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ABSTRACT
In the Internet age, cyber-attacks occur frequently with complex
types. Traffic generated by access activities can record website sta-
tus and user request information, which brings a great opportunity
for network attack detection. Among diverse network protocols,
Hypertext Transfer Protocol (HTTP) is widely used in government,
organizations and enterprises. In this work, we propose DeepHTTP,
a semantics structure integration model utilizing Bidirectional Long
Short-TermMemory (Bi-LSTM) with attention mechanism to model
HTTP traffic as a natural language sequence. In addition to extract-
ing traffic content information, we integrate structural information
to enhance the generalization capabilities of the model. Moreover,
the application of attention mechanism can assist in discovering
critical parts of anomalous traffic and furthermining attack patterns.
Additionally, we demonstrate how to incrementally update the data
set and retrain model so that it can be adapted to new anomalous
traffic. Extensive experimental evaluations over large traffic data
have illustrated that DeepHTTP has outstanding performance in
traffic detection and pattern discovery.
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1 INTRODUCTION
As the development of computer technology, network systems and
applications get increasingly more complex than ever before. More
and more bugs and vulnerabilities appear constantly, which poses
a great threat to network security. Attacks initiated by exploiting
vulnerabilities are getting increasingly more sophisticated. As a
result, many traditional anomaly detection methods based on stan-
dard mining methodologies are no longer effective. Thus, how to
discover various hidden web attacks is still a topic of great concern
in the field of network security.

HTTP, a representative of network protocol, occupies a consider-
able proportion of the application layer traffic of the Internet. Since
HTTP traffic can record website access states and request content,
it provides an excellent source of information for anomaly detection
[16, 18, 38]. According to the characteristics, existing approaches for
anomalous HTTP traffic detection can be roughly divided into two
categories: feature distribution based methods [23, 35] and content-
based detection technologies [36]. Additionally, since malicious
traffic detection is essentially an imbalanced classification problem,
many researches propose anomaly-based detection approaches that
generate models merely from the benign network data[5]. With the
rapid development of artificial intelligence, deep learning has been
widely used in various fields and has a remarkable effect in natural
language processing. Recently, deep learning has been successfully
applied in anomaly detection[19, 32].

Even though these methods are successful in certain scenarios,
they are not universal. The main difficulties and challenges of ma-
licious traffic detection are as follows. First of all, it is difficult to
automatically detect hidden anomalous traffic from massive net-
work traffic with lots of noise. How to enhance the generalization
ability and robustness of the model is still a critical issue. Secondly,
in practical applications, anomaly-based detection model usually
has a high false positive rate. Since the model is trained based on
normal samples, traffic not present in the training set is likely to
be labeled as malicious. This problem undoubtedly increases the
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workload of manual verification. Last but not least, grasping the
characteristics and disciplines of traffic helps to improve defense
rules, which is crucial in practical application scenarios. However,
the study of pattern mining for malicious traffic is not yet mature.
It is remains to be challenging task.

To resolve the above challenges, in this work, we propose Deep-
HTTP, a data-driven method leveraging the large volumes of traffic
data. We assume that the new malicious traffic is similar to the
known anomalous traffic in terms of structure or content. Indeed,
each HTTP request follows strict architectural standards and lan-
guage logic, which is similar to natural language. Hence, we treat
elements in traffic content as vocabulary in natural language pro-
cessing and establish models to learn the semantic relationships
between them. Meanwhile, we proposes a method for extracting
traffic structure information. Specifically, we segment the content
of the traffic entries and convert content clips to structural fea-
tures. The integration of semantics and structural features helps to
improve the generalization of the model.

The model we proposed is a combined semantics structure model
utilizing Bidirectional Long Short-Term Memory (Bi-LSTM) with
attention mechanism. Bi-LSTM can obtain information from past
and future states, which allows the model to learn the text char-
acteristics better. Moreover, neural network model with attention
mechanism can automatically dig out key information to distin-
guish different traffic. To discovery the patterns, we cluster samples
that have been labeled as malicious and perform pattern mining
for each cluster. Since it is a learning-driven approach, we set up
a process that can verify and update data efficiently. The model is
updated periodically so that it can adapt to new malicious traffic
that appears over time. DeepHTTP is a complete framework that
can automatically distinguish malicious traffic and mine patterns
without prior knowledge.

In summary, we make the following contributions.
We have an in-depth analysis of the types and encoding forms

of content of HTTP traffic, then propose an effective structure
extraction method.

We adopt an integration framework that combines two attention-
based Bi-LSTM models training upon semantics and structure fea-
tures, separately. Vectors that combine semantic and structural
information are ultimately used for classification. The proposed
model has superior learning ability and generalization ability.

We propose a novel approach for mining traffic patterns. We use
the attentional hidden states of traffic learned by the model as input
for clustering. For each cluster, we perform pattern mining based on
weight vector obtained from attention model. Experiments prove
the effectiveness of our approach.

The rest of this paper is organized as follows. Section 2 gives a
summary of the relevant research. Section 3 briefly introduces the
system framework and data preprocessing methods, especially the
extraction method of the structural characteristics of traffic. The
proposed model is introduced in detail in section 4, including the
malicious traffic detection model and pattern mining method. We
launched a comprehensive experiment to demonstrate the effective-
ness of the model. The experimental results are shown in section 5.
Section 6 gives the conclusions and future works.

2 RELATEDWORK
In recent years, there are quite a few researches aiming for detecting
anomaly traffic and hidden attacks.

Communication traffic contains lots of information which can
be used to mine anomaly behaviors. Lakhina et al.[22] perform
a method that fuses information from flow measurements taken
throughout a network. Content features are also valuable for detect-
ing anomaly behaviors. Wang et al.[40] present Anagram, a con-
tent anomaly detector that models a mixture high-order n-grams
designed to detect anomalous and "suspicious" network packet pay-
loads. To select the important features from huge feature spaces,
Zseby et al.[17] propose a multi-stage feature selection method
using filters and stepwise regression wrappers to deal with feature
selection problem for anomaly detection. The methods mentioned
above care less about the structure features of communication pay-
loads which are important for distinguishing anomaly attacking
behaviors and mining anomaly patterns. In this paper, we put for-
ward structure extraction approach, which can help enhance the
ability of detecting anomaly traffic. The structure feature alsomakes
an important role in pattern mining.

There are various methods and models applied in anomaly de-
tection. Some works have been done based on dimensionality re-
duction [4, 10, 12, 20]. Juvonen and Sipola [20] propose a frame-
work to find abnormal behaviors from HTTP server logs based
on dimensionality reduction. Researchers compare random projec-
tion, principal component analysis and diffusion map for anomaly
detection. Ringberg et al. [34] propose a nonparametric hidden
Markov model with explicit state duration, which is applied to clus-
ter and scout the HTTP-session processes. This approach analyses
the HTTP traffic by session scale, not the specific traffic entries.
Additionally, there are also many researches based on traditional
methods such as IDS(intrusion detection system and other rule
based system) [13, 16, 18, 29, 42]. However, these methods rely
on feature engineering, which cannot detect unknown types of
traffic. In order to solve this problem, researchers began to apply
machine learning and deep learning methods to the anomaly detec-
tion field[2, 3, 11, 14]. Among then, solution[2] is a new supervised
hybrid machine-learning approach for ubiquitous traffic classifica-
tion based on fuzzy decision trees with attribute selection. There
are also quite a few works based on deep learning methods. Erfani
et al.[14] present a hybrid model where an unsupervised DBN is
trained to extract generic underlying features, and a one-class SVM
is trained from the features learned by the DBN. LSTMmodel is used
for anomaly detection and diagnosis from System Logs[11]. In this
paper, we present Bi-LSTM based on attention mechanism, which
has not been applied yet.This model works well in experiments and
has good generalization ability in real traffic.

In addition to detecting malicious traffic and attack behaviors,
some researches focus on pattern mining of cluster traffic. Most ex-
isting methods for traffic pattern recognition and mining are based
on clustering algorithms [6, 25]. Le et al. [25] propose a frame-
work for collective anomaly detection using a partition clustering
technique to detect anomalies based on an empirical analysis of an
attack’s characteristics. Since information theoretic co-clustering al-
gorithm is advantageous over regular clustering for creating more
fine-grained representation of the data, Mohiuddin Ahmed and
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Figure 1: DeepHTTP architecture.

Abdun Naser Mahmood[1] extend the co-clustering algorithm by
incorporating the ability to handle categorical attributes which
augments the detection accuracy of DoS attacks. In addition to clus-
tering algorithm, JT Ren [37]conducts research on network-level
traffic pattern recognition, and uses PCA and SVM for feature ex-
traction and classification. I. Paredes-Oliva et al. [31] build a system
based on an elegant combination of frequent item-set mining with
decision tree learning to detect anomalies.

In recent years, the attention-based neural network model has
become a research hotspot in deep learning, which is widely used
in image processing [43], speech recognition [7] and healthcare
[28]. The application of attention mechanism in the field of natu-
ral language processing has also proved to be extremely effective.
Luong et al.[27] first design two novel types of attention-based
models for machine translation. Since the attention mechanism can
automatically extract important features from raw data, it has been
applied to topic classification[46], relation Classification[45], and
abstract extraction[33]. Nevertheless, to the best of our knowledge,
there are few works on detecting anomaly HTTP traffic using se-
quence model and mining patterns based on attention mechanism.
Hence, in this paper, we build a model based on attention mecha-
nism, which can get rid of the dependency of artificial extraction
features and do well in traffic pattern mining.

3 PRELIMINARIES
3.1 DeepHTTP Architecture and Overview
The architecture of DeepHTTP shown in Figure 1 consists of three
phases and three components. Specifically, it is divided into training
stage, test stage, and verification stage. Structure extraction, anom-
aly traffic detection model and malicious pattern mining module
are main parts that run through the entire framework. These parts
will be described in detail in later sections.

3.1.1 Training Stage. In the training stage, the core task is the
construction of the detection model. Specifically, it includes feature
engineering and the training of models. We extract valuable infor-
mation of the traffic after data processing. To characterize traffic,
we fuse the content and structural features of traffic as input to
the model. Subsequently, the neural network model with atten-
tion mechanism will be trained and iterated on a regular basis. To

enhance the robustness of the model, we build data sets contain-
ing positive and negative samples in different proportions and use
cross-validation to train the model. The best model will be saved
for actual traffic detection.

3.1.2 Testing Stage. In this stage, the trained model is used for
anomaly traffic detection. For each new HTTP request, we apply
data processing to deal with it. The content and structural features
are feed into the trained model for prediction. The intermediate
outputs of the model will be reserved and used in the mining phases.

3.1.3 Mining Stage. The main works of this phase are to verify
the anomalous traffic labeled by the model and to mine malicious
patterns. We obtain attentional hidden state from the proposed
model as the input of clustering. For each cluster, we extract a
small number of samples for manual verification, and then tag all
members in the cluster. Simultaneously, we analyze the critical part
of each request according to attention weight vector, and then sum
up malicious patterns of each cluster. All results are updated to the
database.

3.2 Data Preprocessing
We focus on HTTP traffic mainly for three reasons: 1) Hypertext
Transfer Protocol is an application layer protocol that is widely
used for communication between web browsers and web servers. It
is used by most web servers. 2) A large majority of web attacks use
HTTP, such as Cross-site scripting attack (XSS), SQL injection and
so on. These attacks can be well submerged in massive amounts
of normal traffic data. 3) Even though payload of traffic can be
modified and confused, it is still extremely helpful for relevant
research works.

Selecting valuable feature and performing valid data preprocess-
ing are the foundation of data mining. This section introduces the
data processing and feature extraction methods in detail.

3.2.1 Data Cleaning. To optimize the follow-up detection and
analysis, we perform data processing on original HTTP traffic pack-
ages captured by monitor software. We parse packages and extract
valuable information including request headers and request bod-
ies. The rest of the data processing includes decoding, deleting
erroneous and duplicate data, and filling in missing values.
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Table 1: We replace substring with RS(Replacement String)
according to its ET(Encoding Type). For strings not be-
longing to any specially encoded, we substitute each char-
acter with RC(Replacement Character) according to its
CT(Character Type).

ET RS CT RC

MD5 hash MD5_HASH Arabic Numerals D
SHA hash SHA_HASH English Alphabet W
Base64 BASE64_ENCODE Garbage Character G
Hexadecimal HEXADECIMAL Chinese Character C
Binary BINARY Invisible Character I

3.2.2 Content Extraction. Malicious information of web attacks
is usually contained in the parameter value of the request path
and the request body (if a POST request is sent). Hence, we extract
Uniform Resource Locator (URL) and payload from processed data.

3.2.3 String Segmentation. Text vectorization is the key to text
mining. Numerous studies use n-grams [9] to extract the feature
of payloads [21, 41, 47]. This method can effectively capture the
byte frequency distribution and sequence information, but it is easy
to cause dimension disaster. To extract crucial parts of a HTTP
request, we split the string with special characters as delimiters
instead of n-grams. Here is an instance. Suppose the decoded con-
tent is: "/tienda1/publico/vaciar.jsp <EOS> B2=Vaciar carrito; DROP
TABLE usuarios; SELECT * FROM datos WHERE nombre LIKE". The
data after string segmentation is denoted as:"/ tienda1 / publico
/ vaciar . jsp <EOS> B2 = Vaciar carrito ; DROP TABLE usuarios ;
SELECT * FROM datos WHERE nombre LIKE". Words in string are
connected by spaces. The identifier "<EOS>" indicates the end of
the URL and the start of the request body. The purpose of using
this word segmentation method is to preserve words with semantic
information as much as possible (like "SELECT"). Another benefit
is that it makes the result of pattern mining more interpretable.
In this case, the pattern we want to obtain is {"SELECT", "FROM",
"WHERE"}. However, if we use n-grams(n=3), the result may be
denoted as {"SEL", "ELE", ..., "ERE"}, which is not intuitive.

3.2.4 Structure Extraction. Research observed that inmany cases
there are "stable" path components that are specific to a particular
malicious family or operation [30]. In other words, there is similar-
ity in the content or structure of the same type of traffic. Inspired by
this, the paper extracts structure information based on a series of
string substitution rules. In order to cover all the string types that
appear in the request data, we have performed frequency statistics.
The following Table 1 gives a summary of pivotal rules.

Unlike general natural language, there are plentiful special char-
acters in HTTP request. These special characters usually reflect
the traffic characteristics and have high practical value. Therefore,
for a substring with length 1, we will not replace it if it is a special
character. We traverse other substrings in the segmented string
to determine their encoding types (such as md5 or hexadecimal)
and convert it to the replacement string according to rules shown
in Table 1. If it does not belong to any special encoding form, we

traverse each character in the substring, judge what type it is and
replace it.

/ mobile  ?  verifycontent = 68247 & tenantid = 3c5fee35600000218bf9c5d7b5d3524e

/ WWWWWW ?  WWWWWWWWWWWWW = DDDDD & WWWWWWWW = MD5_HASH

---------------------------------------------------------------------------------------------------------------------------------

/ mobile  ?  articlecontent = 486975 & password = 8efe04d797dad53d5c43d21a0d320eab

/ WWWWWW ?  WWWWWWWWWWWWWW = DDDDDD & WWWWWWWW = MD5_HASH

Figure 2: An example of structure extraction.

An example of structure extraction is shown in Figure 2. Since the
encoding type of the substring "3c5fee35600000218bf9c5d7b5d3524e"
is MD5, we replace it with "MD5_HASH". For the substring "68247",
we replace each number in it with "D", then we can obtain its
structure feature, which is denoted as "DDDDD". Obviously, by
extracting structural features, we can easily find requests with
different content but almost the same structure. Combined content
and structural features are beneficial to improve the generalization
ability of the model. It is crucial for identifying malicious traffic
and discovering malicious patterns.

4 OUR APPROACH
4.1 Anomaly HTTP Traffic Detection
The goal of the proposed algorithm is to identify anomaly HTTP
traffic based on semantics and structure of traffic entries. Figure 3
shows the high-level overview of the proposed model. The model
based on Bi-LSTM and attention mechanism contains five compo-
nents: input layer, word embedding layer, Bi-LSTM layer, attention
layer and output layer. Before output layer, we train content se-
quence and structure sequence respectively. Then, we adopt drop-
out strategy to avoid overfitting and simply fuse the feature vector
of content and structure. In the output layer, we perform classifica-
tion using a softmax function.

4.1.1 Problem definition. Let R = {R1,R2, · · · ,RN } be the set
of HTTP traffic entries after data processing. For each traffic entry
Ri (i = 1, 2, · · · ,N ), there are two sequences S1

i = {c11, c12, · · · , c1n }
and S2

i = {c21, c22, · · · , c2n }, which respectively represent content
sequence and structure sequence. Because structure sequence is
derived from content sequence, the length of both sequence is equal
to n. As a result, we obtained two feature sets to characterize the
semantics and structure of traffic.

4.1.2 Input Layer. One-hot representation is a widely used and
relatively simple word vector generation method in the field of
natural language processing. However, the length of theword vector
generated by this text preprocessing method is up to vocabulary
size. Usually, vectors are usually quite sparse.

In this paper, we use the content and structure sequence after
word segmentation as a corpus, and select words that are common
in the corpus to build a vocabulary according to term frequency-
inverse document frequency (TFIDF). Then, the unique index is
generated for each word in the vocabulary. The final input vector
with fixed length is composed of indexes. The length of input vector
is denoted as z, which is a hyper-parameter(the fixed length in this
paper is set to 300 because the proportion of sequence length within
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Figure 3: Model Architecture.

300 is 0.8484). The excess part of input sequence is truncated, and
the insufficient part is filled with zero. Formally, the sequence of con-
tent can be converted to S 1́

i = {w11,w12, · · · ,w1z } and the sequence
of structure can be expressed as S 2́

i = {w21,w22, · · · ,w2z }.We use
a simple example to illustrate the process. Given a sequence of con-
tent: {’/’, ’admin’, ’/’, ’caches’, ’/’, ’error_ches’, ’.’, ’php’ }. The input vec-
tor with fix length can be denoted as [23, 3, 23, 56, 23, 66, 0, 0, · · · , 0],
the index of ’admin’ in vocabulary is 3. Since the length of this
sequence is less than fixed length, the rest of the vector is filled
with zeros.

4.1.3 Embedding Layer. Take a content sequence of i-th traffic
entry as an example. Given S 1́

i = {w11,w12, · · · ,w1z }, we can ob-
tain vector representation v1k ∈ Rm of each word w1k ∈ R1(k =
1, 2, · · · , z)as follows:

v1k = ReLU (Wew1k + be ) (1)

where m is the size of embedding dimension,We ∈ Rm×1is the
weight matrix, and be ∈ Rm is the bias vector. ReLU is the rectified
linear unit defined as ReLU (v) = max(v, 0), wheremax() applies
element-wise to vector.

4.1.4 Bidirectional Long Short-Term Memory. We employ Bidi-
rectional Long Short-Term Memory (Bi-LSTM), which can exploit
information both from the past and the future to improve the pre-
diction performance and learn the complex patterns in HTTP re-
quests better. A Bi-LSTM consists of a forward and backward LSTM.
Given embedding vector {v11,v12, · · · ,v1z } of content sequence of
i-th traffic entry Ri , the forward LSTM

→
f reads the input sequence

from v11 to v1z , and calculates a sequence of forward hidden states

(
→
h11,

→
h12, · · · ,

→
h1z )(

→
h1i ∈ Rpand p is the dimensionality of hidden

states). The backward LSTM
←
f reads the input sequence in the

reverse order and product a sequence of backward hidden states

(
←
h11,

←
h12, · · · ,

←
h1z )(

←
h1i ∈ Rp ). The final latent vector representation

h1i = [
→
h1i ;

←
h1i ]T (h1i ∈ R2p ) can be obtained by concatenating the

forward hidden state
→
h1i and the backward one

←
h1i . We deal with

the embedding vector of structure sequence in the same way.

4.1.5 Attention Layer. In this layer, we apply attention mecha-
nism to capture significant information, which is critical for predic-
tion. The function we use to capture the relationship between ht
and hi (1 ≤ i < t) is called general attention:

αt i = h
T
t Wαhi (2)

αt = so f tmax([αt1,αt2, · · · ,αt (t−1)]) (3)

whereWα ∈ R2p×2p is the matrix learned by model, αt is the atten-
tionweight vector calculated by softmax function. Then, the context
vector ct ∈ R2p can be calculated based on the weights obtained
from Eq.(3) and the hidden states from h1 to ht−1 as follows:

ct =
t−1∑
i
αt ihi (4)

We combine current hidden state ht and context vector ct to gener-
ate the attentional hidden state as follows:

h̃t = tanh(Wc [ct ;ht ]) (5)

whereWc ∈ Rr×4p is the weight matrix in attention layer, and r is
the dimensionality of attention state. h̃1 and h̃2can be obtained
using Eq.(2) to Eq.(5), which denote the attention vector of content
and structure sequence learned by the model.
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4.1.6 Output Layer. Before feeding the attention vector into
softmax function, the paper apply dropout regularization [16] ran-
domly disables some portion of attention state. It is worth noting
that we concatenate vector of content and structure to generate
output vector. Vectors incorporating semantic and structural in-
formation are eventually used for prediction. The classification
probability is calculated as follows:

p = so f tmax(ws [h∗1;h∗2] + bs ) (6)

where h∗1is the output of h̃1after dropout strategy, h∗2is the output
of h̃2.ws ∈ Rq×r and bs ∈ Rqare the parameters to be learned.

ŷ = arдmax(p) (7)

where ŷ is the label predicted by the attention model.

4.1.7 Objective Function. The paper calculate the loss for all
HTTP traffic entries using the cross-entropy between the ground
truth yi ∈ (0, 1) and the predicted pi (i = 1, 2, · · · ,N ):

L = − 1
N

N∑
i=1

yi log(pi1) + (1 − yi ) log(1 − pi1) (8)

where N is the number of traffic entries, pi1 denotes the probability
that the i-th sample is predicted to be malicious.

4.2 Malicious Pattern Mining
This section provides in-depth analysis of model results, including
malicious pattern mining and verification of model results. Figure
4 shows the architecture of mining stage. The process is explained
as follows.

4.2.1 Clustering. We cluster traffic entries labeled as malicious
by model, which is the basis for validation and pattern mining in
our work. Specifically, we use the attentional hidden state extracted
from themodel as input vector for clustering. The clusteringmethod
we apply is DBSCAN [15], a density-based clustering algorithm,
which does not require prior declaring the number of clusters. After
clustering, we obtain several clusters. Traffic entries in each cluster
are similar in content or structure.

4.2.2 Tag Verification. In practical applications, massive HTTP
traffic requests are generated every day. There is no doubt that
manual verification requires a lot of time and efforts. In this paper,
we combine clustering and sampling to reduce the workload. After
clustering, we extract some samples from each cluster for verifi-
cation. If the predicted labels of these samples are consistent with
the ground truth, then all the prediction results in this cluster are
considered correct.

4.2.3 Malicious Patterns Discovery. Pattern mining of malicious
traffic can help discovering commonalities and characteristics of
malicious traffic and generating corresponding rules. Especially for
unknownweb attacks, analyzing their attack patterns is particularly
significant.

As mentioned in section 3.1, the attention weight vector obtained
in attention layer can reflect the crucial parts where the model is
concerned. Therefore, for eachmalicious traffic entry, we dig out the
key parts according to the corresponding attention weight vector.
The greater the weight is, the more important the word is. Then,

Table 2: Distribution of malicious traffic entries.

Data Type Number

Deserialization 6014
CMS 5836
File Inclusion 46438
SQL Injection 463776
Webshell 288050
XSS 127750
Sensitive Data Exposure 16656
Middleware Vulnerability 47614
Struts2 Vulnerability 42477
Botnet 19901
Total 1064512

given a series of HTTP requests in the same cluster, malicious
pattern can be summed up by comprehensively analyzing the key
parts. The specific steps are as follows:

Get Top_N words as candidate set. Given a cluster with N
traffic requests T = {t1, t2, · · · , tN }, we first calculate TFIDF for
each word in segmented sequence set to obtain top n words in the
entire cluster. The candidate set consisting of these words will be
expressed as C = {c1, c2, · · · , cn }.

Get Top_m words of each traffic. Then, we select top m key
wordsKi = {k1,k2, · · · ,km } for each traffic entry ti (i = 1, 2, · · · ,N )
according to the corresponding weight. As a result, we can obtain
a set of key words identified by the model, which can be denoted
as K = {K1,K2, · · · ,KN }.

Calculate the co-occurrence matrix. To discover pattern ex-
isted in the cluster, we calculate the co-occurrence matrix of words
in candidate set C. The goal is that we want to unearth words that
not only frequently occur in this cluster but also recognized by the
model as key parts. If we can discovery several words with high
attention weight that appear together constantly, then the com-
bination of these words can represent the pattern of such traffic.

5 EVALUATION
5.1 Data Set
Due to the insufficient amount of data in the standard data set, we
use real traffic data accumulated over time to validate our approach.
Monitoring software is used to capture HTTP traffic packets via the
gateway of an international university. The collected data is highly
sensitive because it contains most of the network activities during
work hours of teachers and students. For these data, we perform
manual verification and tagging. In addition, other malicious traffic
is collected by vulnerability scans under experimental environment.
The total number of labeled data is 2095222, half of them are mali-
cious traffic entries. The types and quantities of malicious samples
are shown in the Table 2. Moreover, there is five million unmarked
HTTP traffic prepared for model testing.
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Figure 4: The architecture of mining stage.

5.2 Model Comparison
5.2.1 Detection in the Labeled Dataset. Three baseline methods

are used for comparison experiments. Convolutional neural net-
works (CNNs)[24] is a class of deep feedforward artificial neural
networks, most commonly applied to analyzing visual imagery.
So far, it is also widely used in video recognition, recommender
systems [39] and natural language processing [8]. Recurrent neural
networks (RNNs), the collective name for a series of sequence mod-
els, which are usually applied to solve sequence problems, such as
time series prediction[44] and speech recognition [26]. Long short-
term memory (LSTM), variants of recurrent neural network (RNN),
which can avoid the vanishing gradient problem. The proposed
model is based on Bi-LSTM, which combines LSTM and bidirec-
tional strategy. It can predict or label each element of the sequence
based on the element’s past and future contexts. To illustrate the

Table 3: Model results in the labeled dataset.

Model Sample
Ratio

Precision Recall F1-score AUC

CNN

1:100

0.9637 0.3556 0.5196 0.6778
LSTM 0.9408 0.6778 0.7879 0.8387

Bi-LSTM 0.9175 0.7448 0.8222 0.8721
Our Model 0.9561 0.9609 0.9585 0.9795

CNN

1:10

0.8772 0.8239 0.8496 0.9067
LSTM 0.9249 0.9759 0.9497 0.9844

Bi-LSTM 0.9866 0.9586 0.9724 0.9787
Our Model 0.9905 0.9747 0.9825 0.9869

CNN

1:1

0.9452 0.9867 0.9656 0.9679
LSTM 0.9954 0.9947 0.9951 0.9953

Bi-LSTM 0.9961 0.9948 0.9955 0.9957
Our Model 0.9979 0.9963 0.9971 0.9973

superiority of the proposed model, we extract positive and negative
samples from the data set according to different proportions. The
evaluation metrics consist of precision, recall, F1-score and AUC
(the area under the receiver operating characteristic curve). Table
3 shows the experimental results of mentioned models. Overall,

Table 4: Model results in the unlabeled dataset.

Model MT_MODEL MT_RULE MT_NEW FP

CNN 795692 208917 60973 525802
LSTM 238689 139302 14527 84860

Bi-LSTM 295621 191267 28753 75601
Our Model 428270 216809 150974 60487

sequence model is more suitable for traffic detection than convo-
lutional neural network model, especially Bi-LSTM. It is worth
mentioning that our model is superior to all baseline models in
almost all metrics. In unbalanced data sets, the superiority of the
proposed model is even more pronounced.

5.2.2 Detection in the Unlabeled Dataset. We conduct compara-
tive experiments in five million unlabeled traffic entries. Traditional
filtering rules are utilized to assist model validation. The explana-
tion of the assessment indicators we constructed is as follows:

MT_MODEL. The number of traffic labeled as malicious by the
model.

MT_RULE. The number of traffic that is labeled as malicious
by the model and matches the rules.

MT_NEW. The number of traffic that is labeled as malicious by
the model but does not match the rules.

FP. The number of false positive. (FP= MT_MODEL-MT_RULE-
MT_NEW )

The result of model evaluation in real traffic dataset without label
is shown in Table 4. According to MT_RULE, it can be seen that
almost all malicious traffic discovered by rules can be detected by
CNN and our model (the number of malicious traffic matching the
filtering rules is 217100). Moreover, these models have the ability
to discover new malicious traffic. However, MT_MODEL of CNN is
extremely large, which means there are quite a few false positives.
Additionally, compared with LSTM and Bi-LSTM, the proposed
model is able to disclose more anomalous traffic entries. The FP of
our model is the lowest. The result further proves the superiority
of our model.

5.2.3 Model Performance with Different Features. We record the
loss and accuracy of each iteration of the model and draw loss
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Figure 5: Accuracy curve and loss curve.

curve and accuracy curve(Figure 5). To balance the memory usage
and model training efficiency, the best batch size is set to 200. As
we observe from the figure, the model trained based on content
and structural features converges faster. In other word, after fusing
structural features, the learning rate has been enhanced, and it can
reach the convergence state faster.

In order to verify the validity and rationality of the structural
features, we first construct three labeled data sets composed of
different proportions of positive and negative samples. Then, in
these data sets, we use different input features to train the models
(including content features, structural features, combined content
and structural features). After that, statistical measures of binary
classification are used to evaluate the effectiveness of these models.
As shown in Figure 6, these models perform better on balanced
data sets. The model trained with structure feature is less effective
than the other two models in three data sets. After integrating the
structural features, the effect of the model has been significantly
improved, especially in unbalanced data sets.

5.2.4 Malicious pattern mining. In this part, we first cluster
anomaly traffic entries to find traffic families. Due to the combina-
tion of structural features, the model is able to detect anomalous
HTTP requests that are different in content but with similar struc-
ture. Some examples of malicious traffic families discovered by the
model are shown in Figure 7. It is worth noting that these malicious
traffic entries has not appeared in the training set.

As mentioned before, attention weight is pivotal for pattern
mining. We can summarize the critical parts of each traffic request
according to its weight vector. The visualization of attention vector
is shown in Figure 8. The HTTP request is extracted from a cluster
after clustering. Color depth corresponds to the weight αt (Eq.3).
Obviously, the key words selected by model are {’submit’, ’execute’,
’wscript’, ’action’, ’shell’}, which are almost in line with the ground
truth.

To assess the ability of mining patterns, we extract traffic entries
by regex matching method to compose the test data set. We use five
typical rules and extract one thousand entries for each rule. The
specific rules and expressions are shown in Table 5.

We feed the traffic entries into the proposed model, then the
prediction results and attention weights will be received. After that,
for each traffic request, we extract top 5 words, top 10 words, and
top 20 words ordered by the attention weights and calculate the
count of key words appear in top k words (k=5, 10, 20). Just take

Table 5: Regex rules.

Regex Rule Expression

memberaccess.allowstaticmethodaccess Structs2
(select.+(from|limit))|(?:(union(.*?)select)) Sql injection
<(iframe|script|body|img|input) XSS
$_(GET|post|GLOBALS|SERVER) Webshell
etc.{0,10}passwd File include

Table 6: Pattern mining evaluation.

Rule Key Words Top 5 Top 10 Top 20

Rule1 memberaccess 0.822 0.893 0.964
allowstaticmethodaccess 0.697 0.850 0.923

Rule2

select 0.744 0.832 0.871
from 0.502 0.650 0.792
limit 0.672 0.789 0.799
union 0.482 0.573 0.630

Rule3

iframe 0.721 0.817 0.821
script 0.789 0.820 0.854
body 0.340 0.554 0.590
img 0.470 0.334 0.652
input 0.456 0.562 0.652

Rule4

get 0.523 0.585 0.789
post 0.434 0.687 0.697

globals 0.249 0.472 0.688
server 0.209 0.426 0.532

Rule5 etc 0.790 0.893 0.948
passwd 0.832 0.902 0.952

Structs2 exploitation of vulnerability as an example. According to
the first rule, the key words are "memberaccess" and "allowstat-
icmethodaccess". Suppose there are five traffic entries, we collect
top 5 words from each traffic according to their weights. If the top
5 words of each traffic contain the key word of malicious traffic
(like"memberaccess"), the count plus one (we convert the count into
a ratio). The experimental results are shown in Table 6. Obviously,
for traffic with relatively simple attack patterns, the model can
perform well(like "structs2" and "file include"). Moreover, for some
sensitive words (like "scrip" and "limit"), the model can also well
recognize.

To further verify the performance of the proposed model on
malicious pattern mining, we visualize the results generated by the
method mentioned in section 3.2.3 in Figure 9. The darker the color
of the square is, the more times the words appear together. The
number of co-occurrences of these words can reflect the number of
times that they were simultaneously concerned by the model. It is
evident that the black area in the upper left corner of the figure is
what the model considers important. Hence, the pattern of these
traffic can be denoted as {"<", "/", "textarea", "script", ">", "alert" }.
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(a) The balanced dataset. (b) The unbalanced dataset(1:10). (c) The unbalanced dataset(1:100).

Figure 6: Model performance with different features in different datasets.

Figure 7: Examples of malicious traffic families.
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6 CONCLUSION
This paper presents DeepHTTP, a general-purpose framework for
HTTP traffic anomaly detection and pattern mining using a deep
neural network based approach. We construct a deep neural net-
works model utilizing Bidirectional Long Short-Term Memory (Bi-
LSTM). This enables effective anomaly diagnosis. We design a novel
method that can extract the structural characteristics of traffic.
DeepHTTP learns content feature and structure feature of traffic
automatically, and unearths considerable section of input data. It
performs anomaly detection at per traffic entry level, and then
mines pattern at cluster level. The intermediate output including
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Figure 9: visualization of pattern mining.

attention hidden state and the attentional weight vector can applied
to clustering and pattern mining, respectively. By incorporating
user feedback, DeepHTTP supports database update and model
iteration. Hence it is able to incorporate and adapt to new traffic
patterns. Experiments on large traffic datasets have clearly demon-
strated the superior effectiveness of DeepHTTP compared with
previous methods.

Future works include but are not limited to incorporating other
types of deep neural networks into DeepHTTP to test their effi-
ciency. Besides, improving the ability of the model to detect un-
known malicious traffic is something we need to further study on
in the future.
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