
A Deep Learning Method to Detect Web
Attacks Using a Specially Designed CNN

Ming Zhang(&), Boyi Xu, Shuai Bai, Shuaibing Lu, and Zhechao Lin

National Key Laboratory of Science and Technology on Information System
Security, Beijing Institute of System Engineering, Beijing, China

zhangming2013@alumni.sjtu.edu.cn

Abstract. With the increasing information sharing and other activities con-
ducted on the World Wide Web, the Web has become the main venue for
attackers to make troubles. The effective methods to detect Web attacks are
critical and significant to guarantee the Web security. In recent years, many
machine learning methods have been applied to detect Web attacks. We present
a deep learning method to detect Web attacks by using a specially designed
CNN. The method is based on analyzing the HTTP request packets, to which
only some preprocessing is needed whereas the tedious feature extraction is
done by the CNN itself. The experimental results on dataset HTTP DATASET
CSIC 2010 show that the designed CNN has a good performance and the
method achieves satisfactory results in detecting Web attacks, having a high
detection rate while keeping a low false alarm rate.

Keywords: Web attacks � Deep learning � CNN

1 Introduction

The Internet has brought great convenience and happiness to people’s life. The World
Wide Web (abbreviated the Web) is the primary tool for billions of people to interact
with the Internet and has made large contributions to the development of the Infor-
mation Age. However, people are suffering threats and losses increasingly from the
Internet. The Cyber-attacks make waves more and more frequently. What is worse,
with the increasing information sharing and other activities conducted on the World
Wide Web, the Web has become the main venue for attackers to engage in a range of
cybercrimes. As early as 2007, Symantec Corporation had observed that instead of
trying to penetrate networks with high-volume broadcast attacks, attackers have
adopted stealthier, more focused techniques targeting computers through the World
Wide Web, and the majority of effective malicious activities have become Web-based
[1]. Another security company, Cenzic, reported in 2014 that 96% of the tested internet
applications had vulnerabilities with a median of 14 per application, resulting in that
hackers are increasingly focusing on and are succeeding with application layer attacks
[2]. It is no doubt that Web security deserves enough attention.

There are a number of technical solutions to guarantee the Web security, including
Web application security scanners, penetration testing, fuzzing tools used for input
testing, Web application firewalls (WAF), Web intrusion detection systems (Web IDS)

© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part V, LNCS 10638, pp. 828–836, 2017.
https://doi.org/10.1007/978-3-319-70139-4_84



and so on. For Web protection systems, having an effective method that can inspect
Web traffic and detect attacks differing from normal behaviors is crucial and funda-
mental. There are two basic methods to detect Web attacks, the signature-based [3] and
the anomaly-based [4]. The signature-based method builds the detection model from
known attacks and any behavior having the corresponding attack signatures is iden-
tified as an attack. On the contrary, the anomaly-based method creates a profile from
normal behaviors and any violation is identified as an attack. Obviously, both of the
methods must have enough characterization and generalization ability of abnormal or
normal behaviors, whereas it is difficult to do that in practice. With the popularity of
machine learning, especially the rise of deep learning, it is possible to let machines
learn features and patterns from data and then automatically distinguish different cat-
egories of things. In recent years, lots of machine learning methods have been applied
to detect Web attacks.

In this paper, we present a method based on deep learning to detect Web attacks,
strictly speaking, to detect server-side attacks. We describe a specially designed con-
volutional neural network and expound the steps and details to detect Web attacks.

The rest of the paper is organized as follows. Some related work is introduced in
Sect. 2. The method based on deep learning to detect Web attacks is described in
Sect. 3. Experimental results and discussions are presented in Sect. 4. Finally, Sect. 5
concludes the paper.

2 Related Work

Kruegel et al. have presented a multi-model approach to detect Web attacks in [5]. The
approach analyzes HTTP requests and uses a number of different models built on
different features, including attribute length, attribute character distribution, structural
inference, invocation order and so on.

Ma et al. [6] have explored online learning approaches for detecting malicious Web
sites using lexical and host-based features of the associated URLs. Their work is to
protect users (or clients) from scams, whereas our study is on detecting server-side
attacks.

Torrano et al. [7] have proposed an anomaly-based approach to detect intrusions in
Web traffic. The approach relies on a XML file to classify the incoming requests as
normal or anomalous.

Corona et al. [8] have presented a multiple classifier system to detect Web attacks
by modeling legitimate requests. The system employs a set of predefined models,
which are established on different message fields in HTTP requests and built on two
basic models: the statistical distribution model and the Hidden Markov Model.

Zolotukhin et al. [9] have proposed an anomaly detection method for Web attacks
through analysis of HTTP logs. The method employs the n-gram models to extract
relevant features from three fields in HTTP logs, including Web resources, query
attributes and user agents. Correspondingly, three machine learning algorithms are
used, namely, Support Vector Data Description (SVDD), K-means, and Density-Based
Spatial Clustering of Applications with Noise (DBSCAN).

A Deep Learning Method to Detect Web Attacks 829



Choras and Kozik [10] have proposed a machine learning approach to model
normal behaviors of Web applications and to detect Cyber-attacks. The model is based
on information obtained from HTTP requests and consists of patterns that are obtained
using graph-based segmentation technique and dynamic programming.

Saxe and Berlin [11] have exposed a deep learning approach to a number of
security detection problems including the malicious URLs detection. Similar to our
work, they also use the Convolutional Neural Network, but the embedding approaches
and the network architectures are different.

3 Method

3.1 Preprocessing HTTP Requests

The HTTP protocol is the foundation of data communication for the Web. The client
submits a HTTP request message to the server and the server returns a HTTP response
message to the client. If the server is attacked, that means it receives one or more
malicious request messages. Based on this, the detection method is designed by
inspecting the HTTP request packets (messages) to detect the server-side Web attacks.
Because Web attacks detection belongs to the application-layer security solutions and it
works after the packets are parsed, our detection method is also available for com-
munications using HTTPS protocol.

An HTTP request message consists of a request line, several request header fields
and an optional message body (for POST request messages). Figure 1 is an example of
a GET request message obtained from the dataset HTTP DATASET CSIC 2010
(described in Sect. 4).

The request line is the first line of the HTTP request message and comprises three
parts: the HTTP-method, the HTTP-url (URL for short) and the HTTP-version. Fur-
thermore, we narrow the detected focus to the URL in an HTTP request message (for
POST request messages, the URL is defined as the combination of the HTTP-url and the
message body). There are two reasons for doing this. One is that the vast majority of

GET http://localhost:8080/iisstart.htm HTTP/1.1
User-Agent: Mozilla/5.0
Pragma: no-cache
Cache-control: no-cache
Accept: text/xml,application/xml;q=0.9,text/plain;q=0.8
Accept-Encoding: x-gzip, x-deflate, gzip, deflate
Accept-Charset: utf-8, utf-8;q=0.5, *;q=0.5
Accept-Language: en
Host: localhost:8080
Cookie: JSESSIONID=11F98280E08EE19274786F4EDDDC821F
Connection: close

Fig. 1. A GET request message example.

830 M. Zhang et al.



Web attacks are implemented by manipulating the URLs. The other is for computational
convenience. But without loss of generality, our detection method can be applied to the
whole HTTP request message.

Suppose a URL is as Fig. 2 shows.

The preprocessing is to segment the URL to a sequence of words (including the
string containing some necessary special characters). The URL can be split into words
by special characters like “/”, “&”, “=”, “+”, etc. If the URL is encoded, the decoding
may be operated first. Theoretically, the preprocessing should reflect the difference
between abnormal and normal URLs. But in practice, the preprocessing may be a
continuously trying and optimizing process. For the above URL, the sequence of words
after preprocessing can be as Fig. 3 shows (separated by commas).

3.2 Word Embedding

Word embedding is used to map the words to vectors, which are the inputs to the
Convolutional Neural Network (CNN, described in the next subsection). There are
many branches and research groups working on word embeddings. For example, a
team at Google led by Tomas Mikolov created word2vec, a toolkit that can be used
directly to generate vectors. Instead of generated by existing word embedding tools, the
words’ embedding vectors in our Web attacks detection method are learned in the
training process. In fact, there is an embedding layer joint with the CNN, and the
embedding vectors are optimized through back-propagations of the whole network. We
believe that the embedding vectors generated by this way are more helpful to the
detection of Web attacks, because they are task-specific and more reflective of their
semantic meaning whereas the vectors generated by third-party tools are relatively
static. We have also confirmed our supposition in experiments.

3.3 The Specially Designed CNN

The architecture of the CNN specially designed to detect Web attacks is as Fig. 4
shows. It is a feed-forward neural network and is formed by four distinct layers: the

http://localhost:8080/tienda1/publico/vaciar.jsp?B2=Vaciar
+carrito%27%3B+DROP+TABLE+usuarios%3B+SELECT+*+FROM+datos+
WHERE+nombre+LIKE

Fig. 2. A URL example.

http, localhost, 8080, tienda1, publico, vaciar.jsp, B2, 
Vaciar, carrito, DROP, TABLE, usuarios, SELECT, *, FROM, 
datos, WHERE, nombre, LIKE

Fig. 3. Sequence of words after preprocessing the URL.

A Deep Learning Method to Detect Web Attacks 831



convolution layer, the max-pooling layer, the fully-connected layer and the Softmax
layer. The input to the CNN is a matrix composed of vectors embedded from the word
sequence which are obtained by preprocessing the URL. Suppose the length of the
word sequence is l and the dimension of the embedding vector is k, so the size of the
input matrix is l� k. The details of each layer are as follows.

Convolution Layer
The convolution layer convolves the input matrix with different sizes of filters (or
kernels). The filter sizes are set to s� k; s ¼ ð3; 4; 5; . . .Þ, with k equaling to the width
of the input matrix and s taking different values. So the types of filters can be repre-
sented as lenðsÞ. Every filter walks through the input matrix with stride being one and is
convolved with a local area of size s� k, thus producing a feature map (the convolved
result) of size ðl� sþ 1Þ � 1. For each type of filters, there are n filters of the same size
to convolve with the input matrix, so the produced results are n feature maps, denoted
as n@ l� sþ 1ð Þ � 1. Because there are lenðsÞ types of filters, the full output of the
convolution layer has lenðsÞ clusters actually, with each cluster having n feature maps
of size ðl� sþ 1Þ � 1. The convolution layer exploits the spatially-local correlation
and learns filters that activate when detecting some specific types of features at some

Fig. 4. Architecture of the specially designed CNN.

832 M. Zhang et al.



local areas of the input. Different sizes of filters can extract more rich features by sliding
on different local areas of the input.

Max-Pooling Layer
The max-pooling layer reduces the dimensionality of each feature map outputted by the
convolution layer but retains the most important information. It takes the largest ele-
ment from each feature map, and then concatenates them together to produce a vector.
According to the types and numbers of filters in the convolution layer, we can get the
length of the max-pooled vector is lenðsÞ � n. Note that though the inputs may have
different lengths, but the results of the max-pooling layer are always of the same length.

Fully-Connected Layer
The fully-connected layer has m ðm\lenðs) � nÞ neurons, with each neuron connected
to all the neurons in the max-pooling layer. The fully-connected layer does high-level
reasoning and extracts high-order features of the input. Because m\lenðs) � n, it also
has the function of reducing dimensionality.

Softmax Layer
The CNN designed for detecting Web attacks is to recognize whether the HTTP request
message is normal or abnormal, so the Softmax layer (also the output layer) has 2
neurons with each representing normal or abnormal. The neurons in the Softmax layer
are also fully connected to the neurons in the previous fully-connected layer. The
output values of the 2 neurons are set to lie between 0 and 1 and sum to 1. The
predicted class of the URL is decided by which neuron outputs a larger value.

Some other tricks may be considered. For example, one can add dropout after the
max-pooling layer or other layers to avoid overfitting at the training stage. The choice
of the loss function is also critical. For our designed CNN, the cross-entropy loss is
recommended.

4 Experiments and Results

To evaluate the effectiveness of the method for detecting Web attacks, we conducted
experiments on the dataset HTTP DATASET CSIC 2010 [12].

4.1 Data Preparation

The HTTP DATASET CSIC 2010 dataset contains thousands of Web requests auto-
matically generated by the Information Security Institute of CSIC (Spanish Research
National Council), and has been widely used for testing the Web attacks detection
systems. The dataset contains 36,000 normal requests and 24,668 abnormal requests.
The abnormal requests include Web attacks such as SQL injection, buffer overflow,
information gathering, files disclosure, CRLF injection, XSS, server side include,
parameter tampering and so on.

We randomly selected about 70% of the dataset as training data, 5% as the vali-
dation data, the rest 25% as the test data. The data distribution is shown in Table 1.

A Deep Learning Method to Detect Web Attacks 833



4.2 Model Parameters and Evaluating Criteria

Based on data characteristics and empirical experiences, we set parameters of the CNN
as follows. For the input matrix, the height l depends on the length of the word
sequence, and the width k, i.e. the dimension of the embedding vector is set to 128. In
the convolution layer, for the filter size s� k, let s ¼ ð3; 4; 5; 6Þ and k ¼ 128, so
lenðsÞ ¼ 4. For each type of filters, the number n is set to 128. The neurons number
m of the fully-connected layer is set to 256. We add dropout after the max-pooling layer
at the training stage with the keeping probability being 0.5 and choose cross-entropy as
the loss function.

To evaluate the effectiveness of the method for detecting Web attacks, we use three
criteria: the detection rate, the false alarm rate and the accuracy. Following the notions
usually used in machine learning methods, we use TP, FP, TN and FN to represent the
number of true positives, false positives, true negatives and false negatives respec-
tively. The detection rate (i.e. true positive rate) is defined as the proportion of the
detected abnormal requests accounting for the total abnormal ones. The false alarm
rate (i.e. false positive rate) is defined as the ratio between the number of normal
requests wrongly categorized as abnormal and the total number of actual normal
requests. An ideal Web attacks detection method must have both the high detection rate
and the low false alarm rate. The accuracy is defined as the proportion of requests
including normal and abnormal to be correctly classified. The formulas of the three
criteria are presented below.

detection rate ¼ TP
TPþFN

: ð1Þ

false alarm rate ¼ FP
FPþ TN

: ð2Þ

accuracy ¼ TPþ TN
TPþFPþ TNþFN

: ð3Þ

4.3 Results and Discussions

We trained the CNN for 10 epochs using batch training approach. The batch size is set
as 64. We recorded the training accuracy and loss every one step and recorded the
validation accuracy and loss every 100 steps. The trends of the metrics are presented in
Fig. 5. Figure 5(a) shows the accuracy trends, where the orange curve represents the
training accuracy and the dark cyan represents the validation accuracy. We can see that

Table 1. Experimental data distribution.

Training Validation Test

Normal 25,200 1,800 9,000
Abnormal 17,268 1,233 6,167
Total 42,468 3,033 15,167

834 M. Zhang et al.



after about 4,000 steps (about 6 epochs) of training, both the training and validation
accuracies have achieved above 95%. Figure 5(b) shows the loss trends, where the
orange curve represents the training loss and the dark cyan represents the validation
loss. Obviously, both the training and validation losses decrease rapidly towards 0.
Such trends of accuracy and loss reflect the good performance of the CNN.

After 10 epochs of training, we run the trained CNN on test data to evaluate its
ability of detecting Web attacks. As Table 2 shows, the detection rate is 93.35%, the
false alarm rate is 1.37%, and the test accuracy is 96.49%. This demonstrates that with
a certain amount of training, the CNN has achieved satisfactory results in detecting
Web attacks, having a high detection rate while keeping a low false alarm rate.

5 Conclusion

A deep learning method to detect Web attacks is explored, which is based on a
specially designed convolutional neural network. The method is able to detect various
Web attacks through inspecting the HTTP request packets. Firstly, data preprocessing
is studied, which chooses useful information from HTTP request packets and produce
lots of word sequences. Secondly, the embedding approach used to map words to
vectors is studied. The embedding vectors are learned in the training stage and not
generated by the existing word embedding tools. Finally, a special CNN consisted of
various layers is designed. It is able to extract features automatically, and then classify
the HTTP request packets to normal or abnormal class. We conducted experiments on
the dataset HTTP DATASET CSIC 2010 to evaluate the effectiveness of the method.
The results show that the designed CNN can be trained easily and the detection method
achieves a high detection rate with few false alarms in detecting Web attacks.

(a) accuracy (b) loss

Fig. 5. Accuracy and loss in the training stage.

Table 2. Evaluating results.

Detection rate False alarm rate Test accuracy

93.35% 1.37% 96.49%

A Deep Learning Method to Detect Web Attacks 835



For reducing computational complexity, the method in this article only focuses on
detecting Web attacks hidden in URLs. Future work will try modeling the whole HTTP
request messages. Other embedding approaches and neural networks are also worth
studying.

References

1. Symantec Internet Security Threat Report: Trends for July–December 2007. http://eval.
symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_exec_summary_internet_
security_threat_report_xiii_04-2008.en-us.pdf

2. Application Vulnerability Trends Report 2014. http://www.cenzic.com/downloads/Cenzic_
Vulnerability_Report_2014.pdf

3. Axelsson, S.: Research in intrusion-detection systems: a survey. Technical report 98–17,
Department of Computer Engineering, Chalmers University of Technology (1998)

4. Garcia, T.P., Diaz, V.J., Macia, F.G., et al.: Anomaly-based network intrusion detection:
techniques, systems and challenges. Comput. Secur. 28(1), 18–28 (2009)

5. Kruegel, C., Vigna, G., Robertson, W.: A multi-model approach to the detection of
web-based attacks. Comput. Netw. 48(5), 717–738 (2005)

6. Ma, J., Saul, L.K., Savage, S., et al.: Identifying suspicious URLs: an application of
large-scale online learning. In: Proceedings of 26th Annual International Conference on
Machine Learning, pp. 681–688 (2009)

7. Torrano, G.Z., Perez, V.A., Maranon, G.A.: An anomaly-based approach for intrusion
detection in web traffic. J. Inf. Assur. Secur. 5(4), 446–454 (2010)

8. Corona, I., Tronci, R., Giacinto, G.: SuStorID: a multiple classifier system for the protection
of web services. In: Proceedings of IEEE 21st International Conference on Pattern
Recognition (ICPR), pp. 2375–2378 (2012)

9. Zolotukhin, M., Hamalainen, T., Kokkonen, T., et al.: Analysis of http requests for anomaly
detection of web attacks. In: Proceedings of IEEE 12th International Conference on
Dependable, Autonomic and Secure Computing (DASC), pp. 406–411 (2014)

10. Choras, M., Kozik, R.: Machine learning techniques applied to detect cyber attacks on web
applications. Log. J. IGPL 23(1), 45–56 (2015)

11. Saxe, J., Berlin, K.: eXpose: a character-level convolutional neural network with
embeddings for detecting malicious URLs, file paths and registry keys. arXiv preprint
arXiv:1702.08568 (2017)

12. HTTP DATASET CSIC 2010. http://www.isi.csic.es/dataset/

836 M. Zhang et al.

http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_exec_summary_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_exec_summary_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_exec_summary_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://www.cenzic.com/downloads/Cenzic_Vulnerability_Report_2014.pdf
http://www.cenzic.com/downloads/Cenzic_Vulnerability_Report_2014.pdf
http://arxiv.org/abs/1702.08568
http://www.isi.csic.es/dataset/

	A Deep Learning Method to Detect Web Attacks Using a Specially Designed CNN
	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Preprocessing HTTP Requests
	3.2 Word Embedding
	3.3 The Specially Designed CNN

	4 Experiments and Results
	4.1 Data Preparation
	4.2 Model Parameters and Evaluating Criteria
	4.3 Results and Discussions

	5 Conclusion
	References


