

－The present form of support vector machine（SVM）was largely developed at AT\＆T Bell Laboratories by Vapnik and co－workers．
－Known as a maximum margin classifier．
－Originally proposed for classification and soon applied to regression and time series prediction．
－One of the most efficient supervised learning methods．

- Given a set of training samples

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right), x_{i} \in R^{n}, y_{i} \in\{-1,1\}
$$

find a function $f(x, \alpha)$ to classify the samples, such that

$$
f\left(x_{i}, \alpha\right) \begin{cases}>0, & \forall y_{i}=+1 \\ <0, & \forall y_{i}=-1\end{cases}
$$

where α denotes the parameters.

- Given a set of training samples

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right), x_{i} \in R^{n}, y_{i} \in\{-1,1\}
$$

find a function $f(x, \alpha)$ to classify the samples, such that

$$
f\left(x_{i}, \alpha\right) \begin{cases}>0, & \forall y_{i}=+1 \\ <0, & \forall y_{i}=-1\end{cases}
$$

where α denotes the parameters.

- For a testing sample x, we can predict its label by $\operatorname{sign}[f(x, \alpha)]$.
- Given a set of training samples

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right), x_{i} \in R^{n}, y_{i} \in\{-1,1\}
$$

find a function $f(x, \alpha)$ to classify the samples, such that

$$
f\left(x_{i}, \alpha\right) \begin{cases}>0, & \forall y_{i}=+1 \\ <0, & \forall y_{i}=-1\end{cases}
$$

where α denotes the parameters.

- For a testing sample x, we can predict its label by $\operatorname{sign}[f(x, \alpha)]$.
- $f(x, \alpha)=0$ is called the separation hyperplane.

Linear classifiers

Linear hyperplane

$$
f(x, w, b)=\langle x, w\rangle+b=0
$$

Consider the linearly separable case, there are infinite number of hyperplanes that can do the job.

Linear classifiers

Linear hyperplane

$$
f(x, w, b)=\langle x, w\rangle+b=0
$$

Consider the linearly separable case, there are infinite number of hyperplanes that can do the job.

Linear classifiers

Linear hyperplane

$$
f(x, w, b)=\langle x, w\rangle+b=0
$$

Consider the linearly separable case, there are infinite number of hyperplanes that can do the job.

Linear classifiers

Linear hyperplane

$$
f(x, w, b)=\langle x, w\rangle+b=0
$$

Consider the linearly separable case, there are infinite number of hyperplanes that can do the job.

Margin of a linear classifier

Definition：the width that the boundary could be increased by before hitting a data point．

Maximum margin linear classifier

Definition: the linear classifier with the maximum margin.

Support vectors

To formulate the margin, we further requires that for all samples

$$
f\left(x_{i}, \alpha\right)=\left\langle x_{i}, w\right\rangle+b \begin{cases}\geq+1, & \forall y_{i}=+1 \\ \leq-1, & \forall y_{i}=-1\end{cases}
$$

or

$$
y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right) \geq 1, \quad i=1, \ldots, N
$$

To formulate the margin, we further requires that for all samples

$$
f\left(x_{i}, \alpha\right)=\left\langle x_{i}, w\right\rangle+b \begin{cases}\geq+1, & \forall y_{i}=+1 \\ \leq-1, & \forall y_{i}=-1\end{cases}
$$

or

$$
y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right) \geq 1, \quad i=1, \ldots, N
$$

- We have introduced two additional hyperplanes $\langle x, w\rangle+b= \pm 1$ parallel to the separation hyperplane $\langle x, w\rangle+b=0$

What is the margin? The distance between the two new hyperplanes.

What is the margin? The distance between the two new hyperplanes.

- The minimum distance between the hyperplane $\langle x, w\rangle+b=1$ and the origin is $\rho_{1}=\frac{1-b}{\|w\|}$. (why?)

What is the margin? The distance between the two new hyperplanes.

- The minimum distance between the hyperplane $\langle x, w\rangle+b=1$ and the origin is $\rho_{1}=\frac{1-b}{\|w\|}$. (why?)
- The minimum distance between the hyperplane $\langle x, w\rangle+b=-1$ and the origin is $\rho_{2}=\frac{-1-b}{\|w\|}$.

What is the margin? The distance between the two new hyperplanes.

- The minimum distance between the hyperplane $\langle x, w\rangle+b=1$ and the origin is $\rho_{1}=\frac{1-b}{\|w\|}$. (why?)
- The minimum distance between the hyperplane $\langle x, w\rangle+b=-1$ and the origin is $\rho_{2}=\frac{-1-b}{\|w\|}$.
- The margin is $\left|\rho_{1}-\rho_{2}\right|=2 /\|w\|$.

How to calculate ρ_{1} and ρ_{2} ?

Note $\bar{x}=\rho_{1} w /\|w\|$, where $w /\|w\|$ is the unit vector along the direction w. Since \bar{x} is on the blue hyperplane, then

$$
\left\langle\rho_{1} w /\|w\|, w\right\rangle+b=1
$$

which follows $\rho_{1}=\frac{1-b}{\|w\|}$. Similarly, we obtain $\rho_{2}=\frac{-1-b}{\|w\|}$.

Maximizing the margin is the same thing as minimizing the norm of \mathbf{w}

Our goal is to maximize the margin. Among all possible hyperplanes meeting the constraints, we will choose the hyperplane with the smallest $\|\mathbf{w}\|$ because it is the one which will have the biggest margin.

This give us the following optimization problem:

$$
\begin{gathered}
\text { Minimize in }(\mathbf{w}, b) \\
\|\mathbf{w}\| \\
\text { subject to } y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{\mathbf{i}}+b\right) \geq 1 \\
\text { (for any } i=1, \ldots, n)
\end{gathered}
$$

Solving this problem is like solving and equation. Once we have solved it, we will have found the couple (\mathbf{w}, b) for which $\|\mathbf{w}\|$ is the smallest possible and the constraints we fixed are met. Which means we will have the equation of the optimal hyperplane !

The kernel-based function is exactly equivalent to preprocessing the data by applying similarity function to all inputs, then learning a linear model in the new transformed space.

We start with the dataset in the above figure, and project it into a three-
dimensional space where the new coordinates are:

$$
\begin{aligned}
& X_{1}=x_{1}^{2} \\
& X_{2}=x_{2}^{2} \\
& X_{3}=\sqrt{2} x_{1} x_{2}
\end{aligned}
$$

This is what the projected data looks like. Do you see a place where we just might be able to slip in a plane?

0

45

0

\Rightarrow

4

0

0

As

4

a

n

4

0

A

ns

> N

0

$\$$

0

4

6

5

n

0

0

a

6

$\$$

$\$$

$\$$

0

4

0

3

The kernel-based function is exactly equivalent to preprocessing the data by applying similarity function to all inputs, then learning a linear model in the new transformed space.

Commonly used kernels

- Homogeneous polynomials

$$
k(x, y)=(\langle x, y\rangle)^{d}
$$

- Inhomogeneous polynomials

$$
k(x, y)=(\langle x, y\rangle+1)^{d}
$$

- Gaussian Kernel

$$
k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid Kernel

$$
k(x, y)=\tanh (\eta\langle x, y\rangle+v)
$$

Polynomial kernel

$$
k(x, y)=(\langle x, y\rangle)^{d}
$$

Example: $n=2, d=2, x=\left(x_{1}, x_{2}\right)$

- $\Phi(x)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)$

Polynomial kernel

$$
k(x, y)=(\langle x, y\rangle)^{d}
$$

Example: $n=2, d=2, x=\left(x_{1}, x_{2}\right)$

- $\Phi(x)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)$

- Neither the mapping Φ nor the feature space is unique
- $\Phi(x)=\left(x_{1}^{2}, x_{1} x_{2}, x_{1} x_{2}, x_{2}^{2}\right)$
- $\Phi(x)=\frac{1}{\sqrt{2}}\left(x_{1}^{2}-x_{2}^{2}, 2 x_{1} x_{2}, x_{1}^{2}+x_{2}^{2}\right)$

