
ZeroWall: Detecting Zero-Day Web Attacks
through Encoder-Decoder Recurrent Neural Networks

IEEE International Conference on Computer Communications, 27-30 April 2020 // Beijing, China

*Tsinghua University, China

Ruming Tang*, Zheng Yang*, Zeyan Li*, Weibin Meng*, Haixin Wang+,
Qi Li*, Yongqian Sun#, Dan Pei*, Tao Wei^, Yanfei Xu^ and Yan Liu^

+ University of Science
and Technology Beijing, China

#Nankai University, China ^Baidu

▪ WAFs (Web Application Firewalls) are wildly deployed in industry, however,
such signature-based methods are not suitable to detect zero-day attacks.

▪ Zero-day attacks in general are hard to detect and zero-day Web attacks are
particularly challenging because:
1. have not been previously seen

à most supervised approaches are inappropriate

2. can be carried out by a single malicious HTTP request
à contextual information is not helpful

3. very rare within a large number of Web requests
à collective and statistical information are not effective

WAFs Do Not Capture Zero-Days

1

ZeroWall

An unsupervised approach, which
can work with an existing WAF in
pipeline, to effectively detecting a
zero-day Web attack hidden in an

individual Web request.

▪ WAF detects those known
attacks effectively.
▪ filter out known attacks

▪ ZeroWall detects unknown
attacks ignored by WAF rules.
▪ report new attack patterns to

operators and security engineers
to update WAF rules.

2

What We Want

▪ HTTP request is a string following
HTTP, and we can consider an
HTTP request as one sentence in
the HTTP request language.

▪ Most requests are benign, and
malicious requests are rare.

▪ Thus, we train a kind of language
model based on historical logs, to
learn this language from benign
requests.

3

Idea

Language
Model

Historical
Web Logs

One Request

Can
Understand

Benign

Cannot
Understand

Malicious

Train

monolingual
data

▪ How to learn this “Hyper-TEXT” language?

▪ Use Neural Machine Translation model to train a Self-Translate Machine
▪ Encode the original request into one representation

▪ Then Decode it back

4

Self-Translate Machine

5

Self-Translate Machine

Self-translation works well for
normal sentences

Output deviates significantly from
the input, when the input is a
sentence not previously seen in
the training dataset of the self-
translation models.

▪ Translation Quality à Anomaly Score

▪ How to quantify the self-translation quality
(anomaly score)?
à Use machine translation metrics

6

Self-Translate Machine

An attack detection problem → A machine translation quality assessment problem

Self-Translate
Machine

Historical
Web Logs

One Request

Good
Translation

Benign

Bad
Translation

Malicious

Train

7

Self-Translated Sequence

Tokenized

Tokenized

Translated

Translated

An attack detection problem → A machine translation quality assessment problem

▪ Translation Quality à Anomaly Score
à Use BLEU as an example

à Malicious Score = 1 − 𝐵𝐿𝐸𝑈_𝑆𝑐𝑜𝑟𝑒

▪ Offline Periodic Retraining
▪ Build and update vocabulary and re-train the model

▪ Online Detection
▪ Detect anomalies in real-time requests for manual investigation

8

ZeroWall Workflow

9

Offline Training

1. Building Vocabulary
2. Parsing

3. Training Model

1

2

3

10

Offline Training

2. Parsing
3. Training Model

POST
http://A.Example.COM
/URL_1/URL_2/JSP_N
AME_A.jsp
modo=entrar&login=U
SERNAME&pwd=PAS
SWORD&remember
=off&B1=Entrar

POST
http://B.Example.COM
/URL_3
/images/image/ASP_N
AME_B.asp/FILENAM
E_B.jpg
0=M&z0=GB2312&z1
=/ccmd&z2=echo
'phpinfo'

POST
http
A
Example
COM
URL_1
...

...
z0
GB2312
z1
/ccmd
z2
echo
...

Raw Log

Bag of
Words

Vocabulary
... ...

Filtering
• stop words
• variables

1. Building Vocabulary

11

Offline Training

1. Building Vocabulary

3. Training Model

POST
http://A.Example.COM/URL_1/URL_2/J
SP_NAME_A.jsp
modo=entrar&login=USERNAME&pwd=
PASSWORD&remember=off&B1=Entrar

POST
http://B.Example.COM/URL_3/images/ima
ge/ASP_NAME_B.asp/FILENAME_B.jpg
0=M&z0=GB2312&z1=/ccmd&z2=echo
'phpinfo'

_url_1_ _url_2_ JSP_NAME_A jsp modo
entrar login _OTHER_ pwd _OTHER_
remember off b1 entrar

other images image ASP_NAME_B asp
other jpg _pnum_ _onechr_ z_pnum
gb2312 z_pnum _other_ z_pnum echo
phpinfo

Vocabulary

2. Parsing

12

Online Detection

2. Translation 3. Detection 4. Investigation

1 2 3

4

1. Parsing

13

Online Detection

3. Detection 4. Investigation1. Token Parser

à onechr _OTHER_ action _OTHER_ print eval _post onechr

à onechr _OTHER_ do _OTHER_ userid _pnum_0_ _pbas_0_ _pnum_1_

2. Translation

14

Online Detection

1. Token Parser 2. Translation

Compare the original sequence (token sequence) and the translated sequence (recovered token sequence).

1. BLEU Metric
2. Threshold [Larger? Yes à Go to step 3; No à Benign]
3. Check whitelist [Not in whitelist? Yes à Go to step 4; No à Benign]
4. Investigation [True Attacks à Update WAF/IDS ; False Alarms à Update whitelist rules]

3. Detection 4. Investigation

▪ Data Trace:
▪ 8 real world trace from an Internet company.
▪ Over 1.4 billion requests in a week.

▪ Overview
▪ Captured 28 different types of zero-day attacks, which contribute to 10K of zero-day

attack requests in total.
▪ False positives: 0~6 per day

15

Real-World Deployment

D-1 D-2 D-3 D-4 D-5 D-6 D-7 D-8 Total
Malicious* 51839 186066 19515 53394 33724 2136811 42088623 90982519 135552491

Zero-Day 25 1118 283 4209 1188 2003 49011 83746 141583

Benign 1576235 3142793 13572827 15618518 31718124 177993528 528158912 534048878 1305829815

Total 1628099 3329977 13592625 15676121 31753036 180132342 570296546 625115143 1441523889

B2M(1) 30.4 16.9 695.5 292.5 940.5 83.3 12.5 5.9 9.6

B2Z(2) 63049.4 2811.1 47960.5 3710.7 26698.8 88863.5 10776.3 6377.0 9223.1

* Known malicious filtered by WAF. (1) Ratio of Benign to Malicious (in WAF); (2) Ratio of Benign to Zero-Day

▪ Unsupervised Approaches
▪ SAE (stacked auto-encoder), HMM and DFA (Deterministic Finite Automata)

▪ Use data filtered by WAF as training set.

▪ Supervised Approaches
▪ CNN, RNN and DT (decision tree)

▪ Use all data (allowed/dropped) as training set and WAF results as labels.

16

Baselines & Labels

17

Evaluation Results

▪ These attack is detected by ZeroWall, CNN and RNN.

▪ WAF are usually based on keywords, e.g., eval, request, select and execute.

▪ ZeroWall is based on the “understanding” of benign requests. The structure of
this zero-day attack request is more like a programming language.

18

A Zero-Day Case

contains none of WAF keywords

overlap with tokens in
training set for CNN and RNN

Captured 28 different types of zero-day attacks, , including webshell, SQL
injection, probing, trojan and other exploiting against particular applications.
For each category, the security engineers have already composed a new
WAF rule to detect these attacks in the future.

▪ To mitigate False Alarms, we add whitelist to our approach.

▪ The numbers of whitelist rules refer to how many whitelist rules are added each
day, based on the FPs labeled on that day. (No rules applied on 0602 since it is
the first day of testing set.)

▪ The results shows that the whitelist reduces the number of FPs with low
overhead (numbers of rules are very small).

▪ Based on these results, we believe ZeroWall is practical in real-world deployment.

19

Whitelist

▪ Training and testing speed with and without hash table (requests/s)

20

Overhead

*The incoming requests refer to the average number of requests received by the customer per second.

Intel(R) Xeon(R) Gold 6148 CPU 2.40GHz * 2
512GB RAM

▪ Present a zero-day web attack detection system ZeroWall
▪ Augmenting existing signature-based WAFs
▪ Use Encoder-Decoder Network to learn patterns from normal requests

▪ Use Self-Translate Machine & BLEU Metric

▪ Deployed in the wild
▪ Over 1.4 billion requests

▪ Captured 28 different types of zero-day attacks (10K of zero-day attack requests)

▪ Low overhead

21

Summary

An attack detection problem →
A machine translation quality

assessment problem

Thanks!
And Questions

Ruming Tang: trm14@mails.tsinghua.edu.cn

