an additive linear combination of the basis vectors,
weighted by the entries in hi. Essentially, an hi specifies
how an incident ticket is expressed in the latent space, where
tickets that share similar descriptions still remain “close”.

3.2.2 A KD-Tree of Incident Tickets
Given the low-rank factor H, we organize its columns in a

KD-tree [11], a commonly used data structure for searching
nearest “neighbors” in a multi-dimensional space. KD-tree
partitions multi-dimensional data into non-overlapping sub-
sets (also called subtrees) such that nearest neighbors are
more likely to be within rather than outside of a subtree. A
KD-tree is constructed in a recursive manner (see Fig. 7):

1. Pick a dimension.

2. Find the median along that dimension.

3. Split the data at the median.

1634

Figure 7: An example KD-tree.

4. Repeat on subtrees until they reach a desired size.

As illustrated in Fig. 7, a KD-tree creates a natural grouping
of the data. This motivates our use of KD-tree to produce
a high-level grouping of incident tickets

Note that at each iteration KD-tree splits the data along
only one dimension. The implication is that the order of di-
mensions to partition the data can influence the final group-
ing. Our implementation gives priority to dimensions that
contain more non-zero values. The assumption is that denser
dimensions are more discriminative. It is also well known
that “the curse of dimensionality” is a problem of KD-tree.
Data points in a high-dimensional space tend to be far away
from each other, hence are unlikely to form large groups. Re-
call that our KD-tree is constructed in the low-dimensional
latent space produced by NMF. This effectively avoids the
curse of dimensionality issue. Empirically, we found it suf-
ficient to set the dimensionality (i.e., the rank parameter in
NMF) to 15 to obtain a satisfactory grouping result.

3.3 Hierarchical Clustering
Having constructed a KD-tree, agglomerative hierarchi-

cal clustering is run within each subtree to obtain a re-
fined grouping of incident tickets. Agglomerative hierarchi-
cal clustering builds a clustering tree from bottom up by
merging closest clusters. In contrast to the familiar K-means
clustering method, hierarchical clustering does not require
the number of clusters to be specified a priori. Instead, a
user decides at what height to cut a clustering tree, which
indirectly determines the number of clusters. We find that
it is often much easier to empirically find an appropriate
height than the number of clusters.

Hierarchical clustering operates on pairwise distances. To
measure pairwise distances between ticket descriptions, we
design a distance measure as below:

dist(A,B) = max
i

|Xi| − |A ∩B|, (3)

where Xi, A, and B are sets of distinct words in a ticket
description, and | · | denotes the cardinality of a set. The
first term: maxi |Xi| is a constant. It is introduced to en-
sure positivity of the distance measure. Note that this dis-
tance measure is based solely on the intersection of texts
but not length. This is motivated by the observation that
descriptions of the same issue can vary widely in length; for
instance, the two examples shown in Figure 8 both describe
a password related issue, but one is brief, while the other
contains much more details.

For clustering, we used the complete-linkage method. It is
an agglomerative hierarchical clustering method that defines
the distance between two clusters by the farthest pair of data

Figure 8: Tickets of the same issue can vary widely
in length.

Figure 9: Complete linkage defines the distance
between two clusters by the farthest pair of data
points.

points (Figure 9). Combined with the intersection-based dis-
tance measure (3), complete-linkage clustering ensures that
each pair of tickets in a cluster share at least some common
words. The resulting clustering tree can be cut at a height
to ensure a certain degree of overlap between each pair of
tickets within a cluster. Suppose that the maximum length
of a ticket description is 30 (i.e., maxi |Xi| = 30), then set-
ting the height to 28 guarantees an overlap of at least 2
words between any two tickets of the same cluster. More-
over, an exemplar is selected for each cluster to show the
typical “look and feel” of tickets in a cluster. It is defined
as the ticket that has the shortest distance to its farthest
“neighbor” (Figure 10):

x∗ := arg min
x∈X

max
x′∈X

d(x,x′). (4)

3.4 Merging Similar Clusters
Due to the variability of ticket descriptions, the same type

Figure 10: The exemplar (center of the encompass-
ing circle) has the shortest distance to its farthest
neighbor.

1635

of tickets can be assigned to different subtrees, or to different
clusters even within the same subtree. A refinement step was
therefore developed to merge those similar clusters.

First, frequently used words (e.g. top-10 words) are ex-
tracted from each cluster to form a feature vector. The
intersection-based distance measure (3) is then applied to
feature vectors to quantify the dissimilarity between two
clusters. Given pairwise distances of clusters, the complete-
linkage clustering method is used again to create groups
of clusters. For each merged cluster, a representative inci-
dent is selected as the exemplar (Figure 10). In our experi-
ments this refinement procedure joins about 66% of clusters
produced by the initial run of clustering (as described in
Sec. 3.3).

4. EXPERIMENTAL RESULTS

4.1 Dataset and Compute set up
We had collected data from a large enterprise’s IT infras-

tructure that supports several software services that are up
all the time over a period of 3 months. In all, we had 5 mil-
lion rows of alerts over a period of 3 months. Some of these
alerts text were identical as they repeated at a certain time
interval (say 1 min). Therefore, by focusing our attention
only on those unique alerts we were able to reduce the 5 Mil-
lion rows to about 590, 000. After token normalization and
stopword removal, the number of unique alerts came down
to 22000 from the original count of 590000. Given these
22000 unique alerts and labels for 4 sub-groups within this
set, we wanted to find clusters within 4 sub-groups. The 4
sub-groups are already known to the enterprise and hence
we wanted to find clusters within each sub-group.

• Sub-Group 1 with 1408 alerts

• Sub-Group 2 with 4813 alerts

• Sub-Group 3 with 440 alerts

• Sub-Group 4 with 5388 alerts

We loaded all the data onto Pivotal’s Greenplum Database
(GPDB) running on a Data Computing Appliance (DCA)
and implemented the clustering frameworks described above
using a combination of psql scripts, MADlib (an opensource
big data machine learning toolkit that runs on GPDB),
PL/R code and PL/python code. GPDB has the MPP
(Massively Parallel Processing) architecture with one master
and several segment hosts sharing the computational load
and is built for scalable big data analytics.

4.2 Clustering Results
Figure 11 presents a visualization of the clusters from each

of 4 Sub-Groups of alerts. The size of the bubbles in the Fig-
ure 11 corresponds to the number of alerts belonging to a
particular cluster. The intensity of the coloring of the bub-
bles corresponds to the number of incident tickets created
from the alerts of a particular cluster. For instance, the
darker the green color in the clusters corresponding to Sub-
Group 4, the higher the number of incidents that got created
from that cluster of alerts. Furthermore, the sizes of clusters
in the 4 alert groups tend to have a long-tail distribution.
That is, there are few big to medium sized clusters whereas
there are a lot smaller clusters in each of the alert groups.

Figure 11: Visualization of clusters with the 4 Sub-
Groups of Alerts

Figure 12: Key Performance Indicator (MTTR)
Computed for top k clusters

In order for IT operations to focus on their top critical
issues, especially events and incidents that generate major
failures, it is sufficient to look at a few big-to-medium sized
clusters in each of the alert groups. Furthermore, for each
of incidents created we can compute a quantity called time-
to-resolve which is the time taken for that particular issue
to be resolved. For each of the clusters, one can then look at
the mean-time-to-resolve (MTTR) from the incidents that
got created from that cluster.

Figure 12 below summarizes this MTTR measure in terms
of minutes for each of the top clusters across the 4 Sub-
Groups. It also indicates how many of the alerts became
incidents in each cluster. For instance, the first cluster has
4248 alerts of which only 1407 became incidents. This im-
plies that there is room for improvement by paying attention
to the rest of alerts before they become bigger issues.

4.3 Visualizing Clusters of Alerts
It is challenging to visualize clustered or grouped semi-

structured text data such as alerts. Techniques such as word
clouds are often used to visualize text data. While word
clouds can show the relative frequency of different words
across all alerts in a cluster they do not reveal any structure
that is common across alerts.

Consider the hypothetical example of alerts shown in Ta-
ble 1. Word clouds would only pick out the fact that the
words ‘Server’, ‘not’and ‘responding’occur very often in the
set of alerts shown but would not be able to pick out the
order in which those words occur. For automated inter-
pretation and readability of semi-structured text clusters or
groups, we propose a method to visualize clusters that pre-
serves the structure and human-readability of the text data

1636

as compared to traditional word clouds where the text struc-
ture is not preserved. This is especially necessary for large
clusters and/or longer sequences of text. The proposed vi-
sualization method is also applicable to other types of semi-
structured clustered/grouped text or categorical data.

Table 1: Example of semi-structured text data
Alert # Text

1 Server A not responding
2 Server B is not responding
3 Server C not responding
4 Server D not responding

The steps in the visualization method are as follows:

1. For each alert in a given cluster generate (word, posi-
tion) tuples, comprising the word and its position in
the alert. Depending on whether the need is to visu-
alize word lined up in order from left-to-right or right-
to-left the text can be ‘left-’or ‘right-justified’prior to
generating tuples.

2. For each cluster record all (word, position) tuples and
the frequency with which they occur. Table 2 shows
this for the example data in Table 1 with word posi-
tions in left-to-right order.

3. Visualize the frequency of (word, position) tuples from
Step 2 above as shown in Figure 13. The vertical axis
in the figure represents the position of the word in
the alerts and the horizontal axis represents the fre-
quency/percent occurrence of the (word, position) tu-
ple. Each circle in the figure represents a word. Read-
ing the words that occur most frequently in order of
their positions we see the following common structure
in the example: ‘Server — not responding’.

Table 2: Occurrence of (word, position) tuples
Word Position Count Fraction
Server 0 4 1

A 1 1 0.25
B 1 1 0.25
C 1 1 0.25
D 1 1 0.25
not 2 3 0.75
is 2 1 0.25

responding 3 2 0.75
not 3 1 0.25

responding 4 1 0.25

Figure 14 shows an example visualization of three clus-
ters generated from real world semi-structured alerts data
discussed in the previous sections. Reading the alerts with
high percent occurrence off the figure we see the following
elements are common within each respective cluster:

1. ‘ora#: exception encountered: core dump — address
not mapped to object ’

2. ‘time gmt positive alert harmless ’

3. ‘aix hardware error: ’

The automatic readability of the most common theme in
each cluster that this type of visualization provides is key to
quick interpretation of the results.

4.4 Clustering Results of Unstructured Inci-
dent Tickets

For unstructured incident tickets, we focus on discovering
the “topics” of top clusters. We find that top-25 clusters
already accounts for 20% of the total tickets. (There are
around 67 × 103 tickets in total.) Figure 15 provides some
examples of top clusters. The keywords of each cluster are
the words shared by all the ticket descriptions in a cluster,
while the exemplar provides a more detailed view into what
a typical ticket looks like.

5. CONCLUSIONS
This paper presents a framework to automatically cluster

alerts with semi-structured text and incidents with unstruc-
tured text, generated from large enterprise IT infrastructure.
Such clustering information allows IT operation staff to gain
insights on issues they face everyday, based on the top clus-
ters of alerts and incidents, allowing them to prioritize areas
for problem-solving. We proposed two distinct frameworks:
one framework to cluster alerts with semi-structured text,
and another framework to cluster incidents with unstruc-
tured text. The text within alert and incident data are each
preprocessed using token normalization and stop-word re-
moval. The text within each alert or incident is then rep-
resented as a bag of words. To cluster alerts comprised of
semi-structured text, we first choose a distance metric, then
apply a top-down clustering approach using connected com-
ponents and graph-cut. To cluster incidents, we proposed
an approach based on matrix factorization and KD-tree to
create a preliminary grouping of incidents before applying
complete linkage clustering per group and later performing
cluster merging in a post-processing step.

Based on the clustering output, we computed several key
performance indicators per cluster such as the MTTR (Mean-
Time-To-Resolve) and visualize them. For alert cluster in-
terpretation, we propose a novel visualization that preserves
the structure and human-readability of the text data as com-
pared to traditional word clouds where the text structure is
not preserved. One possible future research direction would
involve incorporation of temporal information.

1637

Figure 13: Visualization of the example presented in Tables 1 and 2. The ‘Server not responding ’structure
in the alerts is clearly seen

Figure 14: Visualization of clustered semi-structured alerts text

1638

Figure 15: Top-5 clusters of incident tickets.

6. REFERENCES
[1] J. Bien and R. Tibshirani. Hierarchical clustering with

prototypes via minimax linkage. Journal of the
American Statistical Association, 106(495):1075–1084,
2011.

[2] S. F. C.Fowlkes and J.Malik. Spectral grouping using
the nystrom method. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 26, February 2004.

[3] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and
C. Welton. Mad skills: new analysis practices for big
data. Proceedings of the VLDB Endowment,
2(2):1481–1492, 2009.

[4] P. ERDdS and A. R&WI. On random graphs i. Publ.
Math. Debrecen, 6:290–297, 1959.

[5] IBM Netcool. http://tinyurl.com/m5v8nh2.

[6] S. Jain, I. Singh, A. Chandra, Z.-L. Zhang, and
G. Bronevetsky. Extracting the textual and temporal
structure of supercomputing logs. In High
Performance Computing (HiPC), 2009 International
Conference on, pages 254–263. IEEE, 2009.

[7] J.Shi and J.Malik. Normalized cuts and image
segmentation. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 22, August 2000.

[8] A. N. Langville, C. D. Meyer, R. Albright, J. Cox, and
D. Duling. Initializations for the nonnegative matrix
factorization. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 23–26, 2006.

[9] D. D. Lee and H. S. Seung. Learning the parts of
objects by non-negative matrix factorization. Nature,
401(6755):788–791, 1999.

[10] S. Z. Li, X. Hou, H. Zhang, and Q. Cheng. Learning
spatially localized, parts-based representation. In
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2001.

[11] A. W. Moore. An introductory tutorial on KD-trees,
1991. http://tinyurl.com/cja9o9.

[12] P. Paatero and U. Tapper. Positive matrix
factorization: A non-negative factor model with
optimal utilization of error estimates of data values.
Environmetrics, 5(2):111–126, 1994.

[13] V. P. Pauca, F. Shahnaz, M. W. Berry, and R. J.
Plemmons. Text mining using non-negative matrix
factorizations. In Proceedings of SIAM International
Conference on Data Mining, 2004.

[14] F. Salfner and S. Tschirpke. Error log processing for
accurate failure prediction. In WASL, 2008.

[15] F. Shahnaz, M. W. Berry, V. P. Pauca, and R. J.
Plemmons. Document clustering using nonnegative
matrix factorization. Information Processing &
Management, 42(2):373–386, 2006.

[16] L. Tang, T. Li, L. Shwartz, F. Pinel, and G. Y.
Grabarnik. An integrated framework for optimizing
automatic monitoring systems in large it
infrastructures. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 1249–1257. ACM,
2013.

[17] W. Webber, A. Moffat, and J. Zobel. A similarity
measure for indefinite rankings. ACM Transactions on
Information Systems (TOIS), 28(4):20, 2010.

[18] W. Xu, X. Liu, and Y. Gong. Document clustering
based on non-negative matrix factorization. In
Proceedings of ACM SIGIR conference on Research
and Development in Information Retrieval, pages
267–273, 2003.

[19] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan.
Large-scale parallel collaborative filtering for the
Netflix prize. In Algorithmic Aspects in Information
and Management, pages 337–348. Springer, 2008.

1639

