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ABSTRACT 

As the era of cloud technology arises, more and more people are 

beginning to migrate their applications and personal data to the 

cloud.  This makes web-based applications an attractive target for 

cyber-attacks. As a result, web-based applications now need more 

protections than ever. However, current anomaly-based web 

attack detection approaches face the difficulties like unsatisfying 

accuracy and lack of generalization. And the rule-based web 

attack detection can hardly fight unknown attacks and is relatively 

easy to bypass. Therefore, we propose a novel deep learning 

approach to detect anomalous requests. Our approach is to first 

train two Recurrent Neural Networks (RNNs) with the 

complicated recurrent unit (LSTM unit or GRU unit) to learn the 

normal request patterns using only normal requests 

unsupervisedly and then supervisedly train a neural network 

classifier which takes the output of RNNs as the input to 

discriminate between anomalous and normal requests. We tested 

our model on two datasets and the results showed that our model 

was competitive with the state-of-the-art. Our approach frees us 

from feature selection. Also to the best of our knowledge, this is 

the first time that the RNN is applied on anomaly-based web 

attack detection systems.  

CCS Concepts 

• Security and privacy➝ Intrusion detection systems; 

• Computing methodologies➝Neural networks; • Security and 

privacy➝Web protocol security. 
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1. INTRODUCTION 
Web applications play an important role in people's daily life 

especially when people are starting to move their applications and 

personal data to the cloud. The prevalence of web applications 

and the large amounts of private user data being stored in them 

make themselves attractive attack targets. Hence protecting web 

applications from intrusions is vital. Among all kinds of 

vulnerabilities, HTTP request related vulnerabilities which are 

exploited by sending deliberately designed requests consists the 

largest portion. According to [1], injections such as SQL injection 

and Cross-Site Scripting are listed as the first and third most 

critical web application security risks. 

Generally, there are two approaches to detect attacks mentioned 

above. The first is the signature-based method, which is to look 

for specific attack patterns in requests; The second is anomaly-

based which is to establish normal request profiles so that 

anomalous requests can be discriminated from normal ones. The 

signature-based method is adopted more wildly than the anomaly-

based method because usually the signature-based one has lower 

false alarm rate and achieves higher accuracy. For example, 

ModSecurity, one popular open source Web Application Firewall 

(WAF), builds up OWASP ModSecurity Core Rule Set (CRS) 

containing a massive number of rules which can detect SQL 

Injection, Cross Site Scripting, HTTP Protocol Violations and etc. 

As effective as it is, the rule-based method is still problematic. 

Firstly, it is only as good as the extent of the rule set, which means 

it is incapable of identifying attacks that are not in its signature 

dataset. Secondly, bypassing WAF can be done easily by 

replacing keywords of existing malicious requests or encoding 

themselves multiple times [2][3]. Thirdly, extremely large attack 

pattern set or requests with long lengths consumes lots of 

computing resources to finish pattern comparing. 

In this paper we present a novel anomaly detection approach 

utilizing the RNN with the Long-Short Term Memory 

(LSTM)unit or Gated Recurrent Unit(GRU)unit. Our model takes 

Uniform Resource Locators (URLs) in the HTTP GET requests as 

the input. After the URLs are tokenized by following a certain 

strategy which reduces the variability while preserves the intrinsic 

information, two RNNs that have learned the normal request 

patterns output their "familiarities" with given URLs. And then a 

trained neural network decides whether given requests are 

anomalous based on the output of the RNNs. Our model is self-

learning and free of feature selection. It can be customized to 

learn normal request patterns for any specific web applications. 

The rest of the paper is structured as follows: Section 2 

summarizes recent related works on anomaly detection of web 

applications. In Section 3 we introduce the motivation. In Section 

4 we present the architecture of our model. In Section 5 we 

discuss the experiments in detail. Finally, we draw our 

conclusions in Section 6. 

2. RELATED WORKS 
Kruegel et al. [4] associated separated models with different 

features of a request such as query attribute length, attribute 

character distribution, attribute order and query attribute presence 
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and etc. Each model outputs a probability value for each attribute 

of a request which reflects the likelihood of the occurrence of the 

given feature value with regards to an established profile. The 

whole query is marked as anomalous if one or more features' 

probabilities exceed the determined threshold. The anomaly 

detection system proposed by Kirchner et al. [5] also used several 

classifiers as feature analyzers. However, K-nearest neighbor 

classification was adopted in Kirchner's approach, allowing for 

comparison of every request to be classified with all normal 

requests stored in the pool feature by feature. 

Ingham et al. [6] modeled token sequences parsed from normal 

requests using the Deterministic Finite Automata (DFA) in 

combination with rules. Malicious web requests are detected by 

determining similarities between a request and the DFA. 

Furthermore, Rieck et al. [7] proposed an anomaly detection 

method based on language model such as n-grams and a similarity 

measurement between n-gram sequences.  

Duc Le [8] explored the possibility of detecting anomaly via the 

Self Organizing Map (SOM) approach. This approach is believed 

to have the ability to form well-separated clusters for normal and 

abnormal requests according to the assumption of various kinds of 

requests having distinct behaviors.  

In domains other than web application security, the RNN is wildly 

employed to deal with time series problems. For example, 

Malhotra et al. [9] leveraged the LSTM-RNN on ECG, space 

shuttle, power demand, and multi-sensor engine datasets to detect 

anomalies. Unfortunately, web application anomaly detection 

systems based on RNNs are not available yet, to the best of our 

knowledge. Our model treats every URL as a token sequence in 

time order which is similar to [6] and [7]. But a new strategy is 

chosen to split the URL. Also, the RNN is used in a different way 

compared with those in other fields. Instead of predicting the next 

value and computing differences between the ground-truth value 

and predicted value as in [9], our model computes its "familiarity" 

with the token after being provided with all preceding tokens in 

the same token sequence. 

3. MOTIVATION 
In GET requests almost all anomalies are related to the URLs. A 

URL, also termed a web address as well, usually is composed of 

one absolute path and several query parameters. It always 

conforms to the syntax as follows [10]: 

"http:" "//" host [ ":" port ] [ abs_path [ "?" query ]] 

where abs_path is used to locate the resource and optional query 

string is used to pass parameters to the resource which always 

follows a question mark. 

We believe useful information that can help detect anomalies is 

stored in the order and values of URL sequence, from the 

perspective of treating a URL as a time series. For example, 

id=1/*union*/union/*select*/select+1,2,3/*is definitely an attack 

because a query parameter value consisting of special characters 

and words should not be appended after the equal sign, given that 

the value of id attribute usually is a numerical value. Also 

provided that email=who@me.com is normal, email=1 is 

considerably an anomaly because a numerical value does not 

comply with the format of email. A deliberately modified absolute 

path such as visiting hidden resources can lead to a static web 

attack, and delicately designed values of the query attribute suck 

as SQL Injection can cause a dynamic web attack. Given that web 

applications would generate almost all links for users to click, 

there is no reason for them to manually type a long URL. Hence 

changes on query parameter order and occasional absence of 

query values could be regarded as illegitimate.  

The principles in detecting anomalies in other types of requests 

like POST requests are similar. But extra efforts to handle 

different request formats are required. Hence we only focus on 

URLs of HTTP GET requests. 

4. ARCHITECTURE 
Our model first trains two RNNs using only tokenized normal 

URLs. Formally, training set of URLs is denoted as   
            where   represents the    URL.And    
     indicates  is an anomalous request when     . After the 

tokenizing procedure, 

           
   

   
   

   
   

    

             
   

    
   

    
   

        
   

    
   

    
   

        

are obtained where the   denotes the     token in the sequence. 

And structural information of the URL path is stored in 

       while structural information of the query parameters is in 

       within which each row represents one query parameter. 

To exploit continuous real-vector representation, each token   is 

mapped to a learned distributed feature vector              before 

being fed into the RNNs. This guarantees the ability not only to 

generalize compared with one-hot encoding but also to decrease 

the dimensions needed to represent a token. 

Separately, two RNNs are trained using normal requests so that 

the RNNs can "familiarize" with legitimate request patterns. One 

RNN is dedicated to the URL path structure patterns, and the 

other one concentrates on query parameter structure patterns. The 

training process can be analogized as asking the RNN to pick out 

the token which it thinks is most likely to occur next, with all 

prior tokens in the token sequence allowed to be seen. It can be 

described as the model taking                                        as the 

input and attempting to predict   . The model will be penalized if 

it makes a wrong choice. After training, the RNN is able to give 

the occurrence probability of the succeeding token as long as it is 

provided with all previous tokens in the sequence. Well-trained 

RNNs mark the end of the first phase. 

In the second phase, a neural network classifier is trained on 

               pairs to learn whether one URL is normal where 

constant-sized vector        is from             and            .  

Our model starts to report web anomalies once training process is 

completed and all learned parameters are fixed. The overall 

architecture of our model is summarized in Figure 1. Sections 

below discuss our model in detail. 

 

Figure 1. Overall architecture 
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4.1 URL TOKENIZING 
Apparently attacks or anomalies can be categorized into two types 

according to the place that does not conform to the normal 

patterns. The first type of anomalies has the abnormal query 

parameter structure which dynamic web attacks and wrong data 

formats belong to. The second type of anomalies has the 

anomalous URL path structure which static web attacks belong to. 

Hence two cases need to be taken into consideration. For URL 

path structure the authorized choices of path name and query 

attribute keys are limited, and the order between them are fixed. 

And for query parameter structure the possible query values are 

infinite. But luckily, although the variability of query values is 

high, they have to obey certain format rules. The URL tokenizing 

procedure is designed to capture the essential information in terms 

of URL path structure and query parameter structure and to reduce 

the variability. The general tokenizing procedure includes: 

 Decode URL and map all upper case letters in URL to lower 

case letters. 

 Obtain the token sequence of URL structure by parsing URL 

following certain rules and substitute query values with 

<VAL> token. 

 Obtain the token sequence for each query parameter in a 

URL by splitting query parameters of the URL by non-word 

characters, and replacing numerical values with <NV> token 

and string values with <SV> token in query values. 

 Insert <START> token at the beginning of and append 

<END> token at the end of each sequence.  

 Construct a vocabulary using training data with the least 

  frequent tokens dropped. 

 Look up every token of sequences in vocabulary built before 

and substitute tokens which are not in vocabulary with 

<UNK> token. 

Replacing the least    frequent tokens with <UNK> token 

enables our model to deal with out-of-vocabulary tokens. For 

instance, in the URLs that link to static resources like 

/path/to/cat.jpg the name of static resources might change 

constantly. It is possible that the filenames are not included in 

training set. Without the <UNK> token, the model has no idea 

what to do with unexpected tokens. Figures 2 gives an example 

about how a URL is tokenized. Because our model is designed to 

protect a single web application in which the host name and the 

port number will not change, the host and port parts are 

abandoned during URL tokenizing. 

 

Figure 2. One example about how a URL is tokenized 

4.2 WORD EMBEDDING 
The benefits of word embedding were mentioned in [11]. It is a 

concept from natural language processing where words are 

mapped to vectors of real numbers. Compared with one-hot 

encoding which uses one dimension for each word in the 

vocabulary, word embedding represents word in a continuous 

vector space with much lower dimension. Additionally, words 

with semantic similarities tend to be nearby in the vector space of 

word embedding after training. In the context of web anomaly 

detection, this can be applied as tokens appearing in a similar 

structure are more likely to have a closer proximity. Our model 

could benefit from those two aspects. A look-up table for tokens is 

constructed where the    row represents the embedding vector 

              of   . Formally, it can be written as below: 

                           

where        is an one-hot vector derived from token  , 

             is the lookup table. V represents the vocabulary 

size and D is the feature size of the feature vector. 

4.3 RECURRENT NEURAL NETWORK  
The RNN is a type of artificial neural networks which are 

applicable to sequential inputs. It is supposed to be able to connect 

things happened previously to the present task by storing 

environment information in an inner state. Additionally, since 

they are recurrent, they can handle arbitrary length of sequences 

easily as well as output a value at each timestep. In our model the 

RNN is used to output the occurrence probability of the token at 

every timestep. In other words, the RNN is used to memorize the 

patterns of normal URLs.The input at timestamp  is defined as 

                                          and the label or the excepted 

value is        . Let   
     be a hidden state in layer   at 

time   in our stacked multilayer RNN model where H is the 

dimension of hidden states. Then   
  is calculated as below: 

    
                        

    

    
          

          
        

where L is the number of RNN layers. Figure 3 roughly explains 

the structure of the RNN we used. And the rnn function in vanilla 

RNNs isusually: 

        
          

             
           

    

 

Figure 3. Structure of unfolded recurrent neural network 

The output of the RNN at every timestep is expected to be a 

vector of which the length is the vocabulary size so that each 

value in the vector represents the occurrence probability. But the 

output of the RNN network     
  is in   . To bridge this gap a 

projection matrix           is constructed. The           is 

defined as: 

                
       

          
  

                
  

                 
 
  

   

 

Using vanilla RNNs might face the difficulty called the vanishing 

gradient problem [12] during training. This problem can be solved 

by using delicate unit design such as the LSTM structure or the 

GRU structure. According to [13] these gated RNNs like the 
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LSTM-RNN and GRU-RNN are better than vanilla RNNs in 

performance. 

4.4 LONG-SHORT TERN MEMORY 
The Long-Short Term Memory is proposed by Hochreiter et al.[14] 

in 1997 to make the RNN learn to store information over extended 

time intervals more quickly. Here, we adopt the LSTM variant 

similar to [15] but without peep-hole connections. The LSTM-

RNN has the ability to remember values for either long or short 

duration of time as indicated in its name. In our case considering a 

long URL /path/z…/y?b=2&h=2&z=1 where the occurrence of 

last query key is only dependent on the second part of the path, it 

is hard for vanilla RNN to learn this association quickly due to 

every timestep's information counts in vanilla RNNs. But for the 

RNN with the LSTM structure it is much easier since it can 

choose to forget information in between. At timestep  the inputs 

of LSTM cell are the hidden state of LSTM cell from beneath 

layer     
   , the hidden state of LSTM cell from previous 

timestep      
  and so called cell state of LSTM cell from previous 

timestep      
 . First we compute cell information     

  which is 

going to be used to update the cell state. Then a forget gate    
 used 

to decide what information is thrown away from      
 is computed. 

Next, an input gate    
  used to decide which part of information is 

useful in     
 is calculated. Afterward current LSTM cell state    

  is 

computed under the help of      
 ,     

  and    
 . Subsequently an 

output gate    
 is computed to determine what information is going 

to output. Finally, the output of LSTM cell     
  is obtained using    

  

and    
 . The formal procedure is as follows: 

    
            

     
        

   
      

   

   
        

     
        

   
      

   

   
        

     
        

   
      

   

   
     

       
     

      
  

   
        

     
        

   
      

   

    
     

     
  

where   denotes element wise operations and sigmoid function   

is defined as      
 

      and hyperbolic tangent function tanh is 

defined as          
      

      . Here,   
 ,  

 and     
 are trainable 

parameters. 

4.5 GATED RECURRENT UNIT 
The Gated Recurrent Unit was introduced by Cho et al. [16] 

recently to capture dependencies over various time intervals. It is 

similar to the LSTM but has a simpler structure. Compared with 

the LSTM, the GRU does not have a separate cell state as well as 

the output gate. Instead the GRU uses the update gate    
  and reset 

gate    
 the former of which functions like combination of the input 

and forget gates in the LSTM and the latter of which is like 

deciding what information should be used to make up candidate 

activation. Similarly, the inputs of GRU cell at timestep   are the 

activation of GRU cell from beneath layer     
    and the activation 

of GRU cell from previous timestep       
 . The      

 and     
  are the 

candidate activation and activation respectively while   
 ,  

 and 

    
  are parameters to learn. The formal definition is as below: 

   
        

     
        

   
      

   

   
        

     
        

   
      

   

     
            

     
      

        
    

   

    
        

         
     

       
  

4.6 MULTILAYER PERCEPTRON 
Given the probability sequences of URLs calculated by our RNNs, 

it is still not straightforward for some URLs to determine whether 

it is normal. Hence the Multilayer Perceptron (MLP) is adopted. 

The MLP is a feedforward artificial neural network. It is supposed 

to learn how to distinguish occurrence probability sequences of 

normal and anomalous URLs. 

It supervisedly learns a function                   
     where 

                     and           is the fixed length vector 

occurrence probability sequences derived from             and 

           . The process of our K layers MLP is as follows: 

                                    

                                               

                               

where   represents the weight matrix and      represents the bias 

vector. The max function is the activation function which provides 

the non-linearity and the argmax function is to obtain the index of 

the maximum value. 

5. EXPERIMENTS 
Our model was tested on two datasets. One is a public available 

dataset developed by Carmen et al. [17] at the “Information 

Security Institute” of Spanish Research National Council (CSIC), 

and the other is a dataset consisting of extracted URLs from WAF 

log files. Our model will be trained and tuned on the training set 

and test set is only used when assessing the performance of our 

model. 

5.1 Datasets 
The first dataset we used is HTTP dataset CSIC [17] which 

contains generated HTTP traffic targeted to an E-commerce 

website. There are 36,000 normal requests and more than 25,000 

anomalous requests in this dataset. All anomalous requests are 

categorized into static attacks which try to visit hidden (or non-

existent) resources, dynamic attacks which include SQL injection, 

CRLF injection, cross-site scripting, buffer overflows and 

unintentional illegal requests such as not having the same 

structure as normal parameter values. Since our focus is on URLs 

of GET Requests, we extract the URLs of GET requests from the 

CSIC dataset and remove duplicated URLs to form a new dataset. 

Also the new dataset is randomly split into a training set and a test 

set. The trimmed dataset from CSIC is described in Table 1: 

Table 1. Trimmed HTTP DATASET CSIC 2010 

Type Training Set Test Set Total 

Normal  7464 1866 9330 

 Static Attacks 941 246 1187 

Anomalous Dynamic Attacks 2651 662 3313 

 Illegal Requests 2900 715 3615 

 

Another dataset is generated from HTTP traffic recorded by the 

WAF. In order to get a larger dataset without duplicated items, 

URLs from different domains are merged by unifying domain 

names, resource paths and attribute keys. As a result, a total of 
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2500 anomalous and 2500 normal unique URLs are collected 

among which all of anomalies are dynamic attacks. The dataset is 

also separated into training set and test set as in Table 2 for model 

validating purposes. 

Table 2. Dataset from the WAF logs 

Type Training Set Test Set Total 

Normal 2000 500 2500 

Anomalous 2000 500 2500 

 

5.2 PERFORMANCE MEASUREMENTRS 
The performance of models is measured in terms of accuracy, 

sensitivity and specificity. The accuracy measurement shows the 

model's capability to correctly classify data. But in security field a 

high false positive rate is intolerable, as a very small rate of false 

positives can quickly render an intrusion detection system 

unusable [18]. Hence the sensitivity measurement is used to test 

the model's ability to detect anomalies from all anomalous data 

and the specificity denotes the percentage of accurately detected 

normal data among all normal data. 

         
                                   

                     
 

            
                                        

                          
 

            
                                         

                           
 

5.3 RESULTS 
We tested our model ten times and the mean of results on each 

dataset were used. Afterwards we compared our model with the 

WAF which is ModSecurity 2.7.7 powered by CRS Version 2.2.8 

embedded in Apache web server as well as other approaches on 

CSIC Dataset. We only compared our model without RNN, our 

model with the GRU and our model with LSTM on WAF logs 

dataset. 

The results on the CSIC dataset are described in Table 3 which 

includes classification performances of SOM, C4.5, Naive Bayes, 

X-means and EM approaches evaluated in[8]1. It turned out our 

model outperformed all other models on the CSIC dataset in terms 

of accuracy. In other measurements our model was also 

competitive. The WAF reported almost zero false negative rate on 

the CSIC dataset which is stunning. However, the sensitivity of 

WAF was far too low. The reasons for this low sensitivity are: 1) 

the WAF can barely detect anomalies like visiting non-existing 

resources, changing keys or order of query parameters and wrong 

formats of query parameter values; 2) dynamic attacks can find 

their way to bypass WAF by changing keywords or encoding 

themselves multiple times. The C4.5 reported the highest 

sensitivity while performed poor in terms of specificity. Our 

model with LSTM achieved the best result in accuracy and also 

showed quite good sensitivity and specificity which are 97.56% 

and 99.21% respectively. 

The RNN module of our model has proved itself important to our 

model. On both datasets our model exceled the one without RNN 

module. Between the GRU-RNN and the LSTM-RNN it is hard to 

decide which is better because the performance is so close. On the 

CSIC dataset our model with the LSTM-RNN defeated the one 

                                                                 

1 Performances on HTTP GET data of models implemented by us 

are not as good as those in [8]. Hence, we used their results.  

with the GRU-RNN. And the LSTM-RNN won by 0.54% in 

accuracy, 0.34% in sensitivity and 0.76% in specificity. But on the 

WAF logs dataset the opposite condition occurred which was that 

our model with the GRU-RNN outperformed the one with the 

LSTM-RNN by 0.18% in accuracy, 0.22% in sensitivity and 0.14% 

in specificity. 

Table 3. Comparison on CSIC dataset 

Method Accuracy Sensitivity Specificity 

ModSecurity with CRS 0.5520 0.0436 0.9941 

EM 0.7486 0.7516 0.7478 

X-means 0.7493 0.6837 0.9865 

Naïve Bayes 0.8408 0.5235 0.9286 

SOM 0.9282 0.9497 0.9242 

C4.5 0.9650 0.9914 0.8697 

Our model without RNN 0.8515 0.7403 0.9546 

Our model with GRU 0.9788 0.9722 0.9845 

Our model with LSTM 0.9842 0.9756 0.9921 

Table 4. Comparison on WAF logs dataset 

Method Accuracy Sensitivity Specificity 

Our model without RNN 0.9475 0.9462 0.9488 

Our model with GRU 0.9856 0.9880 0.9832 

Our model with LSTM 0.9838 0.9858 0.9818 

5.4 DISCUSSIONS 
Our model achieved quite a good result, which was above 98% 

accuracy in both datasets and no measurement was below 97.5%. 

It is truly beyond our expectations. In the WAF's defense we did 

not deploy the commercial rules and for the convenience of 

testing we only enabled SQL Injection, XSS and several other 

types of rule files which we think are related with the attack types 

in the datasets. 

Interestingly, if we quantify our model's familiarity toward each 

token in URL sequences by the negative logarithm of 

corresponding probability computed by our model, we can obtain 

Figure 4 and 5. In every normal URL, the familiarity value of 

each token is relatively small while there is at least one quite large 

familiarity value in anomalous URLs which forms the pike in 

Figure 4 and 5. It showed our model could memory the normal 

URL patterns.  

  

Figure 4. RNN’s familiarities toward 9 normal URLs (Left) 

and 9 anomalous URLs (Right) in CSIC test dataset. All 

samples are randomly picked. The x-axis which ranges from 0 

to 105 represents the index of familiarity sequence     and the 

y-axis which ranges from -1 to 35 represents the value of the 

familiarity metric calculated by the corresponding RNN. The 

values equal to -1 indicate padded positions in the token 

sequence. 
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Figure 5. RNN’s familiarities toward 9 normal URLs (Left) 

and 9 anomalous URLs (Right) in WAF logs test dataset.  All 

samples are randomly picked. The x-axis which ranges from 0 

to 160 represents the index of familiarity sequence    and the y-

axis which ranges from -1 to 15 represents the value of the 

familiarity metric calculated by the corresponding RNN. The 

values equal to -1 indicate padded positions in the token 

sequence. 

Our model also has its limitations. First of all, after inspecting the 

misclassified URLs, it seems our model cannot handle some kinds 

of long URLs very well. Secondly, we cannot come up with a 

method to dynamically leverage our model between the true 

positive rate and the false positive rate after deploying on the 

condition that we want to keep the RNN + MLP architecture. For 

example, other models often have a threshold value, and by 

modifying the threshold value dynamically they can sacrifice the 

specificity to enhance the sensitivity at runtime. 

6. CONCLUSIONS 
In this work we proposed a novel anomaly detection approach for 

web applications which leveraged the RNN with a delicate cell 

structure such as the LSTM and GRU to learn patterns of normal 

requests, which then used a MLP classifier to predict whether a 

request is normal or anomalous based on the outputs of the RNNs 

mentioned above. Our model was tested on two datasets. The 

results showed that the performance of our model was competitive 

with the state-of-the-art. 
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