Information Gain & Decision Trees

Slides adopted from **Data Mining for Business Analytics**

Lecture 3: Supervised Classification

Stern School of Business New York University Spring 2014

Supervised Classification

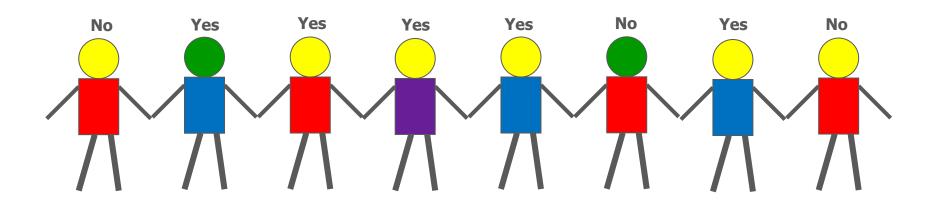
- How can we classify the population into groups that differ from each other with respect to some quantity of interest?
- Informative attributes
 - Find **knowable** attributes that correlate with the target of interest
 - Increase accuracy
 - Alleviate computational problems
 - E.g., tree induction

Supervised Classification

- How can we judge whether a variable contains important information about the target variable?
 - How much?

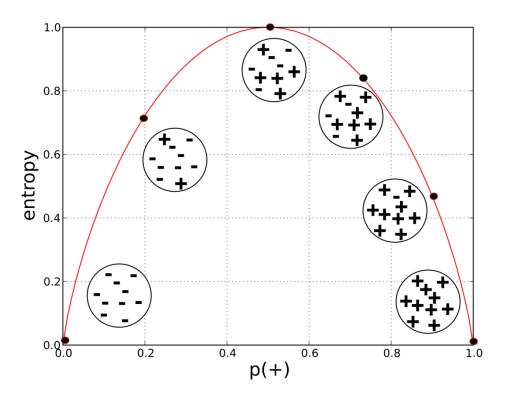
Selecting Informative Attributes

Objective: Based on customer attributes, partition the customers into subgroups that are less impure – with respect to the class (i.e., such that in each group as many instances as possible belong to the same class)



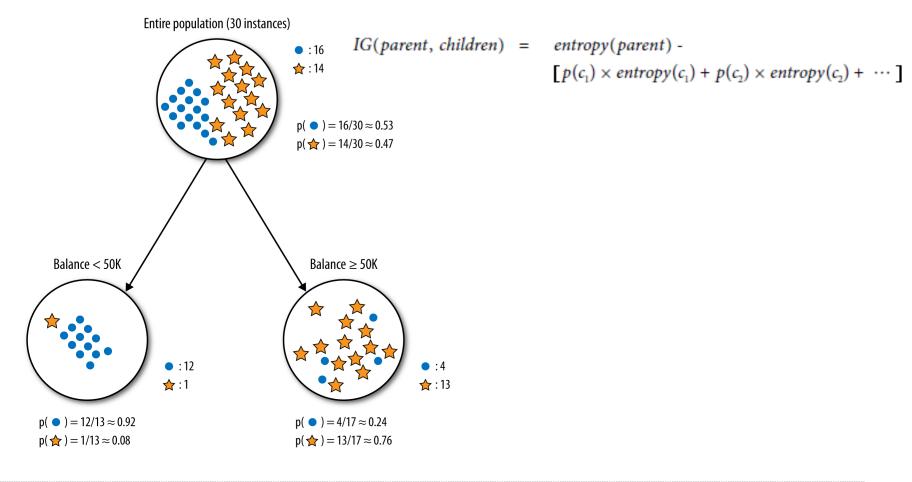
Selecting Informative Attributes

- The most common splitting criterion is called **information gain** (IG)
 - It is based on a purity measure called entropy
 - entropy = $-p_1 \log_2(p_1) p_2 \log_2(p_2) ..$
 - · Measures the general disorder of a set

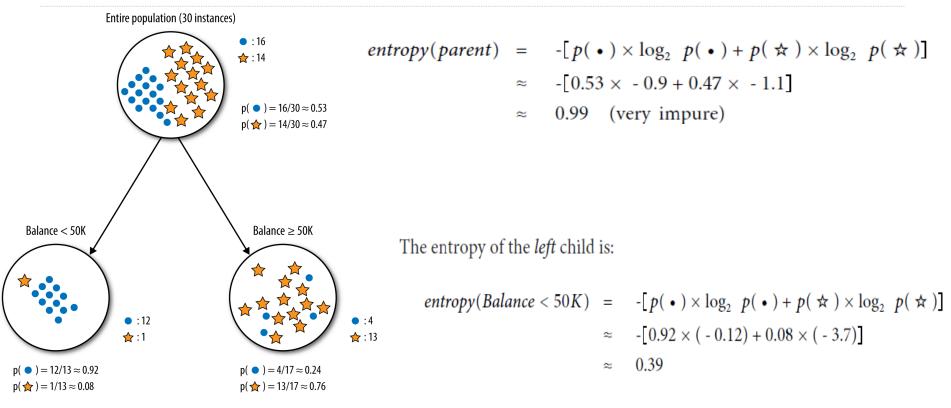


Information Gain

 Information gain measures the *change* in entropy due to any amount of new information being added



Information Gain



The entropy of the *right* child is:

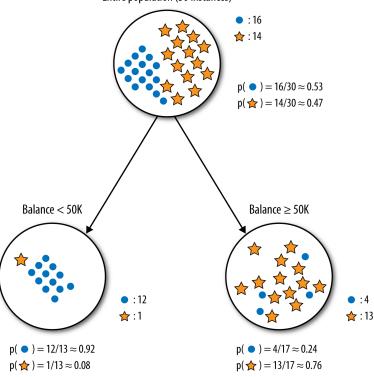
$$entropy(Balance \ge 50K) = -[p(\bullet) \times \log_2 p(\bullet) + p(\bigstar) \times \log_2 p(\bigstar)]$$

$$\approx -[0.24 \times (-2.1) + 0.76 \times (-0.39)]$$

=0.79

Information Gain

Entire population (30 instances)



 $IG = entropy(parent) - [p(Balance < 50K) \times entropy(Balance < 50K)$ $+ p(Balance \ge 50K) \times entropy(Balance \ge 50K)]$ $\approx 0.99 - [0.43 \times 0.39 + 0.57 \times 0.79]$ ≈ 0.37

Relative IG = IG/entropy(parent)=0.37/0.99=0.37

Attribute Selection

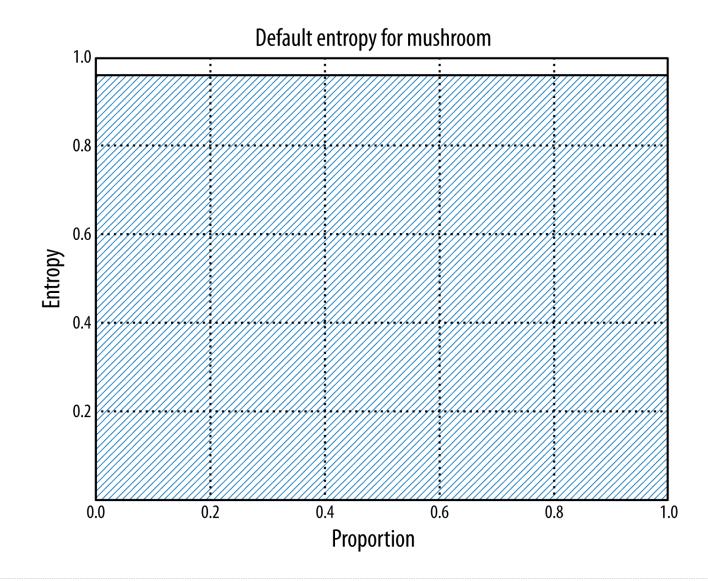
Reasons for selecting only a subset of attributes:

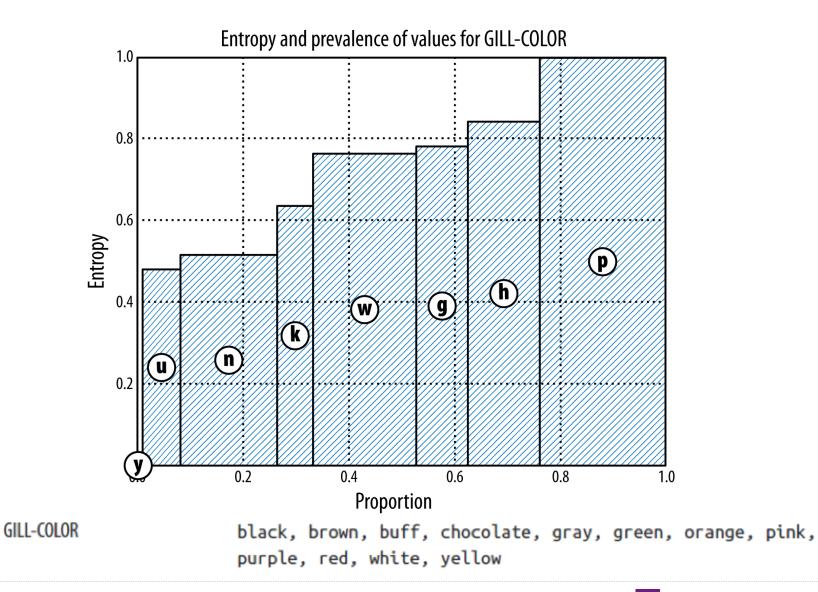
- Better insights and business understanding
- Better explanations and more tractable models
- Reduced cost
- Faster predictions
- Better predictions!
 - Over-fitting (to be continued..)

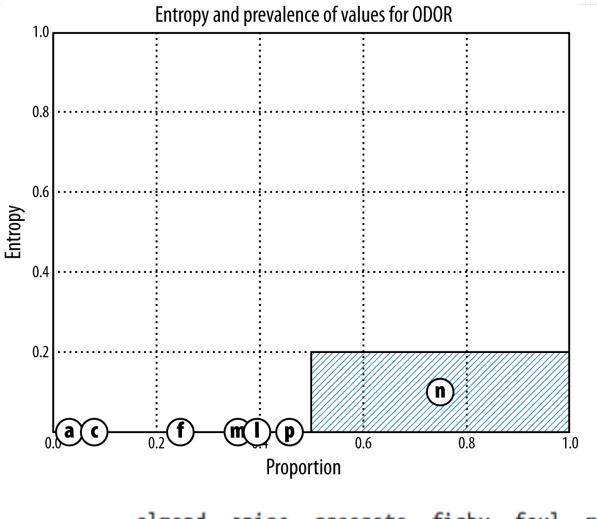
and also determining the most informative attributes.

- This dataset includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family
- Each species is identified as definitely edible, definitely poisonous, or of unknown edibility and not recommended
 - This latter class was combined with the poisonous one
- The Guide clearly states that there is no simple rule for determining the edibility of a mushroom; no rule like "leaflets three, let it be" for Poisonous Oak and Ivy

Attribute name	Possible values	MUSHROOM
CAP-SHAPE	bell, conical, convex, flat, knobbed,	
CAP-SURFACE	fibrous, grooves, scaly, smooth	cap scale
CAP-COLOR	brown, buff, cinnamon, gray, green, r white, yellow	gills tubes pores
BRUISES?	yes, no	ring
ODOR	almond, anise, creosote, fishy, foul, pungent, spicy	stipe, stalk
GILL-ATTACHMENT	attached, descending, free, notched	scales
GILL-SPACING GILL-SIZE	close, crowded, distant broad, narrow	volva www.infovisual.info
GILL-COLOR	black, brown, buff, chocolate, gray, green, orange, pink, purple, red, white, yellow	
STALK-SHAPE	enlarging, tapering	
STALK-ROOT	bulbous, club, cup, equal, rhizomorphs, rooted, missing	
STALK-SURFACE-ABOVE-RING	fibrous, scaly, silky, smooth	
STALK-SURFACE-BELOW-RING	fibrous, scaly, silky, smooth	







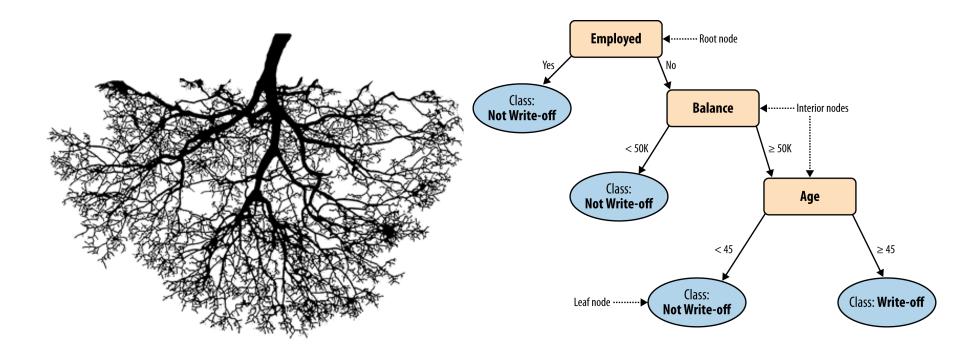
almond, anise, creosote, fishy, foul, musty, none, pungent, spicy

ODOR

Multivariate Supervised Classification

- If we select the *single* variable that gives the most information gain, we create a very *simple* classification
- If we select multiple attributes each giving some information gain, how do we put them together?

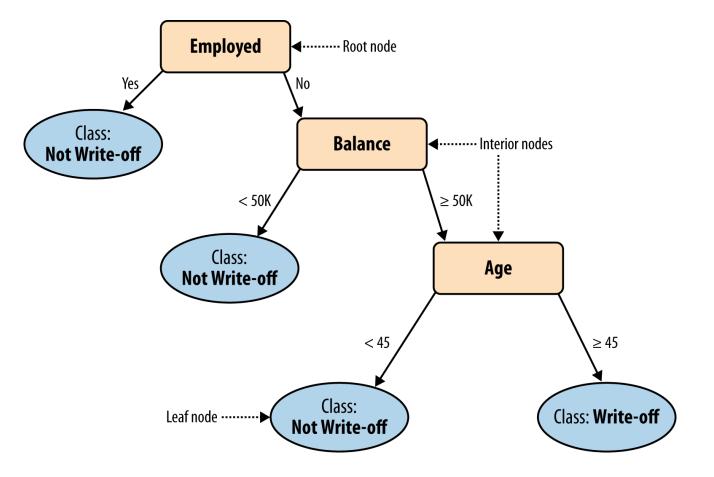
Tree-Structured Models



Write-off: not to pay off their account balances. i.e., defaulting on one's phone bill or credit card balance

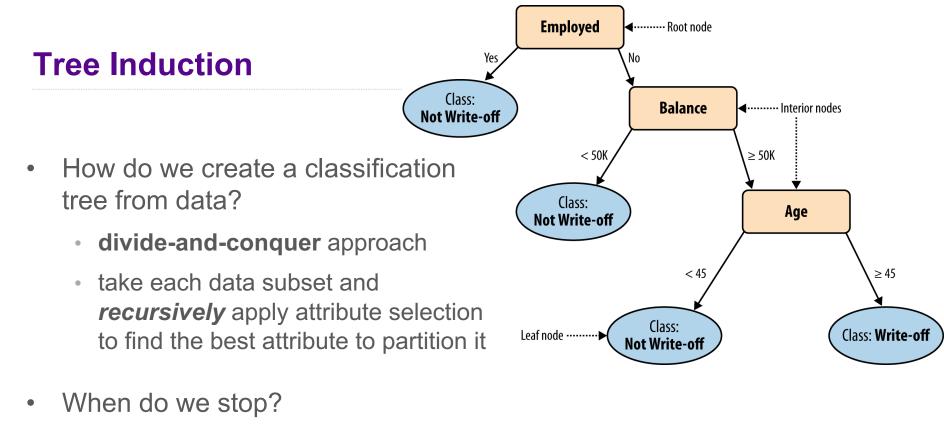
Tree-Structured Models

- Classify 'John Doe'
 - Balance=115K, Employed=No, and Age=40



Tree-Structured Models: "Rules"

- No two parents share descendants
- There are no cycles
- The branches always "point downwards"
- Every example always ends up at a leaf node with some specific class determination
 - Probability estimation trees, regression trees (to be continued..)



New York University

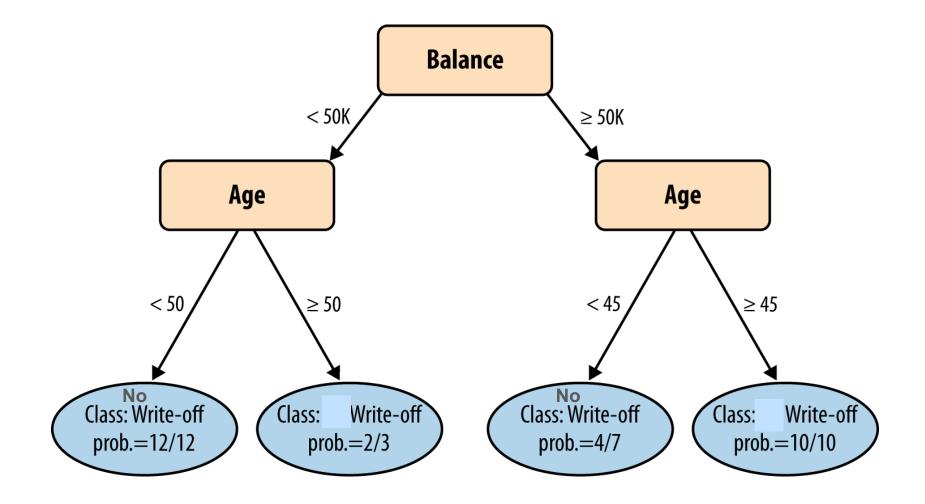
• The nodes are pure,

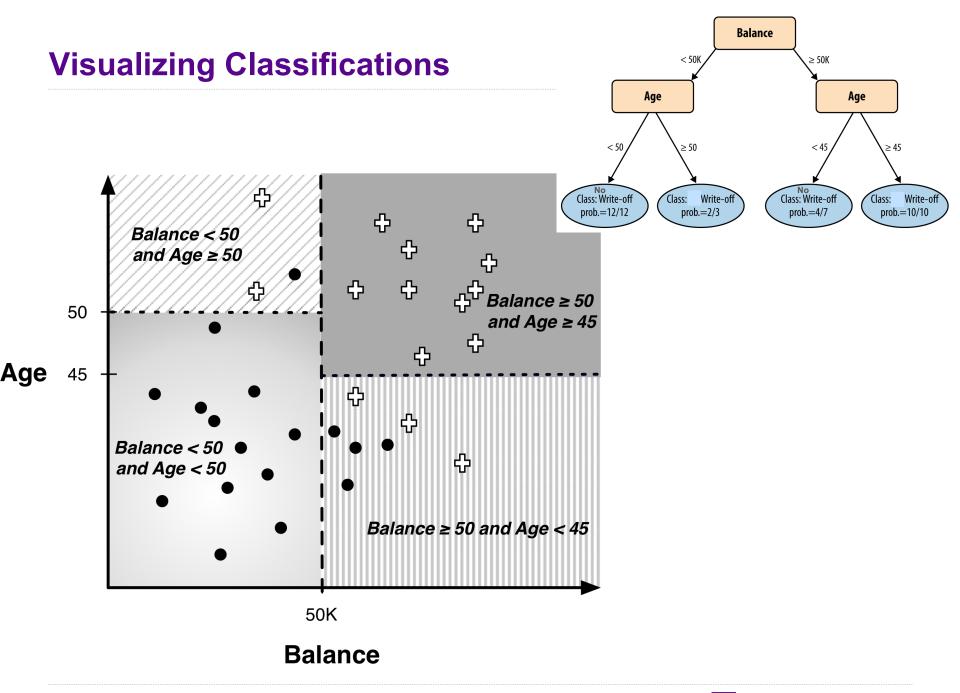
- there are no more variables, or
- even earlier (over-fitting to be continued..)

Why trees?

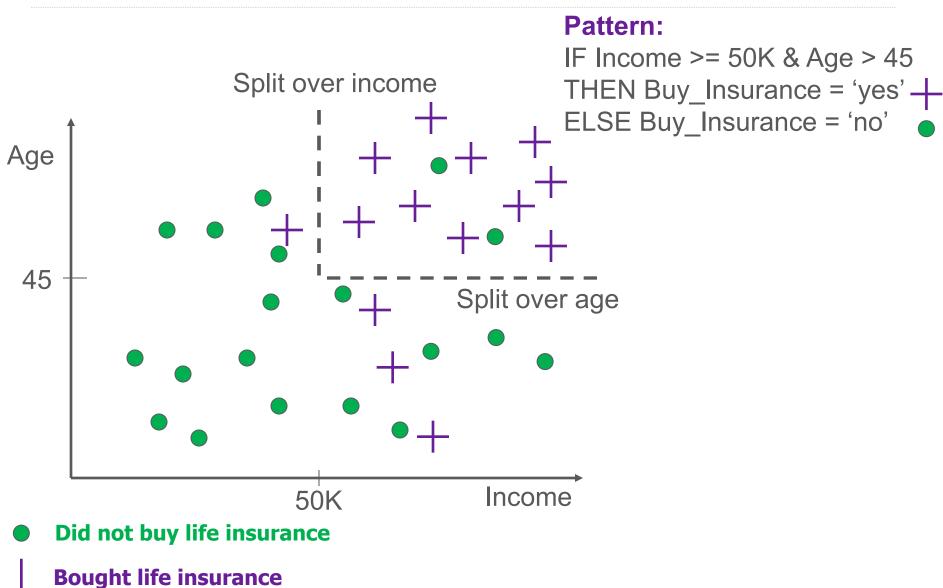
- Decision trees (DTs), or classification trees, are one of the most popular data mining tools
 - (along with linear and logistic regression)
- They are:
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap
- Almost all data mining packages include DTs
- They have advantages for model comprehensibility, which is important for:
 - model evaluation
 - communication to non-DM-savvy stakeholders

Visualizing Classifications



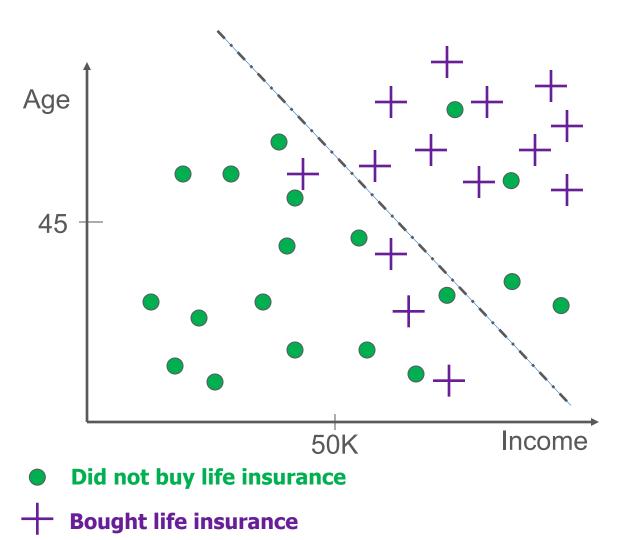


Geometric interpretation of a model



Geometric interpretation of a model

What alternatives are there to partitioning this way?

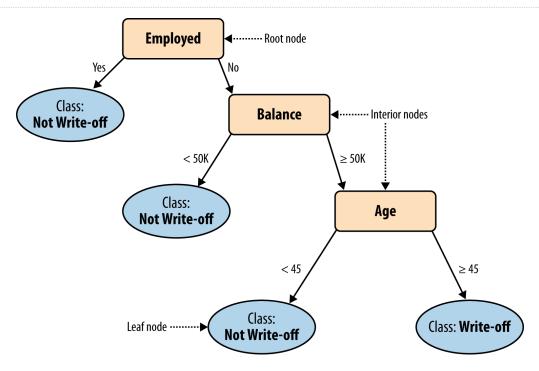


"True" boundary may not be closely approximated by a linear boundary!

Trees as Sets of Rules

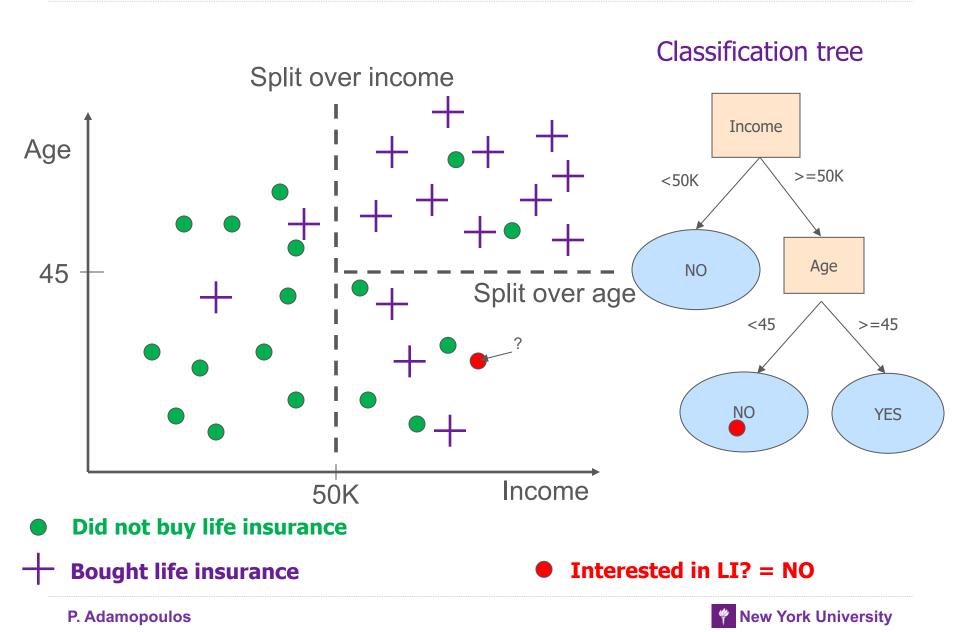
- The classification tree is equivalent to this rule set
- Each rule consists of the attribute tests along the path connected with AND

Trees as Sets of Rules: Interpretability

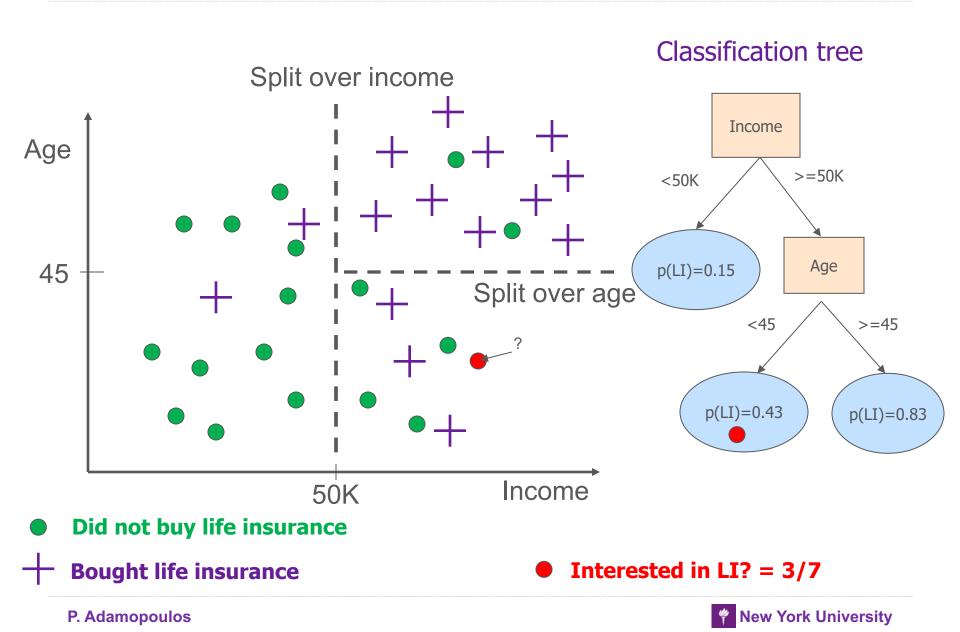


- IF (Employed = Yes) THEN Class=No Write-off
- IF (Employed = No) AND (Balance < 50k) THEN Class=No Write-off
- IF (Employed = No) AND (Balance ≥ 50k) AND (Age < 45) THEN Class=No Write-off
- IF (Employed = No) AND (Balance ≥ 50k) AND (Age ≥ 45) THEN Class=Write-off

What are we predicting?



What are we predicting?



Questions?

