
STAR: A System for Ticket Analysis and Resolution
Wubai Zhou, Wei Xue

Computer Science
Florida International University

Miami, USA
{wzhou005,wxue004}@cs.�u.edu

Ramesh Baral
Computer Science

Florida International University
Miami, USA

rbara012@cs.�u.edu

Qing Wang
Computer Science

Florida International University
Miami, USA

qwang028@cs.�u.edu

Chunqiu Zeng
Computer Science

Florida International University
Miami, USA

czeng001@cs.�u.edu

Tao Li
Florida International University
Nanjing University of Posts and

Telecommunications
taoli@cs.�u.edu

Jian Xu
Computer Science & Engineering
Nanjing University of Science and

Technology
dolphin.xu@njust.edu.cn

Zheng Liu
Nanjing University of Posts and

Telecommunications
zliu@njupt.edu.cn

Larisa Shwartz
IBM T.J. Watson Research Center

New York, USA
lshwart@us.ibm.com

Genady Ya. Grabarnik
Dept. Math & Computer Science
St. John’s University, Queens

grabarng@stjohns.edu

ABSTRACT
In large scale and complex IT service environments, a problematic
incident is logged as a ticket and contains the ticket summary (sys-
tem status and problem description). The system administrators log
the step-wise resolution description when such tickets are resolved.
The repeating service events are most likely resolved by inferring
similar historical tickets. With the availability of reasonably large
ticket datasets, we can have an automated system to recommend
the best matching resolution for a given ticket summary.

In this paper, we �rst identify the challenges in real-world ticket
analysis and develop an integrated framework to e�ciently han-
dle those challenges. The framework �rst quanti�es the quality of
ticket resolutions using a regression model built on carefully de-
signed features. The tickets, along with their quality scores obtained
from the resolution quality quanti�cation, are then used to train
a deep neural network ranking model that outputs the matching
scores of ticket summary and resolution pairs. This ranking model
allows us to leverage the resolution quality in historical tickets
when recommending resolutions for an incoming incident ticket. In
addition, the feature vectors derived from the deep neural ranking
model can be e�ectively used in other ticket analysis tasks, such
as ticket classi�cation and clustering. The proposed framework is
extensively evaluated with a large real-world dataset.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4887-4/17/08. . . $15.00
https://doi.org/10.1145/3097983.3098190

CCS CONCEPTS
• Information systems → Learning to rank; Language models;
Similarity measures; • Networks → Network monitoring; • Com-
puting methodologies → Machine translation;

KEYWORDS
IT Service Management, Ticket Resolution, Sentence Model, Con-
volutional Neural Network

1 INTRODUCTION
The prominence of e�cient and cost-e�ective service delivery and
support is undeniable in the competitive business enterprise and is
critical with the growing complexity of service environments. This
has motivated service-providing facilities to automate many of their
tasks, including system management, and routine maintenance pro-
cedures (for instance, problem detection, determination and res-
olution) for the service infrastructure [4, 19, 34]. The automated
problem detection has been realized by some system monitoring
softwares, such as HP OpenView 1 and IBM Tivoli Monitoring 2 .
Such monitoring systems continuously capture system events and
generate incident tickets when the alerts are triggered. A typical
work�ow of problem detection, determination and resolution in IT
service management is prescribed by the Information Technology
Infrastructure Library (ITIL) speci�cation 3 and is illustrated in
Fig. 1. The Incident, Problem, and Change (IPC) system facilitates
the tracking, analysis and mitigation of problems and is a require-
ment for organizations adapting the ITIL framework. A monitoring
agent on a server keeps track of the system statistics and triggers
an alert when a problem is detected. If an alert persists beyond the
speci�ed duration, an event is triggered. Such events are consoli-
dated into an enterprise console, which uses rule-based, case-based

1http://www8.hp.com/us/en/software/enterprise-software.html
2http://ibm.com/software/tivoli/
3http://www.itil-o�cialsite.com/home/home.aspx

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2181

https://doi.org/10.1145/3097983.3098190

Figure 1: Information Technology Infrastructure Library
(ITIL) Service Management System

or knowledge-based engines to analyze the events and determines
whether or not to create an incident ticket in the IPC system [16].

Each ticket is stored as a database record that consists of several
related attributes (see Table 1 for the major attributes) and of their
values along with the system status at the time this ticket was gen-
erated. Some of the major attributes, such as the ticket summary
(created by the aggregation of the system status and containing
the problem description) and the ticket resolution (the textual
description of the solution) are critical for diagnosing and resolv-
ing similar tickets. Service providers provide an account for every
bene�ciary that uses the services on a common IT infrastructure.
System administrators use the historical tickets and their resolu-
tions from di�erent accounts for problem diagnosis and resolution.
The textual description of steps taken to resolve a ticket is logged
by the system administrator. Such a human intensive process is
quite ine�cient in terms of resolution time and cost for large IT
service providers that handle many tickets every day. This is one
of the major motivations behind the automated analysis of ticket
resolution.

Table 1: A sample ticket

SEVERITY FIRST-OCCURRENCE LAST-OCCURRENCE
0 2014-03-29 05:50:39 2014-03-31 05:36:01
SUMMARY ANR2579E Schedule INC0630 in domain VLAN1400

for node LAC2APP2204XWP failed (return code 12)
RESOLUTION Backups are working �ne for the server.
CAUSE ACTIONABLE LAST-UPDATE
Maintenance Actionable 2014-04-29 23:19:25

1.1 Challenges and Proposed Solutions
With the increasing complexity and scalability of IT servers, the
necessity of a large-scale e�cient work�ow in IT service manage-
ment is undeniable. The samples of real-world tickets (see Table 2
for the contents of tickets that are not easily interpretable) illustrate
the unique ticket features that are less intuitive and lead to chal-
lenges in IT service management, especially in automated ticket
resolution analysis. Based on our preliminary studies [36, 39], we
have identi�ed two key challenges in automating ticket resolution.

C�������� 1. How to quantify the quality of the ticket resolution?

Earlier studies generally assumed that the tickets with similar de-
scriptions should have similar resolutions, and often treated all such
ticket resolutions equally. However, the study [39] demonstrated
that not all of the resolutions are equally worthy. For example, as
shown in Table 2, the resolution text “resolved” is not useful at all.
As a result, the quality of “resolved” is much lower than other reso-
lutions. In order to develop an e�ective resolution recommendation
model, such low-quality resolutions should be ranked lower than
high-quality resolutions. In our proposed framework, we �rst care-
fully identify relevant features and then build a regression model
to quantify ticket resolution quality.

C�������� 2. How to make use of the historical tickets along
with their resolution quality for e�ective automation of IT service
management?

Although, it might be intuitive to search for historical tickets
with the most similar ticket summary, and recommend their res-
olutions as potential solutions to the target ticket [39], such an
approach might not be e�ective due to 1) the di�culty in represent-
ing the ticket summary and resolution, and 2) the avoidance of the
resolution quality quanti�cation. It is an essential task in IT service
management to accurately represent the ticket summary and res-
olution. The classical techniques such as the n-gram, TF-IDF, and
LDA are not e�ective in representing tickets as the ticket summary
and resolution are generally not well formatted. In our proposed
framework, we train a deep neural network ranking model using
tickets along with their quality scores obtained from the resolu-
tion quality quanti�cation. The ranking model directly outputs the
matching scores of ticket summary and resolution pairs. Given an
incoming incident, the historical resolutions having top matching
scores with its ticket summary can then be recommended. In addi-
tion, the feature vectors derived from the ranking model provide
e�ective representations for the tickets and can be used in other
ticket analysis tasks, such as ticket classi�cation and clustering.

1.2 Related Research
There have been some studies that adopted data mining techniques
to facilitate IT service management. Most of them have focused
on system behaviors. The text mining technique has been used to
capture the system events from the raw textual logs [32]. In [37],
the authors have analyzed the historical events to better understand
system behaviors. The analysis of the system log �les and moni-
toring events [10, 24], the identi�cation of actionable patterns of
events and misses, or false negatives, by the monitoring system [39]
have been mainly geared towards the study of system events.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2182

Table 2: Illustration of ticket samples from an account. Only ticket summary and resolution are displayed for the sake of
simplicity

ID Summary Resolution

1 Box getFolderContents BoxServerException user doesnt have proper BOX account
2 Box getFolderContents BoxServerException user should access box terms before access the e�le site
3 Box getFolderContents BoxServerException resolved
4 High space used for logsapp resolved
5 High space used for disk C 5.24 GB free space present

Only a few recent studies have focused on ticket resolution [39]
. They have adapted the techniques, such as n-gram, Jaccard sim-
ilarity and LDA [3, 6], which are utilized mostly for processing
well-formed text. As the textual attributes of real-world tickets
are far from the well-formed natural language (see Table 1 for the
ticket attributes), the studies relying just on the classical techniques
cannot be e�ective.

To the best of our knowledge, none of the existing studies has
attempted to address the aforementioned challenges. The main
contributions of this paper are: (i) Identi�cation and explanation
of typical traits of the real-world tickets and the major challenges
in their analysis and resolution; (ii) Formulation of the problem as
an integrated deep neural network-based ranking framework and
e�cient handling those challenges; (iii) Generalization of the ticket
representation and successful application to other ticket analysis
tasks, such as, ticket classi�cation and clustering; (iv) Extensive
evaluation of the proposedmodel against a large real-world dataset.

1.3 Road Map
The rest of this paper is organized as follows. Section 2 gives an
overview of framework. Section 3 describes the pre-process on
tickets and the features used to train the model for quantifying
the quality of ticket resolution. In Section 4, we introduce our
proposed deep neural ranking model. Automation of resolution
recommendation is studied in Section 5 and ticket clustering and
classi�cation are evaluated in 6. Finally, Section 7 concludes the
paper.

2 OVERVIEW
In this section, we provide a high-level description of the system.
As illustrated in Figure 2, the training data taken from the historical
tickets dataset are �rst preprocessed in order to quantify and eval-
uate the quality of the resolution. The preprocessed result is then
represented as a triplet of the ticket summary, its resolution text,
and the quality score. These triplets are the training data for the
proposed deep neural network (DNN) ranking model. The trained
DNN model outputs a matching score of a quanti�ed ticket resolu-
tion for an incoming ticket summary. The resolutions with the top
N highest matching score can be recommended for an incoming
ticket. The model’s intermediate result is a feature vector for a
ticket representation. Such vectors are used in other ticket analysis
tasks, such as ticket classi�cation and ticket clustering.

Figure 2: Overview of the proposed system

3 TICKET RESOLUTION QUALITY
QUANTIFICATION

In this section, we describe the features used to quantify the quality
of ticket resolutions and present several interesting �ndings from
our experiments.

As shown in Table 1, a ticket resolution is a textual attribute of a
ticket. A high quality ticket resolution is supposed to be well written
and informative enough to describe the detailed actions taken to �x
the problem speci�ed in the ticket summary. A low-quality ticket
resolution is less or non-informative and is mostly logged by a
careless system administrators or when the corresponding issue
described in the ticket is negligible. Based on our long preliminary
study [39], we’ve found that for a typical ticket, the ticket resolution
quality is driven by the 33 features that can be broadly divided into
following four groups:
• Character-level features: A low-quality ticket resolution

might include a large number of unexpected characters, such as
space, wrong or excessive capitalization, and special characters.
• Entity-level features: A high-quality ticket resolution is ex-

pected to provide information on IT-related entities, such as server

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2183

name, �le path, IP address, and so forth. Because the ticket reso-
lutions are expected to guide system administrators to solve the
problem speci�ed in the ticket summary, the presence of the context-
relevant entities makes the resolution text more useful.
• Semantic-level features: A high-quality ticket resolution

typically includes Verb and Noun, which explicitly guides system
administrators on the actions taken to diagnose the problem and to
resolve the ticket.
• Attribute-level features: A high-quality ticket resolution

usually is lengthy enough to carry su�cient information relevant
to the problem described in the ticket summary.

The ticket resolution quality quanti�er uses these 4 groups of
features and operates on the historical tickets to output a set of
triplets {< s1, r1,q1 >, < s2, r2,q2 >, . . . , < sn , rn ,qn >} where si
and ri are ticket summary and ticket resolution for the ith ticket,
and qi is the quality score assigned by the quanti�er.

3.1 Feature Description
Character-level features. To quantify the use of character usage,
we considered each of the nine character classes (exclamationRatio,
colonRatio, braketRatio, @Ratio, digitRatio, uppercaseRatio, lower-
caseRatio, punctuationRatio, whitespaceRatio) as a feature and then
computed their frequency to all the characters within the ticket
resolution.

Entity-level features. To quantify the usage of IT related en-
tities, we considered each of the eight entity classes (numerical-
Number, percentNumber, �lepathNumber, dateNumber, timeNumber,
ipNumber, servernameNumber, classNumber) as a feature and com-
puted their frequency to all the words within the ticket resolution.
The occurrence of these entities was captured using the regular
expressions. For the �lepathNumber, it refers the total occurrence
of Linux and Window �le path in the ticket resolution. For the
classNumber, we considered the total occurrence of class names or
functions in the programming languages, such as Java, Python, and
so forth. We also explored some other entities, but in comparison
to other features, their contribution to overall model performance
was negligible.

Semantic-level features. To quantify the usage of those spe-
ci�c semantic words, we �rst preprocessed every ticket resolution
into a Part-Of-Speech (PoS) [25] tag sequence and then calculated
the ratio of each tag within the tag sequence. There were 17 total
tags, including the tag "X" for the foreign words, typos and abbrevia-
tions, they were reduced to 12 tags in the NTLK implementation [5].
Each of the 12 tags, VERBRatio, NOUNRatio, PRONRatio, ADJRatio,
ADVPNRatio, ADPRatio, CONJRatio, DETRatio, NUMRatio, PRTRatio,
PUNCTRatio, XRatio, were considered as a feature. Furthermore,
we borrowed the concepts, such as, Problem, Activity and Action in
work [26] and de�ned the corresponding PoS tag pattern, as shown
in Table 3. We reduced the three concepts into two by merging
the concepts Activity, Action into the concept Action and then used
the regular expressions to calculate the occurrence of each concept
feature problemNum, actionNum.

Attribute-level features. To quantify the high-quality resolu-
tion in ticket, we included two attribute-level features resolution-
Length, interSimilarity in our model. The �rst one was used for the
ticket resolution length. The second one was used to record the

Jaccard similarity between a ticket’s summary and its resolution,
and was used to de�ne the relevance between them.

3.2 Findings
We evaluated three of the most popular regression models (logistic
regression, gradient boosting tree and random forest [3]) on the
labeled real-world ticket dataset and found that the random forest
performed best for the ticket resolution quanti�cation and also for
evaluation of the feature importances, as illustrated in the Table 4.

Based on our evaluation, we found that the best indicator of a
good resolution was the length of the resolution resolutionLength,
followed by the occurrence of the concept action, i.e., feature action-
Num. It is also self-intuitive that the long resolution can be more
informative. The features actionNum and problemNum correspond
to the problems identi�ed and the actions taken by the system
administrators in the process of resolving the ticket.

Another interesting �nding was that seven out of the top 15
features belonged to the group word level semantic features, and
were speci�cally derived from the PoS tag sequence. The 3rd top-
ranked feature was PRTRatio related to the ratio of the words tagged
as particle or function words. This implied that the resolutions
containing the function words such as “for” and “due to” have
a high quality. Moreover, high-quality resolutions were usually
well written and complied with the natural language syntax, while
the low-quality resolutions, on the other hand, were ill-formated
and caused great di�culty for the PoS tagger trained on natural
languages. In summary, the semantic features have predominant
advantages in characterizing and quantifying the ticket resolution
quality over the other features.

4 DEEP NEURAL RANKING MODEL
In our preliminary work [39], we model automating ticket resolu-
tion task as an information retrieval problem and tackle it from
the perspective of �nding a similar ticket summary in historical
data, in which we treat each ticket resolution equally. However,
given the triplets {< s1, r1,q1 >, < s2, r2,q2 >, . . . , < sn , rn ,qn >}
from section 3, we can de�nitely improve the automating ticket
resolution task by considering the quality of resolutions.

4.1 Problem formulation
In this section, we view the automating ticket resolution task as
text pair ranking task, which is one of the most popular tasks in
the information retrieval (IR) domain.

As shown in Table 2, the ticket with the same ticket summary
can be resolved by multiple resolutions with di�erent qualities. In
automating ticket resolution, we expect the model to recommend
all the possible resolutions, but with the order in which high quality
resolution ranks �rst. Therefore, given the triplets {< s1, r1,q1 >, <
s2, r2,q2 >, . . . , < sn , rn ,qn >} from section 3, the goal is to build
a model that for ticket summary si generates an optimal ranking
score �i for each resolution, s.t. a relevant resolution with a high
quality has a high ranking score.

More formally, the task is to learn a ranking function:

h(w,� (si , ri)) ! �i

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2184

Table 3: PoS tag pattern for concepts problem, action. NP refers to noun phrase derived from the PoS tag sequence for each
resolution.

Concept Pattern Examples

Action NOUN/NP preceded/succeeded by VERB (�le) is (deleted)
Problem NOUN/NP preceded/succeeded by ADJ/VERB (capacity) is (full)

Table 4: Illustration of the top 15 ranked features and their
rank evaluated by the random forest regression model. To
best evaluate the feature importance score, we show the
rank of average importance score, its mean and variance.
The best performance in the metric of both MSE (mean
square error) average and variance is attached of the end.

Feature Group Importance score
Feature Rank Mean Variance
Character-features
uppercaseRatio 12 0.026123 0.008717
lowercaseRatio 10 0.049657 0.008206
punctuationRatio 11 0.036442 0.008710
whitespaceRatio 9 0.049123 0.008610

Entity-level features
servernameNumber 13 0.018770 0.008553

Semantic-level features
VERBRatio 7 0.079400 0.009091
NOUNRatio 4 0.088025 0.009420
ADJRatio 14 0.013885 0.009048
ADVRatio 5 0.084971 0.008327
DETRatio 8 0.055133 0.008147
PRTRatio 3 0.090921 0.022932
PUNCTRatio 15 0.008797 0.008228
problemNum 6 0.080322 0.008480
actionNum 2 0.147252 0.038538

Attribute-level features
resolutionLength 1 0.152234 0.043585

MSE Avg. 0.010269 MSE Var. 0.004163

where function � (·) maps <summary, resolution> pairs to a
feature vector representation, where each component re�ects a
certain type of similarity, e.g., lexical, syntactic, or semantic. The
weight vectorw is a parameter of the model and is learned during
the training.

There are three common approaches in information retrieval
to learn the ranking function, namely, pointwise, pairwise and list-
wise [18].

Pairwise and listwise approaches yield better performance most
of the time since they exploit more information from the ground
truth ordering, meanwhile they are more complicated to implement
and take more time to train. In this work, the training data naturally
comes as pointwise, and producing a better representation� (·) that
encodes ticket summary, resolution or even whole ticket is one of
our goals. Hence, we adopt the simple pointwise ranking model
and focus more on modeling the representation for a ticket and its
components using deep learning techniques.

4.2 Deep Neural Ranking Architecture
In this section, we propose a deep neural ranking model to solve the
problem. The model consists of two sentence model [13] for map-
ping ticket summary and resolution to their vector representation,
respectively. We argue that it plays an important role in automation
of IT service management to derive an e�cient representation for
ticket summary and resolution from the ranking model.

In the following sections, we �rst describe the sentence model for
mapping ticket summary and resolution to their distributed vectors
and then describe how they can be used to learn semantic similarity
metric between ticket summary and resolution for ranking.

4.2.1 SentenceModel. The architecture of our CNN-basedmodel
is shown in Fig 3. It is inspired by the CNN model for performing
various sentence classi�cations [13].

Our network is composed of a single embedding layer, two re-
peated composite structures and a �nal fully connected layer that
output the distributed representation. The composite structure con-
sists of one wide convolutional layer followed by a non-linearity
and k-max pooling. The input to the network includes not only the
raw words, but also the raw characters. We will brie�y explain the
components of our neural network.

Embedding Layer
The input to our sentence model is a sentence s treated as a

sequence of words and characters: [w1, ..,w |wl | , e1, .., e |el |], where
each word and character is drawn from a word vocabulary V and
a character vocabulary E, respectively. Words are represented by
distributional vectors w 2 Rd in a word embeddings matrixW 2
Rd⇥ |V | . Characters are represented in a similar way. We set the
same dimension for word and character embedding, and merge two
vocabularies into one T = V [E as well as the embedding matrices
W 2 Rd⇥ |T | . Each input sentence s is represented by a sentence
matrix S 2 Rd⇥ |t | = [w1, . . . ,w |t |], where t is the total length of
words and characters in s .

Convolution Layer
Convolutional layer aims to extract interesting patterns of word

and character sequences. Concretely, we harness the one-dimensional
convolution operation working on two vectors s 2 R |s | and f 2 Rm
(a �lter of size m) and taking the convolution operation in each
m-size window of the sentence s to obtain another sequence c:

c j = (s ⇤ f)j = sTj�m+1:j · f =
j+m�1X

k=j
sk fk (1)

where each row vector c j 2 R |s |+m�1 in C results from a convolu-
tional operation between jth row vector in S and jth row vector in
F .

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2185

I

In practice, a set of �lters, packed as F 2 Rn⇥d⇥m , that work in
parallel are applied in a deep learning model, producing multiple
feature maps C 2 Rn⇥d⇥(|s |+m�1) . To allow the network learn an
appropriate threshold, a bias matrix B 2 Rn⇥d is added to the result
the feature maps.

Activation Layer
Following a convolutional layer, activation layer with a recti�ed

function � (·) is applied elementwise to the input, i.e., the output
from convolutional layer.

Folding Layer
The dependency between di�erent rows is captured by Folding

Layer, which sums up every two rows in a feature map component-
wise. For a map of d rows, folding reduces it into a map of d/2
rows.

Pooling Layer
The output from the convolutional layer (passed through the ac-

tivation function) is then passed to the pooling layer, whose goal is
to aggregate the information and reduce the representation. We use
dynamic k-max pooling [21] to build rich feature representations
of the input.

4.2.2 Architecture for ranking ticket summary and resolution
pairs. The partial network architecture introduced in Section 4.2.1
takes a sentence as input and outputs a distributional vector. Ap-
plied to a pair of ticket resolution and summary, it will output two
distributional vectors with the same dimension thus, a similarity
score can be computed, which together with the two vectors are
concatenated into a single representation, shown in Fig. 3.

In the following section, we brie�y introduce how the interme-
diate distributed representation produced by the sentence model
can be used to compute the matching scores of the ticket summary
and resolution pairs.

Representation for ticket summary and resolution pair
Having the output of our sentence model for processing ticket

summary and resolution, respectively, the resulting representation
vectors xs and xr , can be used to compute the ticket summary and
resolution similarity score as follows:

sim(xs ,xr) = xTs Mxr (2)

Where M 2 Rd⇥d is a similarity matrix, it acts as a model of
noisy channel approach for machine learning, which has been
commonly adopted as a scoring model in information retrieval and
question answer [8]. It can also be viewed as a process of learning
similarity metric on two vectors drawing from di�erent feature
spaces [14]. The similarity matrixM is a parameter of the network
and is optimized during the training.

Multilayer Perceptron
The joint vector is then passed through a 3-layer, fully-connected,

feed-forward neural network, which allows rich interactions be-
tween a sentence pair from one of the three components. Finally, a
single neuron outputs the score between a query (or the context)
and a reply for a linear regression.

4.2.3 Objective Function. The model is trained to minimize the
binary cross-function:

Figure 3: Ranking Model. The character level embedding is
not shown for the sake of saving space.

L = � log�N
i=1p (�i |si, ri)

= �
NX

i=1
[�i logai + (1 � �i) log(1 � ai)] (3)

Where �i is the ground truth for instance i while ai is the pre-
diction.

The parameters of the network are optimized with Adadelta [35]
with the gradients computed by back propagation algorithm.

4.3 Regularization
To mitigate the over�tting issue we augment the cost function with
L2-norm regularization terms for the parameters of the network.
Also, dropout [30] is employed to prevent feature co-adaptation by
setting to zero (dropping out) a portion of hidden units during the
forward phase.

4.4 Word Embedding
While our model allows for learning the word embeddings directly
for a given task, we initialize the word matrix parameterW from
an unsupervised neural language model [23]. Although according
to a common experience that a minimal size of the dataset required
for tuning the word embeddings for a given task should be at least
in the order of hundred thousands, and in our case the number of
ticket summary resolution pairs is su�cient, the wide existence of
special words in tickets results in a much larger vocabulary size

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2186

than in common natural language. We choose the dimensionality
of our word embeddings as well as character embeddings to be 50.

This ends the description of our entire ranking model. In the
following, we �rst present experiments on training the deep neural
model and its performance on automating ticket resolution.

5 AUTOMATING TICKET RESOLUTION
This section evaluate the proposed deep neural ranking model on
automating ticket resolution against a series of baselines.

5.1 Datasets
To keep the consistency of our experiments, we conduct all the
experiments on historical tickets from one single ticket account,
which consists of a total of 479,079 tickets with more than 30%
labeled. Therefore, the only labeling e�ort is devoted to train the
resolution quality quanti�er. We summarize the usage of dataset in
Table 5.

Table 5: Ticket dataset summary.

System Training Validation Testing

Resolution Quality Quanti�er 5000 – 1000
Ticket Resolution Automation 450,000 20,000 9,000

Ticket Clustering 10,000 – 2,000
Ticket Classi�cation 20,000 – 3,000

5.2 Ticket Resolution Automation
5.2.1 Evaluation Metrics. Given the ranking lists based on their

resolution quality score for test tickets, we evaluated the perfor-
mance in terms of the following metrics: precision@1 (p@1), mean
average precision (MAP) [40], and normalized discounted cumula-
tive gain (nDCG) [12]. Because the system outputs the best selected
resolution, p@1 is the precision at the 1st position, and should be
the most natural way to indicate the fraction of suitable resolution
among the top-1 results retrieved. Besides, we also provided the
top-k ranking list for the test ticket using nDCG and MAP, which
test the potential for a system to provide more than one appropriate
resolutions as candidates. We aimed at selecting as many appropri-
ate responses as possible into the top-k list and rewarding methods
on the top that return suitable replies.

5.2.2 Algorithms for Comparison. Automating ticket resolutions
can be tackled from di�erent perspectives, hence this sectionmainly
focuses on implementing potential competing solutions for au-
tomating ticket resolution from di�erent perspectives and proving
each one’s e�ectiveness. We include several alternative algorithms
for comparison. The algorithms can be divided into two big cat-
egories, i.e., 1) generation-based methods and 2) retrieval-based
methods.

Generation-based method. For this group of algorithms, the
system will generate a response from a given input. Hence, we
use beam search [33] to enable them to search for more than one
response.
• Statistical Machine Translation (SMT): SMT [28] is a machine

translation paradigm that translates one sentence in the source
language to a sentence in the target language. If we treat ticket

Table 6: Overall performance comparison.

System p1 MAP nDCG5 nDCG10

SMT 0.421 0.324 0.459 0.501
LSTM-RNN 0.563 0.367 0.572 0.628
Random Shu�e 0.343 0.273 0.358 0.420
CombinedLDAKNN 0.482 0.347 0.484 0.536

Our method 0.742 0.506 0.628 0.791

summary and resolution as separate languages, we can train a
translation model to “translate” summary into resolution.
• LSTM-RNN: LSTM-RNN is a Recurrent Neural Network (RNN)

using the Long Short Term Memory (LSTM) architecture. The RNN
with LSTM units consists of memory cells in order to store infor-
mation for extended periods of time. We �rst use an LSTM-RNN to
encode the input sequence (ticket summary) to a vector space, and
then use another LSTM-RNN to decode the vector into the output
sequence (ticket resolution) [31].

Retrieval-based method. The approaches within this group
of baselines are based on retrieval systems, which return the best
matched candidate resolution out of the historical ticket data repos-
itory given a particular new unresolved ticket.
• Random Shu�e. The method randomly selects replies for each

query from the retrieved resolution list obtained from tickets having
closest (Jaccard distance) ticket summaries as the query. However
we only randomize the order of the retrieved resolution candidates
instead of randomly choosing the candidates. The true random
match is too weak to be included as a decent baseline.
• CombinedLDAKNN. This is one approach adopted in our pre-

vious work [39] on automating ticket resolution task without de-
manding any labeling e�orts. It �rst trains an LDA model on whole
historical tickets. For each new ticket, we retrieve the most relevant
resolution, directly applying cosine similarity on the feature vector
for tickets inferred from the trained LDA model.

5.2.3 Results. Overall performance results are shown in Table 6.
We have some interesting observations. The performance of the
generative methods is quite moderate, which concurs the judgment
from [29]. The automatic resolution generators tend to produce
universal, trivial and ambiguous resolutions, which are likely to
resolve a wide range of tickets, but not speci�c enough to conduct
a meaningful remediation on faulted servers, i.e., low quality reso-
lutions. This leads to the overwhelming performance of retrieved
methods over generative methods.

When it comes to phrase-based SMT, it is very tricky to seg-
ment a large part of ticket summaries into meaningful words or
phrases since they are automatically generated by machines and
can be extremely noisy. In general, generative approaches using
deep learning (LSTM-RNN) outperform those without deep learn-
ing techniques and more advantage can be gained using input with
character level order information.

With respect to retrieval-based methods, they attempt to obtain
a ranked list of candidate resolutions, which show great potential
to conduct system diagnosis and resolving with diversity. Among
retrieval-based methods, Random shu�e is a lower bound for all
baselines. As we mentioned, it randomizes the order of the retrieved
results. Hence, the result is still promising as the straightforward

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2187

index approach. CombinedLDAKNN slightly outperform the SMT
approach, which is not surprising. The trained LDA model enables
the algorithm to learn data statistic information, such as resolution
popularity, the correlation between ticket summary and resolution,
which bene�ts retrieving high relevant resolutions. The perfor-
mance of deep learning based algorithms in general overwhelms
that of shallow learning-based algorithms.

6 OTHER TICKET ANALYSIS APPLICATIONS
In this section, we demonstrate that the vector representation xs
for ticket summary and xr for ticket resolution, derived from our
sentence model play an important role in the automation of IT ser-
vice management, such as ticket clustering and ticket classi�cation.
More speci�cally, we focus on the vector representation for ticket
summary xs since most tasks in the IT service management are
accomplished before resolving tickets. The comprehensive empir-
ical experiments conducted on the real world ticket data set (see
Table 5 for details) illustrate the e�ectiveness of the learned vector
representation.

6.1 Ticket Clustering
In IT service management, ticket clustering is important for op-
timal ticket dispatching [7] to relevant service teams. The role of
similarity metrics is crucial for any clustering algorithm. In this
section, we compare the performance of the clustering based on
the ticket’s feature vector with other popular metrics when applied
to the k-means clustering method (which assigns the ticket to the
closest group). The evaluated similarity measures can be classi�ed
into three categories: surface matching methods, semantic similarity
methods, and hybrid methods (see Table 7 for their formula).

The F1 scores [2] obtained for evaluating the ticket clustering
task over di�erent measures are illustrated in Table 8. To ensure the
fairness of comparisons, the F1 score for each measure was taken
as the median from the 10 trials of di�erent testing samples (we
used the worst case, the median case, and the best case). Moreover,
the value with the bold font in each column denotes the best value
for that case corresponding to the column. As shown in the table,
the hybrid similarity measure performed better than those using
the simple similarity measures, the surface matching similarity
measures, and the semantic similarity measures. These �ndings
provide an optimistic insight for the development of a new similar-
ity measure by incorporating information from additional sources.
Meanwhile, we also found that the semantic similarity measures
performed better than the surface matching similarity measures
in most cases. A possible reason could be that most of the words
recognized by the surface matching measure can also be recognized
by the semantic similarity measures using a well-known knowledge
base. However, the semantic similarity measures do not work well
for non-English dictionary words because these words are domain-
speci�c and are still not included in common knowledge bases. This
makes the surface matching similarity measure more relevant to
our framework even though it has a relatively low contribution
to the overall similarity. Our proposed method outperformed all
the listed similarity measures, which illustrates its ability to better
capture the string similarity, semantic similarity and word order
similarity simultaneously (even slightly better than SST S).

Table 8: Comparisons of F1 scores using di�erent similarity
measures.

Measures F1 score
Worst Avg. Best

S �AC 0.4318 0.5677 0.7024

Snwo 0.4763 0.5998 0.7043
SNLCS 0.5325 0.6332 0.7221

Slch 0.6823 0.7427 0.7866
Sr es 0.6885 0.7576 0.7969
Sw2� 0.7538 0.8169 0.8693

SST S 0.8048 0.8553 0.8953
SSSI 0.8035 0.8497 0.8834

Ss�mss 0.8042 0.8503 0.8885

ST icDNN 0.8103 0.8595 0.9002

6.2 Ticket Classi�cation
The ticket classi�cation is an important step in the automation
of ticket assignment across the processing teams in the IT service
management. In this section, we illustrate the e�ciency of the ticket
summary vector representation xs by applying it to a hierarchical
multi-label classi�cation task [38].

Let x = (x0,x1, ...,xd�1) be an instance from the d-dimensional
input feature space � , and� = (�0,�1, ...,�N�1) be theN -dimensional
output class label vector where �i 2 {0, 1}. A multi-label classi�-
cation assigns a multi-label vector � to a given instance x , where
�i = 1 if x belongs to the ith class, and �i = 0 otherwise. The
hierarchical multi-label classi�cation is a special type of multi-label
classi�cation when a hierarchical relation H is prede�ned on all
class labels. The hierarchy H can be a tree, or an arbitrary DAG.

6.2.1 Evaluation Metrics. In order to illustrate the e�ectiveness
of our model, we introduced several metrics to evaluate the hierar-
chical multi-label classi�cation problem including Hamming-loss,
H-loss and HMC-loss [38].
• Hamming-Loss: calculated by the fraction of the misclassi�ca-

tion to the total number of predictions.
• H-Loss: penalized only the �rst classi�cation mistake along

each prediction path.
• HMC-Loss: weighted the misclassi�cation with the hierarchy

information while avoiding the de�ciencies of the H-loss

6.2.2 Algorithms for Comparison. We perform the experiments
over the same setup as the previous study [38], where GLabel, a
hierarchical multi-label classi�cation algorithm, was proposed to
classify tickets and has achieved better performance over the state-
of-the-arts algorithms. We compared the performance of two clas-
si�cation algorithms on the original feature representation (GLabel
and CSSA) and the derived feature representation (GLabel+ and
CSSA+). We found that the derived feature representation was
e�cient.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2188

Table 7: The evaluated similarity measures including 3 categories and 10 measures. The distributed representation for tickets learned in our
model capture both string and semantic similarity, thus we categorize it as hybrid similarity.

Category Measure Formula Note

Surface
Matching
Similarity

Jaccard [9] S �AC (T1,T2) =
|A\B |
|A[B | A and B be sets of words in two ticket descriptions

N-word overlap [1] Snwo (T1,T2) = tanh(o�er lapphrase (T1,T2)n1+n2
) A phrasal n-word overlap

NLCS [11] SNLCS (T1,T2) =
(|LCS (T1,T2) |)2
|T1 |⇥ |T2 | Considering the length of both the shorter and the longer

string

Semantic
Similarity

Leacock &
Chodorow [15] Slch (c1, c2) = � log len (c1,c2)

2⇥D Path-based method using wordnet

RES [27] Sr es (c1, c2) = IC (lcs (c1, c2)) Information content-based method

Word2vec-based [20] Sw2� (w1,w2) Word2vec based word similarity using wikipedia

Hybrid
Similarity

ISLAM’s measure [11] SST S (T1,T2) =
(� (1�wf +wf So)+

P�
i=1 �i)⇥(m+n)

2mn Combining string similarity, semantic similarity and
common-word order similarity

Li’s measure [17] SSSI (T1,T2) = � s1 ·s2
ks1 k ·ks2 k + (1 � �) kr1�r2 kkr1+r2 k Considering semantic similarity and word-order similarity

SyMSS [22] Ss�mss (T1,T2) =
1
n
Pn
i=1 sim(h1i ,h2i) � l ⇥ PF Considering semantic and syntactic info

our method ST icDNN (s1, s2) = cosine (xs1,xs2) xs is the vector representation for ticket summary s

(a) The lowest Hamming loss: GLabel gets
0.901 andGLabel+ 0.872;CSSA gets 0.923 and
CSSA+ 0.901.

(b) The lowest HMC-Loss: GLabel gets 0.022
and GLabel+ 0.020; CSSA gets 0.023 and
CSSA+ 0.023.

(c) The lowest H-Loss: GLabel gets 0.022 and
GLabel+ 0.021; CSSA gets 0.023 and CSSA+
0.21.

Figure 4: Experiments involving tickets in terms of Hamming Loss, HMC-Loss and H-Loss.
The performance comparison is shown in Fig. 4. GLabel+ and

CSSA+ outperformed their counterparts (GLabel andCSSA) which
indicates the e�ectiveness for our derived feature representation.

7 CONCLUSION
In this paper, we presented the major challenges in ticket resolution,
such as quality quanti�cation of ticket resolutions and consider-
ation of resolution quanti�cation in a recommendation problem.
We de�ned a deep neural network-based ticket resolution recom-
mendation framework and evaluated it against a large real-world
dataset. The evaluation demonstrated the e�ectiveness of the pro-
posed model. Moreover, The distributed representation induced by
the network is able to capture semantical relations of noisy ticket
components, and can be applied to relevant fundamental applica-
tions in ticket analysis, such as ticket clustering, ticket classi�cation
and so on.

ACKNOWLEDGMENTS
The work was supported in part by the National Science Foundation
under Grant Nos. IIS-1213026, CNS-1126619, and CNS-1461926,
Chinese National Natural Science Foundation under grant 91646116,
Ministry of Education/China Mobile joint research grant under
Project No.5-10, and an FIU Dissertation Year Fellowship

REFERENCES
[1] Palakorn Achananuparp, Xiaohua Hu, and Xiajiong Shen. 2008. The

evaluation of sentence similarity measures. In International Conference
on Data Warehousing and Knowledge Discovery. Springer, 305–316.

[2] Elke Achtert, Sascha Goldhofer, Hans-Peter Kriegel, Erich Schubert,
and Arthur Zimek. 2012. Evaluation of Clusterings–Metrics and Vi-
sual Support. In Data Engineering (ICDE), 2012 IEEE 28th International
Conference on. IEEE, 1285–1288.

[3] Ethem Alpaydin. 2014. Introduction to machine learning. MIT press.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2189

[4] Naga Ayachitula, Melissa Buco, Yixin Diao, Surendra Maheswaran,
Raju Pavuluri, Larisa Shwartz, and Chris Ward. 2007. IT service man-
agement automation-A hybrid methodology to integrate and orches-
trate collaborative human centric and automation centric work�ows.
In Services Computing, 2007. SCC 2007. IEEE, 574–581.

[5] Steven Bird. 2006. NLTK: the natural language toolkit. In Proceedings
of the COLING/ACL on Interactive presentation sessions. Association for
Computational Linguistics, 69–72.

[6] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent
dirichlet allocation. Journal of machine Learning research 3, Jan (2003),
993–1022.

[7] Mirela Madalina Botezatu, Jasmina Bogojeska, Ioana Giurgiu, Hagen
Voelzer, and Dorothea Wiesmann. 2015. Multi-view incident ticket
clustering for optimal ticket dispatching. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 1711–1720.

[8] Abdessamad Echihabi and Daniel Marcu. 2003. A noisy-channel ap-
proach to question answering. In Proceedings of the 41st Annual Meeting
on Association for Computational Linguistics-Volume 1. Association for
Computational Linguistics, 16–23.

[9] CG González, W Bonventi Jr, and AL Vieira Rodrigues. 2008. Density
of closed balls in real-valued and autometrized boolean spaces for clus-
tering applications. In Brazilian Symposium on Arti�cial Intelligence.
Springer, 8–22.

[10] Joseph L. Hellerstein, Sheng Ma, and C-S Perng. 2002. Discovering
actionable patterns in event data. IBM Systems Journal 41, 3 (2002),
475–493.

[11] Aminul Islam and Diana Inkpen. 2008. Semantic text similarity using
corpus-based word similarity and string similarity. ACM Transactions
on Knowledge Discovery from Data (TKDD) 2, 2 (2008), 10.

[12] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based
evaluation of IR techniques. ACM Transactions on Information Systems
(TOIS) 20, 4 (2002), 422–446.

[13] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A
convolutional neural network for modelling sentences. arXiv preprint
arXiv:1404.2188 (2014).

[14] Brian Kulis et al. 2013. Metric learning: A survey. Foundations and
Trends® in Machine Learning 5, 4 (2013), 287–364.

[15] C Leacock and M Chodorow. 1998. Combining local context and
WordNet sense similarity for word sense identi�cation. WordNet, An
Electronic Lexical Database. (1998).

[16] Tao Li. 2015. Event mining: algorithms and applications. Chapman and
Hall/CRC.

[17] Yuhua Li, David McLean, Zuhair A Bandar, James D O’shea, and Keeley
Crockett. 2006. Sentence similarity based on semantic nets and corpus
statistics. IEEE transactions on knowledge and data engineering 18, 8
(2006), 1138–1150.

[18] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval.
Foundations and Trends® in Information Retrieval 3, 3 (2009), 225–331.

[19] Patricia Marcu, Larisa Shwartz, Genady Grabarnik, and David Loewen-
stern. 2009. Managing faults in the service delivery process of service
provider coalitions. In Services Computing, 2009. SCC’09. IEEE Interna-
tional Conference on. IEEE.

[20] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je�
Dean. 2013. Distributed representations of words and phrases and
their compositionality. In Advances in neural information processing
systems. 3111–3119.

[21] Vinod Nair and Geo�rey E Hinton. 2010. Recti�ed linear units improve
restricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10). 807–814.

[22] Jesús Oliva, José Ignacio Serrano, María Dolores del Castillo, and Ángel
Iglesias. 2011. SyMSS: A syntax-based measure for short-text semantic

similarity. Data & Knowledge Engineering 70, 4 (2011).
[23] Je�rey Pennington, Richard Socher, and Christopher D Manning. 2014.

Glove: Global Vectors for Word Representation.. In EMNLP, Vol. 14.
1532–1543.

[24] Chang-Shing Perng, David Thoenen, Genady Grabarnik, Sheng Ma,
and Joseph Hellerstein. 2003. Data-driven validation, completion and
construction of event relationship networks. In Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 729–734.

[25] Slav Petrov, Dipanjan Das, and Ryan McDonald. 2011. A universal
part-of-speech tagset. arXiv preprint arXiv:1104.2086 (2011).

[26] Rahul Potharaju, Navendu Jain, and Cristina Nita-Rotaru. 2013. Jug-
gling the Jigsaw: Towards Automated Problem Inference fromNetwork
Trouble Tickets.. In NSDI. 127–141.

[27] Philip Resnik. 1995. Using information content to evaluate semantic
similarity in a taxonomy. arXiv preprint cmp-lg/9511007 (1995).

[28] Alan Ritter, Colin Cherry, and William B Dolan. 2011. Data-driven
response generation in social media. In Proceedings of the conference
on empirical methods in natural language processing. Association for
Computational Linguistics, 583–593.

[29] Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural responding
machine for short-text conversation. arXiv preprint arXiv:1503.02364
(2015).

[30] Nitish Srivastava, Geo�rey E Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent
neural networks from over�tting. Journal of Machine Learning Research
15, 1 (2014), 1929–1958.

[31] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to
sequence learning with neural networks. In Advances in neural infor-
mation processing systems. 3104–3112.

[32] Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating
system events from raw textual logs. In Proceedings of the 20th ACM
international conference on Information and knowledge management.
ACM, 785–794.

[33] Christoph Tillmann and Hermann Ney. 2003. Word reordering and a
dynamic programming beam search algorithm for statistical machine
translation. Computational linguistics 29, 1 (2003), 97–133.

[34] Qing Wang, Wubai Zhou, Chunqiu Zeng, Tao Li, Larisa Shwartz, and
Genady Ya. Grabarnik. 2017. Constructing the Knowledge Base for
Cognitive IT Service Management. In Services Computing (SCC), 2017
IEEE International Conference on. IEEE.

[35] MatthewDZeiler. 2012. ADADELTA: an adaptive learning ratemethod.
arXiv preprint arXiv:1212.5701 (2012).

[36] Chunqiu Zeng, Tao Li, Larisa Shwartz, and Genady Ya Grabarnik. 2014.
Hierarchical multi-label classi�cation over ticket data using contextual
loss. In Network Operations and Management Symposium (NOMS), 2014
IEEE. IEEE, 1–8.

[37] Chunqiu Zeng, Liang Tang, Wubai Zhou, Tao Li, Larisa Shwartz,
Genady Grabarnik, et al. 2016. An integrated framework for mining
temporal logs from �uctuating events. IEEE Transactions on Services
Computing (2016).

[38] Chunqiu Zeng, Wubai Zhou, Tao Li, Larisa Shwartz, and Genady Y
Grabarnik. 2017. Knowledge Guided Hierarchical Multi-Label Classi-
�cation over Ticket Data. IEEE Transactions on Network and Service
Management (2017).

[39] Wubai Zhou, Liang Tang, Chunqiu Zeng, Tao Li, Larisa Shwartz, and
Genady Ya Grabarnik. 2016. Resolution recommendation for event
tickets in service management. IEEE Transactions on Network and
Service Management 13, 4 (2016), 954–967.

[40] Mu Zhu. 2004. Recall, precision and average precision. Department
of Statistics and Actuarial Science, University of Waterloo, Waterloo 2
(2004), 30.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2190

	Abstract
	1 Introduction
	1.1 Challenges and Proposed Solutions
	1.2 Related Research
	1.3 Road Map

	2 Overview
	3 Ticket Resolution Quality Quantification
	3.1 Feature Description
	3.2 Findings

	4 Deep Neural Ranking Model
	4.1 Problem formulation
	4.2 Deep Neural Ranking Architecture
	4.3 Regularization
	4.4 Word Embedding

	5 Automating Ticket Resolution
	5.1 Datasets
	5.2 Ticket Resolution Automation

	6 Other Ticket Analysis Applications
	6.1 Ticket Clustering
	6.2 Ticket Classification

	7 Conclusion
	Acknowledgments
	References

