
Continuous Incident Triage for
Large-Scale Online Service Systems

Junjie Chen1, Xiaoting He2, Qingwei Lin2, Hongyu Zhang3, Dan Hao4,5,
Feng Gao6, Zhangwei Xu6, Yingnong Dang6, Dongmei Zhang2

1College of Intelligence and Computing, Tianjin University, Tianjin, China, junjiechen@tju.edu.cn
2Microsoft Research, Beijing, China, {v-xiah,qlin,dongmeiz}@microsoft.com

3The University of Newcastle, NSW, Australia, hongyu.zhang@newcastle.edu.au
4Key Laboratory of High Confidence Software Technologies (Peking University), MoE

5Department of Computer Science and Technology, EECS, Peking University, Beijing, China, haodan@pku.edu.cn
6Microsoft Azure, Redmond, Washington, USA {fgao,zhangxu,yidang}@microsoft.com

Abstract—In recent years, online service systems have become

increasingly popular. Incidents of these systems could cause

significant economic loss and customer dissatisfaction. Incident

triage, which is the process of assigning a new incident to the

responsible team, is vitally important for quick recovery of the

affected service. Our industry experience shows that in practice,

incident triage is not conducted only once in the beginning, but

is a continuous process, in which engineers from different teams

have to discuss intensively among themselves about an incident,

and continuously refine the incident-triage result until the correct

assignment is reached. In particular, our empirical study on 8 real

online service systems shows that the percentage of incidents that

were reassigned ranges from 5.43% to 68.26% and the number

of discussion items before achieving the correct assignment is

up to 11.32 on average. To improve the existing incident triage

process, in this paper, we propose DeepCT, a Deep learning based

approach to automated Continuous incident Triage. DeepCT

incorporates a novel GRU-based (Gated Recurrent Unit) model

with an attention-based mask strategy and a revised loss function,

which can incrementally learn knowledge from discussions and

update incident-triage results. Using DeepCT, the correct incident

assignment can be achieved with fewer discussions. We conducted

an extensive evaluation of DeepCT on 14 large-scale online service

systems in Microsoft. The results show that DeepCT is able

to achieve more accurate and efficient incident triage, e.g., the

average accuracy identifying the responsible team precisely is

0.641⇠0.729 with the number of discussion items increasing from

1 to 5. Also, DeepCT statistically significantly outperforms the

state-of-the-art bug triage approach.

Index Terms—Incident Triage, Online Service Systems, Deep

Learning

I. INTRODUCTION

Online service systems have become increasingly popular in
recent years [1]–[3]. For example, Microsoft Office 365 has
about 120 millions of monthly active users in October 20171.
Although tremendous efforts have been devoted to assure the

This work is supported by the National Natural Science Foundation of
China under Grant No. 61872008, 61828201, 61872263, U1836214. This
work was mainly done when Junjie Chen was visiting Microsoft Research.
Qingwei Lin is the corresponding author.

1 https://www.zdnet.com/article/microsoft-office-365-now-has-120-million
-business-users/.

quality of online service systems, these systems still encounter
many incidents (i.e., unplanned interruptions and outages of
the service), which cause huge economic loss or dramatically
decrease user satisfaction. For example, a study conducted on
63 data center organizations in the U.S. shows that the average
cost of service downtime has steadily increased from $505,502
in 2010 to $740,357 in 20162. Also, the one-hour downtime
for Amazon.com on Prime Day last year (its biggest sale
event of the year) leads to the loss of up to $100 million3.

Once an incident occurs to an online service system, it
should be mitigated as soon as possible, in order to minimize
the service downtime and ensure high availability of the
provided service. One important step of incident handling is
incident triage, which is the assignment of a new incident to
the responsible team. Incident triage is critical: if an incident
is assigned to a wrong team, the mitigation of the incident
could be delayed and more loss could be incurred.

However, accurate and efficient incident triage is very
challenging for large-scale online service systems. One major
reason is that unlike traditional software bugs [4]–[6], a large
portion of incidents are automatically reported by monitors
rather than people. For example, the existing study demon-
strated that more than 90% incidents are automatically re-
ported by monitors for online service systems in Microsoft [1].
These automatically reported incidents are created based on
certain simple templates and do not contain detailed textual
descriptions about the incidents. That is, an incident report
usually provides limited textual information for engineers to
understand the incident, and thus it is difficult for them to
accurately and efficiently assign the incident to the responsible
team.

Our industry experience shows that in practice, engineers
have to discuss intensively among themselves about an inci-
dent, and continuously refine the incident-triage result during
discussions until the correct assignment is reached. During this

2 https://www.ponemon.org/blog/2016-cost-of-data-center-outages.
3 https://www.businessinsider.com/amazon-prime-day-website-issues-cos

t-it-millions-in-lost-sales-2018-7.

process, more engineers from different teams could join the
discussions and more information could be provided, leading
to gradually approach the correct triage. That is, incident triage
in practice is not conducted only once in the beginning, but is
a continuous process. To better understand the incident triage
practice, we conducted an empirical study on 8 real online
service systems in Microsoft (Section II). The results show
that the percentage of incidents that were reassigned (assigned
at least twice) ranges from 5.43% to 68.26% for the 8 online
service systems. For these incidents, the number of discussion
items before achieving the correct assignment is up to 11.32
on average. That is, in practice, many incidents are indeed
incorrectly assigned in the beginning and engineers have to
spend significant efforts on discussions to refine incident
triage. In this paper, we call this scenario continuous incident
triage.

To address the problem of continuous incident triage, in this
paper we propose the first automated approach, called DeepCT

(Deep learning based Continuous incident Triage). DeepCT
incorporates a novel GRU-based (Gated Recurrent Unit [7])
model with an attention-based mask strategy and a revised
loss function, which can incrementally learn knowledge from
discussions and update incident-triage results. Since discus-
sions are conducted by engineers manually like conversations,
it tends to introduce noise during actual discussions. The
attention-based mask strategy can help reduce the impact of
noise by automatically assigning them quite small weights.
Furthermore, we propose a domain-specific text encoding
method to conduct semantic understanding for textual infor-
mation by considering the text characteristics of online service
systems. Using DeepCT, the correct incident assignment can
be achieved with as few rounds of discussions as possible.

To evaluate the effectiveness of DeepCT, we conducted
an extensive study on 14 industrial large-scale online service
systems in Microsoft. These studied systems have millions
or even hundreds of millions of users around the world.
The experimental results demonstrate that DeepCT is able to
achieve more accurate and efficient incident triage in the real-
world scenario of continuous incident triage. More specifi-
cally, DeepCT achieves the average accuracy (identifying the
responsible team precisely) of 0.641⇠0.729 when the number
of discussion items increases from 1 to 5. Also, DeepCT statis-
tically significantly outperforms the state-of-the-art bug-triage
approach [8], which has been demonstrated to be the most
effective approach in the incident-triage context before [1].
Furthermore, the results also show that each component (i.e.,
the attention-based mask strategy and the revised loss function)
indeed contributes to DeepCT.

To sum up, our work has the following major contributions:
• We are the first to identify continuous incident triage,

a common scenario of incident triage for large-scale
online service systems in practice. We have conducted
an empirical study to investigate this scenario.

• We propose DeepCT, the first automated approach to
solving the problem of continuous incident triage based
on deep learning.

• We conduct an extensive study based on 14 industrial
large-scale online service systems in Microsoft. The re-
sults demonstrate the effectiveness of DeepCT.

This paper is organized as follows: Section II presents an
empirical study that motivates our work; Section III describes
the details of DeepCT; Section IV reports the experiments and
corresponding results; Section V discusses the lessons learned
from our industry experience, the generality of DeepCT, and
threats to validity; Section VI presents the related work;
Section VII concludes the paper.

II. AN EMPIRICAL STUDY ON INCIDENT TRIAGE

Since it is the first time to systematically investigate con-
tinuous incident triage for large-scale online service systems,
we conducted an empirical study on this scenario based on
8 industrial large-scale online service systems in Microsoft.
In particular, we collected six months of incident data for
the 8 studied systems. Please note that we collected only
the incidents that have been resolved in the study. Due to
the company policy, we have to hide some details of these
incidents and report relatively rough data instead.

In this study, we focus on the following two aspects: 1� the
accuracy of incident triage in the beginning; 2� the engineers’
efforts on refining incident triage.

A. Accuracy of Incident Triage in the Beginning
Incident triage in the beginning tends to be manually

conducted by On-Call Engineers (OCEs) who have rich experi-
ence and domain knowledge. They manually assign incidents
to the responsible team based on the information provided
by incident reports. Therefore, it is interesting to investigate
how such manual incident triage performs in practice, i.e., the
accuracy of incident triage in the beginning.

8.96 11.37
5.43

52.72

13.14

68.26

10.04

48.46

0

20

40

60

S1 S2 S3 S4 S5 S6 S7 S8

Pe
rc

en
ta

ge
 o

f w
ro

ng
 a

ss
ig

nm
en

ts
 (%

)

Fig. 1: Percentage of wrong assignments in the beginning

Figure 1 shows the percentage of wrong assignments in
the beginning through manual incident triage. In this figure,
the number above each bar represents the percentage for the
corresponding system. From this figure, the percentage of
wrong assignments in the beginning for the 8 studied systems
ranges from 5.43% to 68.26%. The average percentage of them
is 27.30%, which means that, even though the OCEs have
rich experience and domain knowledge, they still make many

mistakes during incident triage in the beginning. One major
reason is that the incident reports often provide them very
limited information.

B. Engineers’ Efforts on Refining Incident Triage
When OCEs make a mistake for incident triage in the begin-

ning, engineers from various product teams conduct intensive
discussions about the incident to revise the assignment of the
incident. In this study, we also analyzed the engineers’ efforts
on refining incident triage. Here we used two complementary
metrics to measure engineers’ efforts, namely the number
of discussion items and the time spent on discussions for
achieving correct triage.

We first investigated the number of discussion items before
achieving correct triage for the incidents that are incorrectly
assigned in the beginning. The goal is to understand how
intensively the discussions are conducted among engineers in
order to achieve correct triage. Here we regard the discussion
items occurred before the final triage (i.e., correct triage) is
made as the triage-stage discussion items.

TABLE I: Number and percentage of triage-stage discussion
items

Sys. S1 S2 S3 S4 S5 S6 S7 S8

Num. 8.45 20.55 10.75 15.81 6.42 8.59 13.56 6.42
Per.(%) 52.29 55.53 78.41 38.26 51.40 74.18 47.31 62.27

The second row in Table I presents the average number of
triage-stage discussion items for each online service system.
We find that engineers usually need to conduct 6.42⇠20.55
discussion items before achieving correct triage. The average
number of triage-stage discussion items for the 8 systems is
11.32. That is, the discussions among engineers for refining
incident triage are indeed intensive, indicating that engineers
spend non-trivial efforts on refining incident triage for large-
scale online service systems.

Besides discussions for refining incident triage, engineers
also conduct follow-up discussions to determine how to mit-
igate incidents. Therefore, it is also interesting to learn what
percentage of triage-stage discussion items in all discussion
items about the incidents. The last row in Table I presents the
percentage for each online service system. We find that around
38.26%⇠78.41% discussion items are conducted for incident
triage. The average percentage of them is 57.46%. That is,
more than half of discussion items are conducted to refine
incident triage, indicating that the efforts on refining incident
triage are no less than those on follow-up incident mitigation.

We then investigated the percentage of the time spent
on triage-stage discussions among the time spent on overall
discussions about the incidents (i.e., the time from incident
creation to incident mitigation, call TTM). Here, each discus-
sion item is created along with a timestamp and each activity
(such as incident triage, mitigation, and resolution) is also
recorded along with a timestamp in the incident management
system. We calculated the above two types of time based on
these timestamps. This calculation method may be a threat,

22.11 21.43

87.19

40.2

17.55

28.14

18.87

5.36
0

25

50

75

S1 S2 S3 S4 S5 S6 S7 S8

Pe
rc

en
ta

ge
 o

f t
ria

ge
−s

ta
ge

 d
is

cu
ss

io
n

tim
e

(%
)

Fig. 2: Percentage of discussion time for incident triage within
the overall discussion time (TTM)

since it is hard to ensure developers to manage an incident
all the time until the incident is mitigated. Nevertheless, the
percentage is still able to complement the analysis on the
number of discussion items to some degree.

Figure 2 shows the percentage of discussion time for inci-
dent triage within the overall TTM. In this figure, the number
above each bar represents the percentage for each studied
system. From this figure, the percentage of discussion time
on incident triage ranges from 5.36% to 87.19% within the
overall TTM. Their average percentage is 30.11%. That is, the
discussion time spent on incident triage is indeed non-trivial
compared with that spent on the whole incident mitigation
process (from incident creation to incident mitigation). This
result further supports the conclusion made based on the
number of discussion items for incident triage.

C. Summary
Based on the empirical study, we obtain the following two

main findings:
• Many incidents are actually incorrectly assigned in the

beginning due to the limited information provided by the
incident reports.

• Engineers indeed have to spend significant amount of
efforts on discussions about incident triage.

These findings support the scenario of incident triage for
large-scale online service systems, i.e., continuous incident
triage. Therefore, it is necessary to propose an effective
incident-triage approach, which can continuously refine inci-
dent assignments based on incrementally provided discussions.

III. APPROACH

A. Overview
In this work, we target at the problem of continuous

incident triage. As described in previous sections, in practice,
discussions are incrementally created by engineers. However,
existing bug-triage approaches for traditional software systems
either ignore discussions or simply treat all discussions as
a whole without considering their characteristics, i.e., incre-
mental creation. Therefore, these existing approaches cannot
work well in this real-world scenario. To effectively conduct

D1 DlD2 D3

Discussion

Text Encoder

GRU
Cell

GRU
Cell

GRU
Cell

GRU
Cell

Attention
Net

Classifier

Pred1 Pred2

A2A1

Predl

Title&Summary

T

Text Encoder

Environment Features

E

Al

Pred3

HlH1 H2 H3

A3

. . .

...

...

...

Fig. 3: Overview of DeepCT

continuous incident triage, one major challenge is how to learn
knowledge from incremental discussions to fit the scenario
of continuous incident triage. Moreover, since discussions are
conducted by engineers manually like conversations, it tends
to introduce noise during actual discussions. Therefore how
to reduce the impact of noise on incident triage is another
challenge.

To solve the problem of continuous incident triage, we pro-
pose the first automated approach, DeepCT, a deep learning
based approach that can incrementally learn knowledge from
incident reports. The goal is to achieve correct incident-triage
results with as few discussions as possible. More specifically,
to solve the first challenge, we design a GRU-based model
with a revised loss function in DeepCT to effectively utilize
incremental discussions by considering their temporal relations
so that correct incident-triage results can be achieved as early
as possible. To solve the second challenge, we propose an
attention-based mask strategy in the model to bypass noise. In
this way, different weights can be automatically assigned to
different discussion information, where noise can be masked
by assigning them quite small weights. Furthermore, since
DeepCT is mainly based on textual information such as tex-
tual discussions, we propose a domain-specific text encoding
method to process textual information by considering the text
characteristics of online service systems. The overview of
DeepCT is shown in Figure 3.

In the following, we first introduce the input data used in
DeepCT in Section III-B. Then, we introduce our domain-
specific text encoding method in Section III-C. Next, we intro-
duce our designed GRU-based model, including our attention-
based mask strategy, in Section III-D. Finally, we introduce
the usage of DeepCT in Section III-E.

B. Input Data

We consider three types of input data in DeepCT for
continuous incident triage. The first type of input data used
in DeepCT is the title and summary of an incident report,

which is widely used in traditional bug triage. The title and
summary of an incident report are the textual description about
the symptom when an incident is reported. Engineers usually
conduct incident triage manually in the beginning based on
this type of information.

The second type of input data used in DeepCT is the
incremental discussions about an incident. The discussions are
textual information, which are manually written by engineers
incrementally like conversations. As presented in Section II,
engineers tend to spend significant efforts on discussions for
refining incident triage in practice. That is, this type of input
data is the core information for continuous incident triage. In
particular, different from existing bug-triage approaches (i.e.,
ignoring discussions or simply treating all discussions as a
whole), DeepCT utilizes the type of input data incrementally
to effectively fit the scenario of continuous incident triage.

The third type of input data used in DeepCT is the incident-
occurring environment information. An incident tends to be
reported with the incident-occurring environment information,
including the monitor ID reporting the incident, the incident-
occurring device, and the incident type (how to report the
incident such as monitor reporting or human reporting). Engi-
neers also utilize this type of information to facilitate incident
management.

C. Domain-specific Text Encoding
Since the first and second types of information are textual

descriptions, DeepCT encodes them into vectors to conduct
semantic understanding. However, there are many special
terms about online service systems in textual descriptions,
such as API names and component names, which are helpful
to conduct incident triage but cannot be well handled by
traditional text encoding methods due to the small occurrence
frequency of each special term. More specifically, traditional
text encoding methods either ignore these special terms or
treat them as “unknown word” uniformly [9]. Therefore, we
propose a domain-specific text encoding method in DeepCT by
considering the text characteristics of online service systems.

The domain-specific text encoding method first uses the
FastText algorithm [9] to build pre-trained subword vectors
based on external corpus, and then conducts fine tuning
based on historical incident data to incorporate the domain
knowledge of online service systems. Finally, based on the
pre-trained subword vectors, the representation of each special
term can be learned by integrating the representations of the
subwords of the special term. In this way, the title&summary
or each discussion item is transformed into a matrix, in which
the number of rows is equal to the number of words in the
corresponding textual description.

Next, the method encodes a matrix into a vector using a
CNN-based neural-language model, which has been demon-
strated to be able to encode more complex patterns and focus
on word-level knowledge to produce better performance [10],
[11]. More specifically, it first uses an average pooling layer
and a convolution layer to merge adjacent words (i.e., rows
in the matrix) and then produces feature maps from the

Global Max Pooling

low-level
feature maps

high-level
feature maps

Fig. 4: CNN-based Text Encoder

matrix, which is called low-level feature maps in this paper. To
capture the correlations among words with farther distances, it
further uses a convolution layer to produce high-level feature
maps based on these low-level ones. Since both low-level
feature maps and high-level feature maps can provide useful
information, it then uses two global max pooling layers to
produce feature vectors for low-level feature maps and high-
level feature maps, respectively, in order to extract the most
important words. Finally, based on these produced vectors, it
uses a fully connected layer to generate a vector for the textual
description. In this way, the title&summary or each discussion
item of an incident is encoded into a vector. We denote the
vector of the title&summary as T = {t1, t2, . . . , tr}, and the
vector of the ith discussion item as Di = {di1, di2, . . . , dir},
where r is the dimension of the fully connected layer. Figure 4
shows the CNN-based text encoder in DeepCT.

In addition, since the values of each input datum in the third
type is a finite set of discrete values, we conduct feature em-
bedding for it. Here, we adopt the representation learning [12]
to embed each input-datum value into a vector in DeepCT,
which is able to embed a value to a fixed-dimension vector
and gradually updates the vector during the training process.
In this way, each input datum in the third type is embedded
into a fixed-dimension vector. We denote the kth feature vector
as Ek = {ek1, ek2, . . . , eks}, where s refers to the pre-defined
fixed dimension in representation learning for the third type
of input data. Here, we concatenate all the feature vectors for
the third type into a vector E = E1 � E2 � . . . � Ez , where
z is the total number of feature vectors for the third type of
input data, and � is the concatenation operator.

D. Designed GRU-based Model
To conduct continuous incident triage, we design a GRU-

based model, which is able to enhance the learning for the
knowledge from earlier discussions so that correct assignments
can be achieved with fewer discussions. Since there exist tem-
poral relations among discussion items, our designed model is
built on the GRU (Gated Recurrent Unit) network [7], which
is presented in Section III-D1. We also propose an attention-
based mask strategy in our designed model to reduce the
impact of noise, which is presented in Section III-D2. To help

achieve the goal of correct incident-triage results with as few
discussions as possible, we further propose a continuous loss
function in our model, which is presented in Section III-D3.

1) GRU Network: GRU is one of the most widely-used net-
work to solve the problem involving temporal relations [7]. In
our context, discussions are incrementally created by engineers
in chronological order, and thus we adopt the GRU network to
build our model. More specifically, GRU has two gates: update
gate and reset gate. The former is to determine how much past
information (from previous discussion items) to pass along to
the future, while the latter is to determine how much past
information to forget.

For an incident, the input of GRU at the tth time step is
the vector of the tth discussion item denoted as Dt, where
1  t  n and n refers to the total number of discussion items.
Given Dt and the hidden state from the (t � 1)th time step,
denoted as Ht�1, GRU calculates the update gate and reset
gate by Formula 1, where rt and zt are the update gate and
reset gate at the tth time step, respectively. Here, the hidden
state Ht�1 contains the retained information from previous
t� 1 discussion items at the (t� 1)th time step. Please note
that H0 is a zero vector since there is no discussion at the 0th
time step.

rt = �(Wr · [Ht�1, Dt])

zt = �(Wz · [Ht�1, Dt])
(1)

After acquiring them, GRU uses the reset gate to forget
some past information and then combine the retained past
information with new information, which is calculated by
Formula 2. Then, GRU uses the update gate to decide what to
collect from the combined information and what to collect
from past information at the current time step, which is
calculated by Formula 3. That is, the output of GRU at the tth

time step is the hidden state Ht, which contains the retained
information from previous t discussion items at the tth time
step. Please note that Wr, Wz , and W

h̃
are parameters that

are learned during the training process.

H̃t = tanh(W
h̃
· [rt �Ht�1, Dt]) (2)

Ht = zt ·Ht�1 + (1� zt) · H̃t (3)

2) Attention-based Mask Strategy: At the tth time step (re-
ceiving the tth discussion item), t hidden states are produced
from the GRU network, i.e., H1, . . . , Ht. Since noise may
be introduced during discussions, we incorporate an attention
mechanism to automatically learn the weights of H1, . . . , Ht.
In particular, the title&summary of an incident report describes
the incident with relative high relevance. Therefore, if the
correlation between the title&summary and the discussion
information Hi (1  i  t) is larger, the weight of Hi should
be larger, indicating that Hi contains less noise. In this way,
noise can be masked by assigning them quite small weights.

Here, we denoted the attention-based vector integrated by
H1, . . . , Ht as At, which is calculated by Formula 4.

At =
tX

i=1

!ti ⇤Hi (4)

where, !ti is the learned weight of Hi at the tth time step.
More specifically, !ti is calculated by the softmax function,
which is shown in Formula 5. In this formula, f(T,Hi) =
v
>
MLP (T �Hi), � is the concatenation operator, and v is a

parameter learned in MLP [13]. Please note that the weights
are recalculated at a new time step. That is, the same hidden
state has different weights at different time steps.

!ti =
e
f(T,Hi))

P
t

k=1 e
f(T,Hk))

(5)

3) Continuous Loss Function: After acquiring all the
attention-based vectors A1 . . . Al where l is the total number
of discussion items, DeepCT utilizes them and the other two
feature vectors (i.e., T and E) to predict the incident-triage
result. More specifically, DeepCT uses MLP (with a softmax
layer) for classification, where the input of MLP is A1 . . . Al,
T and E. The output is the predicted probability that each team
is the responsible one. Since our goal is to achieve the correct
incident-triage result as much as possible at each time step,
we propose a continuous loss function. Instead of calculating
the loss (i.e., cross entropy) at the last time step, this function
calculates the sum of the loss at each time step (from the 1st to
lth time steps). In this way, the cumulative prediction results
at each time step can be optimized when calculating gradient
during back propagation. More specifically, the continuous
loss function is shown in Formula 6.

Loss(t) =
nX

k=1

2

4
lX

j=1

�

mX

i=1

ci log ĉ
(k)
i

!3

5 (6)

where, ci is the predicted probability that the ith team is the
responsible one at the jth time step, m is the total number of
teams, and n is the total number of incidents.

E. Usage of DeepCT

We first use DeepCT to build a classification model based on
historical incident data, and then use the model to predict the
responsible team for each new incident. More specifically, for
each new incident, DeepCT first constructs T and E, and takes
them as input of the model to predict the responsible team,
which is the incident triage in the beginning. Then, when a
new triage-stage discussion item (the ith discussion item) is
created, DeepCT constructs Di and incrementally passes it to
the model to predict the responsible team. That is, DeepCT
conducts incident triage continuously when the discussions are
going on. In particular, the model at each triage can predict
the probability to be responsible for each team, and its output
is the team with the largest probability.

IV. EVALUATION

In the study, we address the following research questions:
• RQ1: How does DeepCT perform in continuous incident

triage for large-scale online service systems?
• RQ2: Does each main component contribute to DeepCT?
• RQ3: What is the time efficiency of DeepCT?

A. Study Data
In the study, we applied DeepCT to 14 industrial online

service systems in Microsoft, to sufficiently evaluate the
effectiveness of DeepCT. These systems are large and complex
online service systems, which have been widely used by
millions of users around the world. All the 14 systems are in
different application areas and developed by different product
groups, indicating the diversity of these systems. We collected
six months of incident data for each studied system, and the
total size of the incident reports is over 90GB. The total
number of teams is about 2K. Therefore, it is challenging to
assign an incident to the correct team. Please note that in our
experiments, we only consider the incidents that have been
resolved, since the correct assignments of these incidents have
been achieved and thus they can help evaluate the effectiveness
of incident triage. In particular, we used the incident data from
the former four months as training data, and used the incident
data from the latter two months as testing data to evaluate
DeepCT.

B. Compared Approaches
1) Baselines: According to the existing study [1], which

investigated how existing bug-triage approaches for traditional
software perform in the incident-triage context for online ser-
vice systems, the deep-learning-based bug-triage approach [8]
performs the best in the context (outperforming the machine-
learning-based and information-retrieval-based bug-triage ap-
proaches). Therefore, in this study we used this approach as the
representative for comparison. More specifically, this approach
first converts each word in the textual description of an
incident report to a vector representation using Word2Vec [14],
and then adopts Convolutional Neural Network (CNN) [15]
to train a classifier for recommending responsible teams of
new incidents. Based on the way of dealing with discussions
during training, this approach can have two forms. The first
one ignores discussions, and only considers title&summary as
the textual description in each incident report during training.
We call it DLno in this paper. The second one treats all
discussions as a whole, and considers them and title&summary
as the textual description during training. We call it DLall in
this paper. In summary, there are two baselines in the study,
i.e., DLno and DLall. In particular, we also adapted them to
refine incident triage (i.e., conduct a new triage) when a new
discussion item is created.

2) Variants of DeepCT: In RQ2, we aim to investigate the
contributions of two main components in DeepCT, i.e., the
attention-based mask strategy and the continuous loss function.
To investigate the contribution of the first component, we con-
structed a variant of DeepCT by removing the attention-based

mask strategy from DeepCT, which is called DeepCT
mask

no
.

That is, after acquiring H1, . . . , Ht, DeepCTmask

no
directly

takes them and T and E as input of MLP for classification.
To investigate the contribution of the second component,
we constructed another variant of DeepCT by replacing the
continuous loss function with directly calculating the loss at
the last time step. This variant is called DeepCT

loss

ori
.

C. Implementation
Our approach DeepCT and the compared approaches are

implemented based on Apache MXNet4, a scalable deep learn-
ing framework. For the hyperparameters in these approaches,
we tuned them through grid search following the existing
work [10]. More specifically, for the hyperparameters in CNN,
we set them as follows: the word-embedding size is 300, the
pool size and stride of the average pooling layer are 2 and
1 respectively, the kernel size and number of the convolution
layer producing low-level feature maps are 1 and 256 respec-
tively, the kernel size and number of the convolution layer
producing high-level feature maps are 3 and 128 respectively,
and the hidden size of the fully connected layer is 128. For
the hyperparameters in the GRU-based model, we set them as
follows: the hidden size of GRU is 200, the hidden size of
two fully connected layers in the attention network is 32 and
16, respectively. During training, we used the Adam optimizer
with the learning rate of 0.01, and the number of epochs is
40. We set the same hyperparameters for all the systems. Also,
we find that the final results are insensitive to hyperparameters
within a small range. Our study is conducted on Ubuntu 16.04
with 24-core Intel Xeon E5-2690 v3 CPU(2.60GHz), 224 GB
memory, 64-bit operating system, and a single NVIDIA Tesla
K80 GPU accelerator.

D. Evaluation Metrics
Following the existing work [1], [16], [17], we adopted the

widely-used metric, i.e., accuracy, to measure the effectiveness
of incident-triage approaches. This metric means that the
responsible team is identified as the one with the largest
probability predicted by an incident triage approach among
all the teams. Since the incident-triage result is refined when
a new discussion item is created by engineers in the scenario of
continuous incident triage, we measured accuracy when each
new discussion item is created. In particular, in this scenario
we hope to achieve correct triage with as few discussions as
possible, and thus we measured accuracy when each of the
first 5 discussion items is created.

We also measured the efficiency of each approach. For each
approach, we recorded the time spent on the training stage,
which is to build a classification model for incident triage, and
the average time spent on the recommending stage, which is
to recommend the responsible team for a new incident. For
the ease of presentation, we call the former training time and
the latter recommendation time.

E. Results and Analysis

4 https://mxnet.incubator.apache.org/.

TABLE II: Statistical analysis for the accuracy among
DeepCT, DLno, and DLall on all the studied systems

Approach
Discussion Items

1 2 3 4 5

Avg.
DeepCT 0.641 0.686 0.709 0.722 0.729
DLno 0.535 0.544 0.549 0.551 0.552
DLall 0.473 0.562 0.608 0.639 0.650

*(%) vs DLno 19.81 26.10 29.14 31.03 32.07
vs DLall 35.52 22.06 16.61 12.99 12.15

p-val vs DLno 0.004 0.000 0.000 0.000 0.000

vs DLall 0.000 0.000 0.000 0.002 0.002

1) Overall Effectiveness of DeepCT: Figure 5 shows the
effectiveness of DeepCT in continuous incident triage com-
pared with DLno and DLall. Each graph in Figure 5 presents
the comparison results for each studied online service system.
From Figure 5, for 11 (out of 14) studied online service sys-
tems, the red line (representing the effectiveness of DeepCT) is
always higher than the blue line (representing the effectiveness
of DLno) and the green line (representing the effectiveness of
DLall), when the number of discussion items increases from 1
to 5. The results demonstrate that DeepCT performs better than
DLno and DLall for continuous incident triage in most cases.
That DeepCT outperforming DLno indicates that discussions
indeed provide important information for incident triage. That
DeepCT outperforming DLall indicates that considering the
characteristics of discussions (i.e., incremental creation) during
learning is important for incident triage. More specifically,
compared with DLall, DeepCT enhances the learning for
the knowledge from earlier discussions so that the correct
assignments can be achieved as early as possible. From the
results, DeepCT indeed is able to achieve correct incident-
triage results with fewer discussions.

There are three systems (at the Row-2&Column-4, Row-
2&Column-5, and Row-3&Column-1 in Figure 5), in which
DeepCT sometimes performs worse than DLno/DLall, but the
differences in accuracy are very small. More specifically, for
the three systems, the largest difference in accuracy between
DLall and DeepCT is only 0.018 while the largest difference
in accuracy between DLno and DeepCT is only 0.057. Fur-
thermore, we find that the cases DLno performing better than
DeepCT occur when the number of discussion items is small
(e.g., 1 for the system at the Row-2&Column-4), while the
cases that DLall performing better than DeepCT occur when
the number of discussion items is large (e.g., 4⇠5 for the
system at the Row-2&Column-5). The reason is that, when the
number of discussion items is small, the title&summary has
a larger impact on prediction, and thus DLno, which ignores
discussions during learning, may be more suitable at this time
than later; when the number of discussion items becomes
larger, the impact of discussions also increases, and thus DLall,
which treats all discussions as a whole during learning, may
be more suitable at this time than before.

●

●

● ● ●

0.3

0.4

0.5

0.6

1 2 3 4 5

●

●

●

●
●

0.60

0.65

0.70

0.75

0.80

1 2 3 4 5

●

●

●

●

●

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

●

●

●

● ●

0.85

0.90

0.95

1 2 3 4 5

●

●

●
● ●

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5

●

●

● ●
●

0.82

0.84

0.86

0.88

1 2 3 4 5

●

● ● ● ●

0.4

0.5

0.6

1 2 3 4 5

●

●

●

●
●

0.25

0.30

0.35

0.40

0.45

1 2 3 4 5

●

●
●

● ●

0.2

0.3

0.4

0.5

1 2 3 4 5

● ● ● ● ●

0.6

0.7

0.8

0.9

1 2 3 4 5

●

● ● ● ●

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5

● ● ● ● ●

0.2

0.4

0.6

0.8

1 2 3 4 5

●

● ● ● ●

0.2

0.3

0.4

0.5

1 2 3 4 5

● ●
● ● ●

0.6

0.7

0.8

1 2 3 4 5

DeepCT
DLno
DLall

Fig. 5: Effectiveness comparison among DeepCT, DLno, and DLall for each studied online service system (the x-axis represents
the number of discussion items and the y-axis presents the accuracy of incident triage)

We further conducted statistical analysis for the effective-
ness of DeepCT on all the studied online service systems,
whose results are shown in Table II. In this table, Rows 3-5
present the average accuracy on all the studied systems for
DeepCT, DLno, and DLall, respectively. Rows 6-7 present
the improved rate of accuracy for DeepCT compared with
DLno and DLall, respectively. From these rows, the average
accuracy that the responsible team is identified as the one with
the largest probability predicted by DeepCT is 0.641⇠0.729
with the number of discussion items increasing from 1 to
5, demonstrating the effectiveness of DeepCT. The average
accuracy of DeepCT is always larger than that of DLno and
DLall no matter how many discussion items there are. In
particular, in terms of average accuracy, DeepCT improves
DLno by 18.92%⇠30.88% and DeepCT improves DLall by
12.15%⇠35.52%. Moreover, we find that with the number
of discussion items increasing, the improved rate compared
with DLno increases while the improved rate compared with
DLall decreases. This is as expected due to the characteris-
tics of DLno and DLall. As discussed above, DLno ignores
discussions and thus it performs better when the number of
discussion items is smaller, while DLall treats all discussions
as a whole and thus it performs better when the number of
discussion items is larger. Here we do not compare them when
there is no discussion since at that time DeepCT performs
close to DLno. Also, with the discussions going on (till the
end), the effectiveness of DeepCT becomes closer to that of
DLall. That highlights that, the main contribution of DeepCT
is to achieve correct incident-triage results as early as possible
(i.e., with fewer discussions).

To investigate whether DeepCT significantly outperforms
DLno and DLall, we conducted Wilcoxon signed-rank test [18]
at the significant level of 0.05 between them, whose results
are shown in the last two rows in Table II. Here, the bold val-
ues mean that DeepCT statistically significantly outperforms
DLno/DLall. The results demonstrate that DeepCT indeed
statistically significantly outperforms DLno and DLall in all
the cases.

In summary, DeepCT is able to effectively relieve the prob-
lem of continuous incident triage for large-scale online service
systems by achieving the average accuracy of 0.641⇠0.729
with the number of discussion items increasing from 1 to 5.
Moreover, DeepCT performs better than the two compared
approaches (i.e., DLno and DLall) for most of the studied
systems, and the former significantly outperforms the latter
two in statistics.

2) DeepCT v.s. DeepCTmask

no
v.s. DeepCTloss

ori
: We com-

pared the effectiveness of DeepCT, DeepCTmask

no
, and

DeepCTloss

ori
, to investigate the contributions of two main

components (i.e., the attention-based mask strategy and the
continuous loss function) in DeepCT, whose results are shown
in Figure 6. In this figure, the box plots present the me-
dian and interquartile ranges of accuracy. The figure shows
that DeepCT always performs better than both DeepCTmask

no

and DeepCTloss

ori
in median accuracy when the number of

discussion items increases from 1 to 5. We also calculated
the improved rate of average accuracy for DeepCT compared
with DeepCTmask

no
and DeepCTloss

ori
, where DeepCT improves

DeepCTmask

no
by 4.74%⇠9.39% and improves DeepCTloss

ori

by 3.70%⇠36.97%. The results demonstrate that both of the

0.25

0.50

0.75

1.00

1 2 3 4 5
Number of discussion items

A
cc

ur
ac

y

DeepCT
DeepCT(nomask)
DeepCT(oriloss)

DeepCT
DeepCTnomask
DeepCT oriloss

Fig. 6: Effectiveness comparison among DeepCT and its two
variants on all the studied online service systems

TABLE III: Average time cost comparison among DeepCT,
DLno, and DLall on all the studied systems

Time DeepCT DLno DLall

Offline training (min) 189.07 149.99 152.80
Online recommending (ms) 0.80 1.29 1.33

components are useful and indeed contribute to DeepCT.

Furthermore, from Figure 6, when the number of discussion
items is small (i.e., 1 and 2), DeepCTmask

no
performs better

than DeepCTloss

ori
in median accuracy, while when the number

of discussion items is large (i.e., 3⇠5) DeepCTloss

ori
performs

better than DeepCTmask

no
. That is, the continuous loss function

makes more contributions to DeepCT when the number of
discussion items is small, while the attention-based mask strat-
egy makes more contributions to DeepCT when the number
of discussion items is large. The reason is that the continuous
loss function aims to optimize the prediction result at each time
step so that the correct assignment can be achieved as early
as possible, and thus its impact is larger when the number of
discussion items is smaller. With the discussions going on, its
effect would be gradually closer to that of directly calculating
the loss at the last time step.

3) Efficiency Comparison: We further investigated the time
efficiency of DeepCT, whose results are shown in Table III.
In this table, the second row presents the average training
time on all the studied systems, and the last row presents the
average recommending time for each new incident on all the
studied systems. For all the three approaches, their average
recommending time is very small (in milliseconds). That is,
it is very efficient for DeepCT to conduct each triage for
an incident. Besides, the average training time for the three
approaches is also similar (in minutes), and that of DeepCT is
slightly larger than that of the other two. However, since the
training process is offline, the time cost of them is actually
acceptable. Overall, DeepCT has acceptable offline training
time and negligible online recommending time, indicating that
DeepCT is a practical approach.

V. LESSONS AND DISCUSSION

A. Lessons Learned
We summarize some of the lessons learned from our in-

dustrial experience. For Microsoft’s online service systems
we worked on, they are all of very large scale. They contain
many sub-systems, each of which consists of many intercon-
nected components. Each component has its own monitors
that regularly check the runtime status of the component.
Signals from the components reflect different aspects of system
health status, such as computing resource, traffic volume,
response latency, etc. Many fault-tolerant techniques (such as
the “failover” mechanism5) are designed to ensure reliability
and resiliency of the systems. Therefore, an incident to an
individual component may not affect the overall system and
an incident to the overall system may be reflected by many
components. Although On-Call Engineers (OCEs) have rich
experience and domain knowledge, they cannot fully under-
stand the entire system and are often confused by the actual
causes of an incident, resulting in incorrect initial assignments.
Similarly, product teams that are responsible for maintaining
individual components may not understand the details about
other components and the entire system, which causes many
reassignments of incidents and prolonged discussions and
MTTR (the mean time from incident creation to incident
resolution).

The online service systems we studied operate on 7*24
basis and receive a large number of incident reports. Our
experience shows that many of these incident reports, reported
by different channels or monitors, have the same root cause
and are actually duplicated or linked. The ability to identify
the duplicate/linked incident reports could significantly reduce
the amount of discussion time. This would be investigated on
our future work.

B. Generality of DeepCT
We discussed the generality of DeepCT from three aspects.

First, all the 14 online service systems used in our study are in
different application areas and developed by different product
groups. That is, the diversity of these studied systems is large.

Second, the whole framework of DeepCT is applicable
to online service systems from other companies, since the
input data used in DeepCT are general and common. That
is, DeepCT is easy to apply as long as there exist historical
incident data for a system. In the future, we will further explore
the possibility of cross-company prediction.

Third, it is also interesting to investigate whether DeepCT
can be generalized to traditional software systems, besides on-
line service systems. Here, we used the open-source traditional
software system Eclipse, as the studied subject, which has
been widely-used in traditional bug triage studies [19]–[22].
We used the widely-used public Eclipse dataset [23], including
47K bug reports and 564 developers. We first investigated
the average number of discussion items before achieving
correct assignments, and find that of Eclipse is 3.51. That

5https://en.wikipedia.org/wiki/Failover

indicates discussions are also conducted for refining bug-triage
results in the traditional software system, but their discussions
are conducted less intensively than those for online service
systems due to the large scale and complexity of the latter.
In particular, DeepCT achieves the accuracy (i.e., the correct
developer is identified as the one with the largest predicted
probability among all the 564 developers) of 0.270⇠0.329 by
improving 7.14%⇠22.76% compared with DLno and improv-
ing 2.49%⇠9.31% compared with DLall, when the number of
discussion items increases from 1 to 3. The results demonstrate
that DeepCT also performs better than the state-of-the-art bug-
triage approaches (i.e., DLno and DLall) for the open-source
traditional software in the practical scenario of continuous
triage, indicating the generality of DeepCT to some degree.

C. Threats to Validity
The internal threat to validity mainly lies in the implemen-

tations of our approach DeepCT and compared approaches.
To reduce this threat, two authors have carefully checked the
code. In particular, we implemented them based on a matured
framework, which has been presented in Section IV-C.

The external threat to validity mainly lies in the subjects.
In our study, we used 14 large-scale online service systems in
Microsoft. All these used data are real in industry. Even so,
the used subjects may not represent the online service systems
in other companies. We discussed the generality of DeepCT
in Section V-B. In the future, we will apply DeepCT to more
online service systems from different companies.

The construct threat to validity mainly lies in the used
hyperparameters and metrics. To reduce the threat from hy-
perparameters, we tuned the hyperparameters in DeepCT and
the compared approaches through grid search following the
existing work [10], whose specific settings have been presented
in Section IV-C. To reduce the threat from metrics, we used
the most widely-used accuracy and time cost as the metrics in
our study. In the future, we will use more metrics (e.g., false
positive rate and re-training frequency) to more sufficiently
evaluate the effectiveness and efficiency of DeepCT.

VI. RELATED WORK

A. Incident Management
Our work aims to solve the problem of continuous incident

triage in practice. Currently, there is no existing approach that
is proposed to solve the same problem. The most related work
to ours is the empirical study on incident triage conducted
by Chen et al. [1], which investigated whether bug triage
approaches for traditional software systems can effectively
handle incident triage for online service systems. Their results
demonstrated that traditional bug triage approaches cannot
perform well for incidents, especially the incidents that are
manually assigned incorrectly in the beginning. Different from
their work, this work proposes the first approach to solving the
problem of continuous incident triage for large-scale online
service systems.

Besides incident triage, there are also some work on inci-
dent management. Most of research on incident management

focuses on the identification of incident beacons [24]–[26],
which are formed based on a combination of system metrics
with unusual values produced by the incidents. For example,
Cohen et al. [25] proposed a Tree-Augmented-Network (TAN)
approach to deducing a TAN model, and then used the model
to predict system SLO (Service Level Objective) states based
on some system metrics. Here, their approach regards the sys-
tem metrics used by the TAN model as service-issue beacons.
Later, Cohen et al. [26] extended the work [25] by proposing
a Signature approach. Besides, some work aims to associate
a new incident with a previously known incident [27], [28].
For example, Duan and Babu [27] proposed an active-learning
based approach to improving the overall accuracy based on
both labeled and unlabeled data. It maximizes the benefits
gained from newly-diagnosed unknown instances to facili-
tate manual labeling efforts. Furthermore, Lou et al. [29]–
[31] conducted an experience report on applying software
analytics to incident management of online service systems,
including incident diagnosis and mitigation. Different from the
above work, our work targets at incident triage, and proposes
DeepCT to improve incident triage in a real-world scenario.

B. Bug Triage
In the literature, there are a lot of research on bug triage for

traditional software [8], [16], [19], [32]–[48]. There are two
main categories of bug-triage approaches, i.e., learning-based
bug triage and information-retrieval based bug triage.

Learning-based bug triage regards the problem as a super-
vised classification problem, and then uses machine learning
or deep learning methods to solve it. For example, Anvik
et al. [49] proposed a machine-learning based bug triage
approach, which first transforms the text (i.e., summary and
description) in bug reports to feature vectors, and then uses
Support Vector Machines (SVM) [49] to train a classifier for
bug triage. Jonsson et al. [34] proposed to apply an ensemble
learning method to integrate several machine learning algo-
rithms for bug triage. Lee et al. [8] proposed a deep-learning
based bug triage approach, which first converts each word in
a bug report to a vector using Word2Vec [14], and then adopts
Convolutional Neural Network (CNN) [15] to train a classifier
for bug triage. Xuan et al. [21] proposed a machine-learning
based bug triage approach by using data reduction techniques,
which conducts the instance selection and feature selection for
reducing training data before training a classifier.

Many bug-triage approaches are based on information-
retrieval methods. For example, Naguib et al. [35] proposed
to retrieve the responsible developer based on developers’
expertise relevant to the topic of a bug report through Latent
Dirichlet Allocation (LDA) [50]. Xia et al. [17] proposed a
specialized-topic-model based approach for bug triage, which
considers the product and component information of bug
reports to construct the mapping between term space and topic
space. Hu et al. [20] proposed to utilize historical bug-fix infor-
mation for bug triage, which models the relationship between
developers and source code components, and the relationship
between source code components and the associated bugs.

Different from them, our work targets at incident triage for
large-scale online service systems rather than bug triage for
traditional software. Also, our work targets at a real-world
incident-triage scenario (i.e., continuous triage), which is dif-
ferent from the traditional bug-triage scenario, i.e., conducting
triage only once in the beginning. Although our approach is
also based on deep learning, our deep neural network model
is different from that used by the existing work [8].

VII. CONCLUSION

This paper reports our experience on incident triage for
real-world, large-scale online service systems. Through an
empirical study on 8 industrial online service systems, we
show that in practice incident triage is a continuous process,
in which engineers from different teams have to discuss
intensively among themselves about an incident, and con-
tinuously refine the incident-triage result until the correct
assignment is achieved. To reduce the service downtime and
improve system availability, we propose DeepCT, a Deep

learning based approach to automated Continuous incident
Triage. DeepCT incorporates a novel GRU-based model with
an attention-based mask strategy and a revised loss function
to address the problem of continuous incident triage. Our
experimental results on 14 large-scale online service systems
in Microsoft show that DeepCT achieves the average accu-
racy of 0.641⇠0.729 when the number of discussion items
increases from 1 to 5, and significantly outperforms the two
compared approaches (i.e., DLno and DLall) in statistics. That
demonstrates the effectiveness of DeepCT.

In the future, we will improve the proposed approach
by identifying the duplicate/linked incidents. We will also
explore the integration of DeepCT with service diagnosis
and resolution systems to achieve more intelligent incident
management.

REFERENCES

[1] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang,
and D. Zhang, “An empirical investigation of incident triage for online
service systems,” in Proceedings of the 41st ACM/IEEE International
Conference on Software Engineering, 2019, to appear.

[2] Y. Chen, X. Yang, Q. Lin, H. Zhang, F. Gao, Z. Xu, Y. Dang, D. Zhang,
H. Dong, Y. Xu, H. Li, and Y. Kang, “Outage prediction and diagnosis
for cloud service systems,” in The World Wide Web Conference, 2019,
pp. 2659–2665.

[3] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J. Lou, M. Chintalapati, F. Shen,
and D. Zhang, “Robust log-based anomaly detection on unstable log
data,” in Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019, pp. 807–817.

[4] J. Chen, J. Han, P. Sun, L. Zhang, D. Hao, and L. Zhang, “Compiler bug
isolation via effective witness test program generation,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 223–234.

[5] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie,
“An empirical comparison of compiler testing techniques,” in 2016
IEEE/ACM 38th International Conference on Software Engineering,
2016, pp. 180–190.

[6] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, and L. Zhang, “History-
guided configuration diversification for compiler test-program genera-
tion,” in International Conference on Automated Software Engineering,
2019, to appear.

[7] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” CoRR, vol. abs/1406.1078,
2014.

[8] S.-R. Lee, M.-J. Heo, C.-G. Lee, M. Kim, and G. Jeong, “Applying
deep learning based automatic bug triager to industrial projects,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 926–931.

[9] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext.zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.

[10] Y. Kim, “Convolutional neural networks for sentence classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar,
A meeting of SIGDAT, a Special Interest Group of the ACL, 2014, pp.
1746–1751.

[11] R. Johnson and T. Zhang, “Deep pyramid convolutional neural networks
for text categorization,” in Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
vol. 1, 2017, pp. 562–570.

[12] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” international conference on
learning representations, 2015.

[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[15] C. dos Santos and M. Gatti, “Deep convolutional neural networks for
sentiment analysis of short texts,” in Proceedings of COLING 2014, the
25th International Conference on Computational Linguistics: Technical
Papers, 2014, pp. 69–78.

[16] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy
set and cache-based approach for bug triaging,” in Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, 2011, pp. 365–375.

[17] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang,
“Improving automated bug triaging with specialized topic model,” IEEE
Transactions on Software Engineering, vol. 43, no. 3, pp. 272–297, 2017.

[18] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[19] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug
tossing graphs,” in Proceedings of the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, 2009, pp. 111–120.

[20] H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effective bug triage based on
historical bug-fix information,” in IEEE 25th International Symposium
on Software Reliability Engineering, 2014, pp. 122–132.

[21] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo, and X. Wu, “Towards
effective bug triage with software data reduction techniques,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27, no. 1, pp.
264–280, 2015.

[22] M. M. Rahman, G. Ruhe, and T. Zimmermann, “Optimized assignment
of developers for fixing bugs an initial evaluation for eclipse projects,”
in Proceedings of the Third International Symposium on Empirical
Software Engineering and Measurement, 2009, pp. 439–442.

[23] A. Lamkanfi, J. Pérez, and S. Demeyer, “The eclipse and mozilla
defect tracking dataset: A genuine dataset for mining bug information,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories, 2013, pp. 203–206.

[24] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen,
“Fingerprinting the datacenter: automated classification of performance
crises,” in Proceedings of the 5th European conference on Computer
systems, 2010, pp. 111–124.

[25] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons,
“Correlating instrumentation data to system states: A building block
for automated diagnosis and control.” in OSDI, vol. 4, 2004, pp. 16–16.

[26] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox,
“Capturing, indexing, clustering, and retrieving system history,” in ACM
SIGOPS Operating Systems Review, vol. 39, no. 5, 2005, pp. 105–118.

[27] S. Duan and S. Babu, “Guided problem diagnosis through active
learning,” in International Conference on Autonomic Computing, 2008,
pp. 45–54.

[28] M. Natu, S. Patil, V. Sadaphal, and H. Vin, “Automated debugging of
SLO violations in enterprise systems,” in 2010 Second International
Conference on Communication Systems and Networks, 2010, pp. 1–10.

[29] J.-G. Lou, Q. Lin, R. Ding, Q. Fu, D. Zhang, and T. Xie, “Software
analytics for incident management of online services: An experience
report,” in Proceedings of the 28th IEEE/ACM International Conference
on Automated Software Engineering, 2013, pp. 475–485.

[30] ——, “Experience report on applying software analytics in incident man-
agement of online service,” Automated Software Engineering, vol. 24,
no. 4, pp. 905–941, 2017.

[31] Q. Lin, J.-G. Lou, H. Zhang, and D. Zhang, “How to tame your online
services,” in Perspectives on Data Science for Software Engineering.
Elsevier, 2016, pp. 63–65.

[32] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in 28th
International Conference on Software Engineering, 2006, pp. 361–370.

[33] Y. Tian, D. Wijedasa, D. Lo, and C. Le Goues, “Learning to rank
for bug report assignee recommendation,” in 24th IEEE International
Conference on Program Comprehension, 2016, pp. 1–10.

[34] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson,
“Automated bug assignment: Ensemble-based machine learning in large
scale industrial contexts,” Empirical Software Engineering, vol. 21,
no. 4, pp. 1533–1578, 2016.

[35] H. Naguib, N. Narayan, B. Brügge, and D. Helal, “Bug report assignee
recommendation using activity profiles,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, 2013, pp. 22–
30.

[36] Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang, “An empirical study on
bug assignment automation using chinese bug data,” in Proceedings of
the 3rd international symposium on Empirical software engineering and
measurement, 2009, pp. 451–455.

[37] G. Bortis and A. v. d. Hoek, “Porchlight: A tag-based approach to
bug triaging,” in Proceedings of the 2013 International Conference on
Software Engineering, 2013, pp. 342–351.

[38] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Transactions
on Software Engineering and Methodology, vol. 20, no. 3, p. 10, 2011.

[39] A. S. Badashian, A. Hindle, and E. Stroulia, “Crowdsourced bug
triaging: Leveraging q&a platforms for bug assignment,” in International

Conference on Fundamental Approaches to Software Engineering, 2016,
pp. 231–248.

[40] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning
and multi-feature tossing graphs to improve bug triaging,” in IEEE
International Conference on Software Maintenance, 2010, pp. 1–10.

[41] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “A time-based
approach to automatic bug report assignment,” Journal of Systems and
Software, vol. 102, pp. 109–122, 2015.

[42] H. Naguib, N. Narayan, B. Brügge, and D. Helal, “Bug report assignee
recommendation using activity profiles,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, 2013, pp. 22–
30.

[43] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so
complicated? simple term filtering and weighting for location-based bug
report assignment recommendation,” in Proceedings of the 10th Working
Conference on Mining Software Repositories, 2013, pp. 2–11.

[44] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using a
vocabulary-based expertise model of developers,” in Proceedings of the
6th International Working Conference on Mining Software Repositories,
2009, pp. 131–140.

[45] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning and
multi-feature tossing graphs to improve bug triaging,” in 26th IEEE
International Conference on Software Maintenance, 2010, pp. 1–10.

[46] S. Wang, W. Zhang, and Q. Wang, “Fixercache: unsupervised caching
active developers for diverse bug triage,” in 2014 ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement,
2014, pp. 25:1–25:10.

[47] M. L. Vásquez, K. Hossen, H. Dang, H. H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?” in 28th IEEE International Conference on
Software Maintenance, 2012, pp. 451–460.

[48] A. S. Badashian, A. Hindle, and E. Stroulia, “Crowdsourced bug triag-
ing,” in 2015 IEEE International Conference on Software Maintenance
and Evolution, 2015, pp. 506–510.

[49] S. R. Gunn et al., “Support vector machines for classification and
regression,” ISIS technical report, vol. 14, no. 1, pp. 5–16, 1998.

[50] M. Steyvers and T. Griffiths, “Probabilistic topic models,” Handbook of
latent semantic analysis, vol. 427, no. 7, pp. 424–440, 2007.

