
Anomaly-Based Web Attack Detection: A Deep Learning
Approach

Jingxi Liang
Peking University

Beijing, China100871

jingxil@pku.edu.cn

Wen Zhao

Peking University
Beijing, China100871

zhaowen@pku.edu.cn

Wei Ye
Peking University

Beijing, China100871

wye@pku.edu.cn

ABSTRACT

As the era of cloud technology arises, more and more people are

beginning to migrate their applications and personal data to the

cloud. This makes web-based applications an attractive target for

cyber-attacks. As a result, web-based applications now need more

protections than ever. However, current anomaly-based web

attack detection approaches face the difficulties like unsatisfying

accuracy and lack of generalization. And the rule-based web

attack detection can hardly fight unknown attacks and is relatively

easy to bypass. Therefore, we propose a novel deep learning

approach to detect anomalous requests. Our approach is to first

train two Recurrent Neural Networks (RNNs) with the

complicated recurrent unit (LSTM unit or GRU unit) to learn the

normal request patterns using only normal requests

unsupervisedly and then supervisedly train a neural network

classifier which takes the output of RNNs as the input to

discriminate between anomalous and normal requests. We tested

our model on two datasets and the results showed that our model

was competitive with the state-of-the-art. Our approach frees us

from feature selection. Also to the best of our knowledge, this is

the first time that the RNN is applied on anomaly-based web

attack detection systems.

CCS Concepts

• Security and privacy➝ Intrusion detection systems;

• Computing methodologies➝Neural networks; • Security and

privacy➝Web protocol security.

Keywords

web security, HTTP requests, anomaly detection, deep learning,

recurrent neural network

1. INTRODUCTION
Web applications play an important role in people's daily life

especially when people are starting to move their applications and

personal data to the cloud. The prevalence of web applications

and the large amounts of private user data being stored in them

make themselves attractive attack targets. Hence protecting web

applications from intrusions is vital. Among all kinds of

vulnerabilities, HTTP request related vulnerabilities which are

exploited by sending deliberately designed requests consists the

largest portion. According to [1], injections such as SQL injection

and Cross-Site Scripting are listed as the first and third most

critical web application security risks.

Generally, there are two approaches to detect attacks mentioned

above. The first is the signature-based method, which is to look

for specific attack patterns in requests; The second is anomaly-

based which is to establish normal request profiles so that

anomalous requests can be discriminated from normal ones. The

signature-based method is adopted more wildly than the anomaly-

based method because usually the signature-based one has lower

false alarm rate and achieves higher accuracy. For example,

ModSecurity, one popular open source Web Application Firewall

(WAF), builds up OWASP ModSecurity Core Rule Set (CRS)

containing a massive number of rules which can detect SQL

Injection, Cross Site Scripting, HTTP Protocol Violations and etc.

As effective as it is, the rule-based method is still problematic.

Firstly, it is only as good as the extent of the rule set, which means

it is incapable of identifying attacks that are not in its signature

dataset. Secondly, bypassing WAF can be done easily by

replacing keywords of existing malicious requests or encoding

themselves multiple times [2][3]. Thirdly, extremely large attack

pattern set or requests with long lengths consumes lots of

computing resources to finish pattern comparing.

In this paper we present a novel anomaly detection approach

utilizing the RNN with the Long-Short Term Memory

(LSTM)unit or Gated Recurrent Unit(GRU)unit. Our model takes

Uniform Resource Locators (URLs) in the HTTP GET requests as

the input. After the URLs are tokenized by following a certain

strategy which reduces the variability while preserves the intrinsic

information, two RNNs that have learned the normal request

patterns output their "familiarities" with given URLs. And then a

trained neural network decides whether given requests are

anomalous based on the output of the RNNs. Our model is self-

learning and free of feature selection. It can be customized to

learn normal request patterns for any specific web applications.

The rest of the paper is structured as follows: Section 2

summarizes recent related works on anomaly detection of web

applications. In Section 3 we introduce the motivation. In Section

4 we present the architecture of our model. In Section 5 we

discuss the experiments in detail. Finally, we draw our

conclusions in Section 6.

2. RELATED WORKS
Kruegel et al. [4] associated separated models with different

features of a request such as query attribute length, attribute

character distribution, attribute order and query attribute presence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ICNCC 2017, December 8–10, 2017, Kunming, China
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5366-3/17/12…$15.00
DOI: https://doi.org/10.1145/3171592.3171594

80

and etc. Each model outputs a probability value for each attribute

of a request which reflects the likelihood of the occurrence of the

given feature value with regards to an established profile. The

whole query is marked as anomalous if one or more features'

probabilities exceed the determined threshold. The anomaly

detection system proposed by Kirchner et al. [5] also used several

classifiers as feature analyzers. However, K-nearest neighbor

classification was adopted in Kirchner's approach, allowing for

comparison of every request to be classified with all normal

requests stored in the pool feature by feature.

Ingham et al. [6] modeled token sequences parsed from normal

requests using the Deterministic Finite Automata (DFA) in

combination with rules. Malicious web requests are detected by

determining similarities between a request and the DFA.

Furthermore, Rieck et al. [7] proposed an anomaly detection

method based on language model such as n-grams and a similarity

measurement between n-gram sequences.

Duc Le [8] explored the possibility of detecting anomaly via the

Self Organizing Map (SOM) approach. This approach is believed

to have the ability to form well-separated clusters for normal and

abnormal requests according to the assumption of various kinds of

requests having distinct behaviors.

In domains other than web application security, the RNN is wildly

employed to deal with time series problems. For example,

Malhotra et al. [9] leveraged the LSTM-RNN on ECG, space

shuttle, power demand, and multi-sensor engine datasets to detect

anomalies. Unfortunately, web application anomaly detection

systems based on RNNs are not available yet, to the best of our

knowledge. Our model treats every URL as a token sequence in

time order which is similar to [6] and [7]. But a new strategy is

chosen to split the URL. Also, the RNN is used in a different way

compared with those in other fields. Instead of predicting the next

value and computing differences between the ground-truth value

and predicted value as in [9], our model computes its "familiarity"

with the token after being provided with all preceding tokens in

the same token sequence.

3. MOTIVATION
In GET requests almost all anomalies are related to the URLs. A

URL, also termed a web address as well, usually is composed of

one absolute path and several query parameters. It always

conforms to the syntax as follows [10]:

"http:" "//" host [":" port] [abs_path ["?" query]]

where abs_path is used to locate the resource and optional query

string is used to pass parameters to the resource which always

follows a question mark.

We believe useful information that can help detect anomalies is

stored in the order and values of URL sequence, from the

perspective of treating a URL as a time series. For example,

id=1/*union*/union/*select*/select+1,2,3/*is definitely an attack

because a query parameter value consisting of special characters

and words should not be appended after the equal sign, given that

the value of id attribute usually is a numerical value. Also

provided that email=who@me.com is normal, email=1 is

considerably an anomaly because a numerical value does not

comply with the format of email. A deliberately modified absolute

path such as visiting hidden resources can lead to a static web

attack, and delicately designed values of the query attribute suck

as SQL Injection can cause a dynamic web attack. Given that web

applications would generate almost all links for users to click,

there is no reason for them to manually type a long URL. Hence

changes on query parameter order and occasional absence of

query values could be regarded as illegitimate.

The principles in detecting anomalies in other types of requests

like POST requests are similar. But extra efforts to handle

different request formats are required. Hence we only focus on

URLs of HTTP GET requests.

4. ARCHITECTURE
Our model first trains two RNNs using only tokenized normal

URLs. Formally, training set of URLs is denoted as
 where represents the URL.And
 indicates is an anomalous request when . After the

tokenizing procedure,

are obtained where the denotes the token in the sequence.

And structural information of the URL path is stored in

 while structural information of the query parameters is in

 within which each row represents one query parameter.

To exploit continuous real-vector representation, each token is

mapped to a learned distributed feature vector before

being fed into the RNNs. This guarantees the ability not only to

generalize compared with one-hot encoding but also to decrease

the dimensions needed to represent a token.

Separately, two RNNs are trained using normal requests so that

the RNNs can "familiarize" with legitimate request patterns. One

RNN is dedicated to the URL path structure patterns, and the

other one concentrates on query parameter structure patterns. The

training process can be analogized as asking the RNN to pick out

the token which it thinks is most likely to occur next, with all

prior tokens in the token sequence allowed to be seen. It can be

described as the model taking as the

input and attempting to predict . The model will be penalized if

it makes a wrong choice. After training, the RNN is able to give

the occurrence probability of the succeeding token as long as it is

provided with all previous tokens in the sequence. Well-trained

RNNs mark the end of the first phase.

In the second phase, a neural network classifier is trained on

 pairs to learn whether one URL is normal where

constant-sized vector is from and .

Our model starts to report web anomalies once training process is

completed and all learned parameters are fixed. The overall

architecture of our model is summarized in Figure 1. Sections

below discuss our model in detail.

Figure 1. Overall architecture

81

4.1 URL TOKENIZING
Apparently attacks or anomalies can be categorized into two types

according to the place that does not conform to the normal

patterns. The first type of anomalies has the abnormal query

parameter structure which dynamic web attacks and wrong data

formats belong to. The second type of anomalies has the

anomalous URL path structure which static web attacks belong to.

Hence two cases need to be taken into consideration. For URL

path structure the authorized choices of path name and query

attribute keys are limited, and the order between them are fixed.

And for query parameter structure the possible query values are

infinite. But luckily, although the variability of query values is

high, they have to obey certain format rules. The URL tokenizing

procedure is designed to capture the essential information in terms

of URL path structure and query parameter structure and to reduce

the variability. The general tokenizing procedure includes:

 Decode URL and map all upper case letters in URL to lower

case letters.

 Obtain the token sequence of URL structure by parsing URL

following certain rules and substitute query values with

<VAL> token.

 Obtain the token sequence for each query parameter in a

URL by splitting query parameters of the URL by non-word

characters, and replacing numerical values with <NV> token

and string values with <SV> token in query values.

 Insert <START> token at the beginning of and append

<END> token at the end of each sequence.

 Construct a vocabulary using training data with the least

 frequent tokens dropped.

 Look up every token of sequences in vocabulary built before

and substitute tokens which are not in vocabulary with

<UNK> token.

Replacing the least frequent tokens with <UNK> token

enables our model to deal with out-of-vocabulary tokens. For

instance, in the URLs that link to static resources like

/path/to/cat.jpg the name of static resources might change

constantly. It is possible that the filenames are not included in

training set. Without the <UNK> token, the model has no idea

what to do with unexpected tokens. Figures 2 gives an example

about how a URL is tokenized. Because our model is designed to

protect a single web application in which the host name and the

port number will not change, the host and port parts are

abandoned during URL tokenizing.

Figure 2. One example about how a URL is tokenized

4.2 WORD EMBEDDING
The benefits of word embedding were mentioned in [11]. It is a

concept from natural language processing where words are

mapped to vectors of real numbers. Compared with one-hot

encoding which uses one dimension for each word in the

vocabulary, word embedding represents word in a continuous

vector space with much lower dimension. Additionally, words

with semantic similarities tend to be nearby in the vector space of

word embedding after training. In the context of web anomaly

detection, this can be applied as tokens appearing in a similar

structure are more likely to have a closer proximity. Our model

could benefit from those two aspects. A look-up table for tokens is

constructed where the row represents the embedding vector

 of . Formally, it can be written as below:

where is an one-hot vector derived from token ,

 is the lookup table. V represents the vocabulary

size and D is the feature size of the feature vector.

4.3 RECURRENT NEURAL NETWORK
The RNN is a type of artificial neural networks which are

applicable to sequential inputs. It is supposed to be able to connect

things happened previously to the present task by storing

environment information in an inner state. Additionally, since

they are recurrent, they can handle arbitrary length of sequences

easily as well as output a value at each timestep. In our model the

RNN is used to output the occurrence probability of the token at

every timestep. In other words, the RNN is used to memorize the

patterns of normal URLs.The input at timestamp is defined as

 and the label or the excepted

value is . Let
 be a hidden state in layer at

time in our stacked multilayer RNN model where H is the

dimension of hidden states. Then
 is calculated as below:

where L is the number of RNN layers. Figure 3 roughly explains

the structure of the RNN we used. And the rnn function in vanilla

RNNs isusually:

Figure 3. Structure of unfolded recurrent neural network

The output of the RNN at every timestep is expected to be a

vector of which the length is the vocabulary size so that each

value in the vector represents the occurrence probability. But the

output of the RNN network
 is in . To bridge this gap a

projection matrix is constructed. The is

defined as:

Using vanilla RNNs might face the difficulty called the vanishing

gradient problem [12] during training. This problem can be solved

by using delicate unit design such as the LSTM structure or the

GRU structure. According to [13] these gated RNNs like the

82

LSTM-RNN and GRU-RNN are better than vanilla RNNs in

performance.

4.4 LONG-SHORT TERN MEMORY
The Long-Short Term Memory is proposed by Hochreiter et al.[14]

in 1997 to make the RNN learn to store information over extended

time intervals more quickly. Here, we adopt the LSTM variant

similar to [15] but without peep-hole connections. The LSTM-

RNN has the ability to remember values for either long or short

duration of time as indicated in its name. In our case considering a

long URL /path/z…/y?b=2&h=2&z=1 where the occurrence of

last query key is only dependent on the second part of the path, it

is hard for vanilla RNN to learn this association quickly due to

every timestep's information counts in vanilla RNNs. But for the

RNN with the LSTM structure it is much easier since it can

choose to forget information in between. At timestep the inputs

of LSTM cell are the hidden state of LSTM cell from beneath

layer
 , the hidden state of LSTM cell from previous

timestep
 and so called cell state of LSTM cell from previous

timestep
 . First we compute cell information

 which is

going to be used to update the cell state. Then a forget gate
 used

to decide what information is thrown away from
 is computed.

Next, an input gate
 used to decide which part of information is

useful in
 is calculated. Afterward current LSTM cell state

 is

computed under the help of
 ,

 and
 . Subsequently an

output gate
 is computed to determine what information is going

to output. Finally, the output of LSTM cell
 is obtained using

and
 . The formal procedure is as follows:

where denotes element wise operations and sigmoid function

is defined as

 and hyperbolic tangent function tanh is

defined as

 . Here,
 ,

 and
 are trainable

parameters.

4.5 GATED RECURRENT UNIT
The Gated Recurrent Unit was introduced by Cho et al. [16]

recently to capture dependencies over various time intervals. It is

similar to the LSTM but has a simpler structure. Compared with

the LSTM, the GRU does not have a separate cell state as well as

the output gate. Instead the GRU uses the update gate
 and reset

gate
 the former of which functions like combination of the input

and forget gates in the LSTM and the latter of which is like

deciding what information should be used to make up candidate

activation. Similarly, the inputs of GRU cell at timestep are the

activation of GRU cell from beneath layer
 and the activation

of GRU cell from previous timestep
 . The

 and
 are the

candidate activation and activation respectively while
 ,

 and

 are parameters to learn. The formal definition is as below:

4.6 MULTILAYER PERCEPTRON
Given the probability sequences of URLs calculated by our RNNs,

it is still not straightforward for some URLs to determine whether

it is normal. Hence the Multilayer Perceptron (MLP) is adopted.

The MLP is a feedforward artificial neural network. It is supposed

to learn how to distinguish occurrence probability sequences of

normal and anomalous URLs.

It supervisedly learns a function
 where

 and is the fixed length vector

occurrence probability sequences derived from and

 . The process of our K layers MLP is as follows:

where represents the weight matrix and represents the bias

vector. The max function is the activation function which provides

the non-linearity and the argmax function is to obtain the index of

the maximum value.

5. EXPERIMENTS
Our model was tested on two datasets. One is a public available

dataset developed by Carmen et al. [17] at the “Information

Security Institute” of Spanish Research National Council (CSIC),

and the other is a dataset consisting of extracted URLs from WAF

log files. Our model will be trained and tuned on the training set

and test set is only used when assessing the performance of our

model.

5.1 Datasets
The first dataset we used is HTTP dataset CSIC [17] which

contains generated HTTP traffic targeted to an E-commerce

website. There are 36,000 normal requests and more than 25,000

anomalous requests in this dataset. All anomalous requests are

categorized into static attacks which try to visit hidden (or non-

existent) resources, dynamic attacks which include SQL injection,

CRLF injection, cross-site scripting, buffer overflows and

unintentional illegal requests such as not having the same

structure as normal parameter values. Since our focus is on URLs

of GET Requests, we extract the URLs of GET requests from the

CSIC dataset and remove duplicated URLs to form a new dataset.

Also the new dataset is randomly split into a training set and a test

set. The trimmed dataset from CSIC is described in Table 1:

Table 1. Trimmed HTTP DATASET CSIC 2010

Type Training Set Test Set Total

Normal 7464 1866 9330

 Static Attacks 941 246 1187

Anomalous Dynamic Attacks 2651 662 3313

 Illegal Requests 2900 715 3615

Another dataset is generated from HTTP traffic recorded by the

WAF. In order to get a larger dataset without duplicated items,

URLs from different domains are merged by unifying domain

names, resource paths and attribute keys. As a result, a total of

83

2500 anomalous and 2500 normal unique URLs are collected

among which all of anomalies are dynamic attacks. The dataset is

also separated into training set and test set as in Table 2 for model

validating purposes.

Table 2. Dataset from the WAF logs

Type Training Set Test Set Total

Normal 2000 500 2500

Anomalous 2000 500 2500

5.2 PERFORMANCE MEASUREMENTRS
The performance of models is measured in terms of accuracy,

sensitivity and specificity. The accuracy measurement shows the

model's capability to correctly classify data. But in security field a

high false positive rate is intolerable, as a very small rate of false

positives can quickly render an intrusion detection system

unusable [18]. Hence the sensitivity measurement is used to test

the model's ability to detect anomalies from all anomalous data

and the specificity denotes the percentage of accurately detected

normal data among all normal data.

5.3 RESULTS
We tested our model ten times and the mean of results on each

dataset were used. Afterwards we compared our model with the

WAF which is ModSecurity 2.7.7 powered by CRS Version 2.2.8

embedded in Apache web server as well as other approaches on

CSIC Dataset. We only compared our model without RNN, our

model with the GRU and our model with LSTM on WAF logs

dataset.

The results on the CSIC dataset are described in Table 3 which

includes classification performances of SOM, C4.5, Naive Bayes,

X-means and EM approaches evaluated in[8]1. It turned out our

model outperformed all other models on the CSIC dataset in terms

of accuracy. In other measurements our model was also

competitive. The WAF reported almost zero false negative rate on

the CSIC dataset which is stunning. However, the sensitivity of

WAF was far too low. The reasons for this low sensitivity are: 1)

the WAF can barely detect anomalies like visiting non-existing

resources, changing keys or order of query parameters and wrong

formats of query parameter values; 2) dynamic attacks can find

their way to bypass WAF by changing keywords or encoding

themselves multiple times. The C4.5 reported the highest

sensitivity while performed poor in terms of specificity. Our

model with LSTM achieved the best result in accuracy and also

showed quite good sensitivity and specificity which are 97.56%

and 99.21% respectively.

The RNN module of our model has proved itself important to our

model. On both datasets our model exceled the one without RNN

module. Between the GRU-RNN and the LSTM-RNN it is hard to

decide which is better because the performance is so close. On the

CSIC dataset our model with the LSTM-RNN defeated the one

1 Performances on HTTP GET data of models implemented by us

are not as good as those in [8]. Hence, we used their results.

with the GRU-RNN. And the LSTM-RNN won by 0.54% in

accuracy, 0.34% in sensitivity and 0.76% in specificity. But on the

WAF logs dataset the opposite condition occurred which was that

our model with the GRU-RNN outperformed the one with the

LSTM-RNN by 0.18% in accuracy, 0.22% in sensitivity and 0.14%

in specificity.

Table 3. Comparison on CSIC dataset

Method Accuracy Sensitivity Specificity

ModSecurity with CRS 0.5520 0.0436 0.9941

EM 0.7486 0.7516 0.7478

X-means 0.7493 0.6837 0.9865

Naïve Bayes 0.8408 0.5235 0.9286

SOM 0.9282 0.9497 0.9242

C4.5 0.9650 0.9914 0.8697

Our model without RNN 0.8515 0.7403 0.9546

Our model with GRU 0.9788 0.9722 0.9845

Our model with LSTM 0.9842 0.9756 0.9921

Table 4. Comparison on WAF logs dataset

Method Accuracy Sensitivity Specificity

Our model without RNN 0.9475 0.9462 0.9488

Our model with GRU 0.9856 0.9880 0.9832

Our model with LSTM 0.9838 0.9858 0.9818

5.4 DISCUSSIONS
Our model achieved quite a good result, which was above 98%

accuracy in both datasets and no measurement was below 97.5%.

It is truly beyond our expectations. In the WAF's defense we did

not deploy the commercial rules and for the convenience of

testing we only enabled SQL Injection, XSS and several other

types of rule files which we think are related with the attack types

in the datasets.

Interestingly, if we quantify our model's familiarity toward each

token in URL sequences by the negative logarithm of

corresponding probability computed by our model, we can obtain

Figure 4 and 5. In every normal URL, the familiarity value of

each token is relatively small while there is at least one quite large

familiarity value in anomalous URLs which forms the pike in

Figure 4 and 5. It showed our model could memory the normal

URL patterns.

Figure 4. RNN’s familiarities toward 9 normal URLs (Left)

and 9 anomalous URLs (Right) in CSIC test dataset. All

samples are randomly picked. The x-axis which ranges from 0

to 105 represents the index of familiarity sequence and the

y-axis which ranges from -1 to 35 represents the value of the

familiarity metric calculated by the corresponding RNN. The

values equal to -1 indicate padded positions in the token

sequence.

84

Figure 5. RNN’s familiarities toward 9 normal URLs (Left)

and 9 anomalous URLs (Right) in WAF logs test dataset. All

samples are randomly picked. The x-axis which ranges from 0

to 160 represents the index of familiarity sequence and the y-

axis which ranges from -1 to 15 represents the value of the

familiarity metric calculated by the corresponding RNN. The

values equal to -1 indicate padded positions in the token

sequence.

Our model also has its limitations. First of all, after inspecting the

misclassified URLs, it seems our model cannot handle some kinds

of long URLs very well. Secondly, we cannot come up with a

method to dynamically leverage our model between the true

positive rate and the false positive rate after deploying on the

condition that we want to keep the RNN + MLP architecture. For

example, other models often have a threshold value, and by

modifying the threshold value dynamically they can sacrifice the

specificity to enhance the sensitivity at runtime.

6. CONCLUSIONS
In this work we proposed a novel anomaly detection approach for

web applications which leveraged the RNN with a delicate cell

structure such as the LSTM and GRU to learn patterns of normal

requests, which then used a MLP classifier to predict whether a

request is normal or anomalous based on the outputs of the RNNs

mentioned above. Our model was tested on two datasets. The

results showed that the performance of our model was competitive

with the state-of-the-art.

7. ACKNOWLEDGMENTS
This work is fully supported by National Engineering Research

Center for Software Engineering of Peking University.

8. REFERENCES
[1] TopOWASP.2017.Top10-

2017.TheTenMostCriticalWebApplicationSecurity Risks

(2017).

[2] OWASP. 2017. SQL Injection Bypassing WAF. (2017).

Retrieved May 6, 2017 fromhttps://www.owasp.org/ind

ex.php/SQL_Injection_Bypassing_WAF

[3] a olLupt . 2011. Bypassing Web Application Firewalls.

In Proceedings of 6th International Scientific Conference on

Security and Protection of Information. 79–88.

[4] Christopher Kruegel and Giovanni Vigna. 2003. Anomaly

detection of web- based attacks. In Proceedings of the 10th

ACM conference on Computer and communications security.

ACM, 251–261.9

[5] Michael Kirchner. 2010. A framework for detecting

anomalies in http traffic using instance-based learning and k-

nearest neighbor classification. In Security and

Communication Networks (IWSCN), 2010 2nd International

Workshop on. IEEE, 1–8.

[6] Kenneth L Ingham, Anil Somayaji, John Burge, and

Stephanie Forrest. 2007. Learning DFA representations of

HTTP for protecting web applications. Computer Networks

51, 5 (2007), 1239–1255

[7] Konrad Rieck and Pavel Laskov. 2006. Detecting unknown

network attacks using language models. In International

Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment. Springer, 74–90.

[8] Duc Le Jr. 2017. An Unsupervised Learning Approach for

Network and System Analysis. Master'sThesis. Dalhousie

University

[9] PankajMalhotra,LovekeshVig,GautamShroff,andPuneetAgar

wal.2015.Long short term memory networks for anomaly

detection in time series. In Proceedings. Presses

universitaires de Louvain, 89.

[10] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk,

Larry Masinter, Paul Leach, and Tim Berners-Lee. 1999.

Hypertext transfer protocol–HTTP/1.1. Technical Report.

[11] oshua engio,R ean ucharme,PascalVincent,andChristian

Jauvin.2003.A neural probabilistic language model. Journal

of machine learning research 3, Feb (2003), 1137–1155.

[12] Sepp Hochreiter. 1998. The vanishing gradient problem

during learning recurrent neural nets and problem solutions.

International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems 6, 02 (1998), 107–116.  

[13] Junyoung Chung, CaglarGulcehre, KyungHyun Cho, and

YoshuaBengio. 2014. Empirical evaluation of gated recurrent

neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555 (2014).

[14] Sepp ochreiteran rgenSchmi hu er.1997.Longshort-

termmemory.Neural computation 9, 8 (1997), 1735–1780.

[15] Graves Alex. 2013. Generating sequences with recurrent

neural networks. arXiv preprint arXiv:1308.0850 (2013).

[16] yunghyun Cho, art an erri n oer, DzmitryBahdanau,

and YoshuaBengio. 2014. On the properties of neural

machine translation: Encoder-decoder approaches. arXiv

preprint arXiv:1409.1259 (2014).

[17] C imnez, le an ro rez illegas, an aran n.

2010. HTTP data set CSIC 2010. (2010).

[18] Robin Sommer and Vern Paxson. 2010. Outside the closed

world: On using machine learning for network intrusion

detection. In Security and Privacy (SP), 2010 IEEE

Symposium on. IEEE, 305–316.

85

https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF
https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF

