Knowledge Graph Tutorial

Jay Pujara

jaypujara.org
jay@cs.umd.edu
@jay_mlr

Sameer Singh
sameersingh.org
sameer@uci.edu
@sameer_

Knowledge Graph Primer

TOPICS:

What is a Knowledge Graph?
Why are Knowledge Graphs Important?
Where do Knowledge Graphs come from?
Knowledge Representation Choices
Problem Overview

Knowledge Graph Primer

TOPICS:

What is a Knowledge Graph?

Why are Knowledge Graphs Important?
Where do Knowledge Graphs come from?
Knowledge Representation Choices
Problem Overview

Knowledge Graph

Essentially, KG is a sematic network, which models the entities (including properties) and the relation between each other.

What is a knowledge graph?

What is a knowledge graph?

- Knowledge in graph form!

What is a knowledge graph?

- Knowledge in graph form!
- Captures entities, attributes, and relationships

What is a knowledge graph?

- Knowledge in graph form!
- Captures entities, attributes, and relationships
- Nodes are entities

What is a knowledge graph?

- Knowledge in graph form!
- Captures entities, attributes, and relationships
- Nodes are entities
- Nodes are labeled with attributes (e.g., types)

What is a knowledge graph?

- Knowledge in graph form!
- Captures entities, attributes, and relationships
- Nodes are entities
- Nodes are labeled with attributes (e.g., types)
- Typed edges between two nodes capture a relationship
 between entities

Example knowledge graph

- Knowledge in graph form!
- Captures entities, attributes, and relationships
- Nodes are entities
- Nodes are labeled with attributes (e.g., types)
- Typed edges between two nodes capture a relationship
 between entities

Knowledge Graph Primer

TOPICS:
What is a Knowledge Graph?
Why are Knowledge Graphs Important?
Where do Knowledge Graphs come from?
Knowledge Representation Choices
Problem Overview

Why knowledge graphs?

- Humans:
- Combat information overload
- Explore via intuitive structure
- Tool for supporting knowledge-driven tasks
- Als:
- Key ingredient for many Al tasks
- Bridge from data to human semantics
- Use decades of work on graph analysis

Interdisciplinary Research

Database
RDF Database
Data Integration , Knowledge Fusion

Natural Language Processing Information Extraction Semantic Parsing

Machine Learning Knowledge Representation (Graph Embedding)

Knowledge Engineering
KB construction
Rule-based Reasoning

Knowledge Graphs \& Industry

- Google Knowledge Graph
- Google Knowledge Vault
- Amazon Product Graph
- Facebook Graph API
- IBM Watson
- Microsoft Satori
- Project Hanover/Literome
- LinkedIn Knowledge Graph
- Yandex Object Answer

- Diffbot, GraphIQ, Maana, ParseHub, Reactor Labs, SpazioDati

Knowledge Graph Primer

TOPICS:
What is a Knowledge Graph?
Why are Knowledge Graphs Important?
Where do Knowledge Graphs come from?
Knowledge Representation Choices
Problem Overview

Where do knowledge graphs come from?

Where do knowledge graphs come from?

- Structured Text

- Wikipedia Infoboxes, tables, databases, social nets

Where do knowledge graphs come from?

- Structured Text
- Wikipedia Infoboxes, tables, databases, social nets
- Unstructured Text
- WWW, news, social media, reference articles

Beatles last live performance

Published: Thursday January 26th 2017 5:24 am PST
Updated: Monday, January 30th 2017, 4:06 am PST
Written by Jim Eftink, Producer CONNECT

Where do knowledge graphs come from?

- Structured Text
- Wikipedia Infoboxes, tables, databases, social nets
- Unstructured Text
- WWW, news, social media, reference articles
- Images

Where do knowledge graphs come from?

- Structured Text
- Wikipedia Infoboxes, tables, databases, social nets
- Unstructured Text
- WWW, news, social media, reference articles
- Images
- Video
- YouTube, video feeds

The Beatles - Topic

BED PEACE starring John Lennon \& Yoko Ono
Yoko Onola
852,022 views

Knowledge Representation

- Decades of research into knowledge representation
- Most knowledge graph implementations use RDF triples
- <rdf:subject, rdf:predicate, rdf:object> : r(s,p,o)
- Temporal scoping, reification, and skolemization...
- ABox (assertions) versus TBox (terminology)
- Common ontological primitives
- rdfs:domain, rdfs:range, rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, ...
- owl:inverseOf, owl:TransitiveProperty, owl:FunctionalProperty, ...

Resource Description Framework (RDF)

- RDF is an de facto standard for Knowledge Graph (KG).
- RDF is a language for the conceptual modeling of information about web resources
- A building block of semantic web
- Make the information on the web and the interrelationships among
 them "Machine Understandable"

RDF and Semantic Web

- RDF is a language for the conceptual modeling of information about web resources
- A building block of semantic web
- Facilitates exchange of information
- Search engines can retrieve more relevant information
- Facilitates data integration (mashes)
- Machine understandable
- Understand the information on the web and the interrelationships among them

RDF Uses

- Yago and DBPedia extract facts from Wikipedia \& represent as RDF \rightarrow structural queries
- Communities build RDF data
- E.g., biologists: Bio2RDF and Uniprot RDF
- Web data integration
- Linked Data Cloud

RDF Data Volumes ...

- . . . are growing - and fast
- Linked data cloud currently consists of 325 datasets with >25 B triples
- Size almost doubling every year

April '14:
1091 datasets, ???
triples

Max Schmachtenberg, Christian Bizer, and Heiko Paulheim: Adoption of Linked Data Best Practices in Different Topical Domains. In Proc. ISWC, 2014.

RDF Introduction

- Everything is an uniquely named resource
- Namespaces can be used to scope the names
- Properties of resources can be defined
- Relationships with other resources can be defined
- Resources can be contributed by different people/groups and can be located anywhere in the web
- Integrated web "database"

Abraham_Lincoln:hasName "Abraham Lincoln" Abraham_Lincoln:BфrnOnDate: "1809-02-12" Abraham_Lincoln:DiedOnDate: "1865-04-15"

Abraham_Lincoln:Diedln
y :Washington_DC

RDF Data Model

- Triple: Subject, Predicate (Property), Object (s, p, o)

Subject: the entity that is described (URI or blank node)
Predicate: a feature of the entity (URI) Object: value of the feature (URI, blank node or literal)

- $(s, p, o) \in(U \cup B) \times U \times(U \cup B \cup L)$

- Set of RDF triples is called an RDF graph

Subject	Predicate	Object
Abraham_Lincoln	hasName	"Abraham Lincoln"
Abraham_Lincoln	BornOnDate	"1809-02-12"
Abraham_Lincoln	DiedOnDate	"1865-04-15"

RDF Example Instance

Prefix: y=http://en.wikipedia.org/wiki

RDF Graph

A Distributed RDF Graph

Representative graph processing systems

		Property graphs	Online query	Data sharding	In-memory storage	Atomicity \& Transaction
*	Neo4j	Yes	Yes	No	No	Yes
+	Trinity	Yes	Yes	Yes	Yes	Atomicity
+	Horton	Yes	Yes	Yes	Yes	No
+	HyperGraphDB	No	Yes	No	No	Yes
+	FlockDB	No	Yes	Yes	No	Yes
\star	TinkerGraph	Yes	Yes	No	Yes	No
+	InfiniteGraph	Yes	Yes	Yes	No	Yes
*	Cayley	Yes	Yes	SB	SB	Yes
\star	Titan	Yes	Yes	SB	SB	Yes
*	MapReduce	No	No	Yes	No	No
*	PEGASUS	No	No	Yes	No	No
+	Pregel	No	No	Yes	No	No
*	Giraph	No	No	Yes	No	No
*	GraphLab	No	No	Yes	No	No
*	GraphChi	No	No	No	No	No
\star	GraphX	No	No	Yes	No	No

DB-Engines Ranking of Graph

 DBMS- Cypher query language is used by Neo4j.
- Gremlin is used by most of graph DBMSs.
- GSQL is used by TigerGraph.

Rank	DBMS	Database Model	Score		
Sep Aug Sep 201820182017					$\begin{gathered} \text { Sep } \\ 2017 \end{gathered}$
1. 1. 1.	Neo4j ${ }_{\text {H }}$	Graph DBMS	40.10		+1.67
2. 2. 2.	Microsoft Azure Cosmos DB \dagger	Multi-model [i]	19.18		+7.95
3. 3.	Datastax Enterprise ${ }_{\text {+ }}$	Multi-model $\mathbf{7}^{\text {I }}$			
4. 4. $\downarrow 3$.	OrientDB [Multi-model [i] $^{\text {a }}$	5.48		-0.42
5. 5. 5.	ArangoDB	Multi-model [i]	4.05	+0.71	+1.05
6. 6. 6.	Virtuoso	Multi-model [i]			-0.17
7. $\uparrow 8$.	Amazon Neptune	Multi-mode [i]	1.12	+0.31	
8. $\downarrow 7 . \downarrow 7$.	Giraph	Graph DBMS	1.02		-0.05
9. $\uparrow 11 . \uparrow 16$.	JanusGraph	Graph DBMS		+0.36	+0.68
10. 10. $\downarrow 9$.	GraphDB ${ }_{\text {H }}$	Multi-model [i] $^{\text {a }}$	0.63	+0.06	+0.02
11. $\downarrow 9 . \downarrow 8$.	AllegroGraph \dagger	Multi-model $\mathbf{7}^{\text {I }}$			
12. 12. $\downarrow 10$.	Stardog	Multi-model [i]			-0.04
13. $\uparrow 17.13$.	Dgraph	Graph DBMS	0.41	+0.17	+0.14
14. $\uparrow 15 . \uparrow 15$.	Blazegraph	Multi-model [i] $^{\text {a }}$	0.36	+0.08	+0.12
15. $\downarrow 13 . \downarrow 11$.	Sqrrl	Multi-model [i] $^{\text {a }}$	0.34		
16. $16 . \downarrow 14$.	Graph Engine	Multi-model [i] $^{\text {a }}$	0.29	+0.02	+0.02
17. $\downarrow 14 . \downarrow 12$.	InfiniteGraph	Graph DBMS	0.28	-0.02	-0.01
18. 18.	TigerGraph \#	Graph DBMS			
19. 19. 19.	FaunaDB \#	Multi-model [i]	0.17	+0.02	$+0.00$
20. \uparrow 21. $\uparrow 22$.	Velocity DB	Multi-model [i]	0.14	+0.01	+0.03

Knowledge Graph Primer

TOPICS:

What is a Knowledge Graph?
Why are Knowledge Graphs Important?
Where do Knowledge Graphs come from?
Knowledge Representation Choices
Problem Overview

What is a knowledge graph?

- Knowledge in graph form!
- Captures entities, attributes, and relationships
- Nodes are entities
- Nodes are labeled with attributes (e.g., types)
- Typed edges between two nodes capture a relationship
 between entities

Basic problems

Basic problems

- Who are the entities (nodes) in the graph?

Basic problems

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?

Basic problems

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- How are they related (edges)?

Basic problems

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- How are they related (edges)?

Knowledge Graph Construction

Two perspectives

	Extraction graph	Knowledge graph
Who are the entities? (nodes)	- Named Entity Recognition - Entity Coreference	- Entity Linking - Entity Resolution
What are their attributes? (labels)	- Entity Typing	- Collective classification
How are they related? (edges)	- Semantic role labeling - Relation Extraction	- Link prediction

What is NLP?

Unstructured
Ambiguous
Lots and lots of it!

Humans can read them, but
... very slowly
... can't remember all
... can't answer questions

Structured
Precise, Actionable
Specific to the task

Can be used for downstream applications, such as creating Knowledge Graphs!

Knowledge Extraction

John was born in Liverpool, to Julia and Alfred Lennon.

Breaking it Down

Entity resolution, Entity linking, Relation extraction...

Lennon.. John Lennon...
the Pool
Mrs. Lennon.. his father .. his mother .. he Alfred

Dependency Parsing, Part of speech tagging, Named entity recognition...

John was born in Liverpool, to Julia and Alfred Lennon.

Tagging the Parts of Speech

NNP	VBo	veo	w	NNP	To	NNP	cc	NNP	NNP

John was born in Liverpool, to Julia and Alfred Lennon.

Nouns are entities
Verbs are relations

- Common approaches include CRFs, CNNs, LSTMs

Detecting Named Entities

Person
Person
Person
John was born in Liverpool, to Julia and Alfred Lennon.

- Structured prediction approaches
- Capture entity mentions and entity types

NLP annotations \rightarrow features for IE

Combine tokens, dependency paths, and entity types to define rules.

Bill Gates, the CEO of Microsoft, said ...
Mr. Jobs, the brilliant and charming CEO of Apple Inc., said ...
... announced by Steve Jobs, the CEO of Apple.
... announced by Bill Gates, the director and CEO of Microsoft.
... mused Bill, a former CEO of Microsoft.
and many other possible instantiations...

Entity Names: Two Main Problems

Entities with Same Name

Same type of entities share names
Kevin Smith, John Smith, Springfield, ...

Things named after each other Clinton, Washington, Paris, Amazon, Princeton, Kingston, ...

Partial Reference

First names of people, Location instead of team name, Nick names

Different Names for Entities

Nick Names

Bam Bam, Drumpf, ...

Typos/Misspellings
Baarak, Barak, Barrack, ...

Inconsistent References
MSFT, APPL, GOOG...

Entity Linking Approach

Washington drops 10 points after game with UCLA Bruins.

Candidate Generation

Entity Types LOC/ORG

Coreference
UWashington, Huskies

Coherence

Washington DC, George Washington, Washington state, Lake Washington, Washington Huskies, Denzel Washington, University of Washington, Washington High School, ...

Washington DC, George Washington, Washington state, Lake Washington, Washington Huskies, Denzel Washington, University of Washington, Washington High School, ...

Washington DC, George Washington, Washington state, take Washington, Washington Huskies, Denzel Washington, University of Washington, Washington High School, ...

Washington DC, George Washington, Washington state, take Washington, Washington Huskies, Denzel Washington, University of Washington, Washington High School, ...

Information Extraction

Information Extraction

3 CONCRETE SUB-PROBLEMS

Defining domain
Learning extractors
Scoring the facts

3 LEVELS OF SUPERVISION

Supervised

Semi-supervised

Unsupervised
x

IE systems in practice

	Defining domain	Learning extractors	Scoring candidate facts	Fusing extractors
ConceptNet	8	8	8	
NELL	88	$\frac{80}{x}$		Heuristic rules
Knowledge Vault			80	Classifier
OpenIE	(旬)	(気)	$\frac{80}{31}$	

Knowledge Extraction: Key Points

- Built on the foundation of NLP techniques
- Part-of-speech tagging, dependency parsing, named entity recognition, coreference resolution...
- Challenging problems with very useful outputs
- Information extraction techniques use NLP to:
- define the domain
- extract entities and relations
- score candidate outputs
- Trade-off between manual \& automatic methods

Knowledge Graph Construction

Knowledge Graph Construction

TOPICS:

Problem Setting

Probabilistic Models
Embedding Techniques

Knowledge Graph Construction

TOPICS:
Problem Setting
Probabilistic Models
Embedding Techniques

Reminder: Basic problems

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- How are they related (edges)?

Graph Construction Issues

Extracted knowledge is:

- ambiguous:
- Ex: Beetles, beetles, Beatles
- Ex: citizenOf, livedIn, bornIn

Graph Construction Issues

Extracted knowledge is:

- ambiguous
- incomplete
- Ex: missing relationships
- Ex: missing labels
- Ex: missing entities

Graph Construction Issues

Extracted knowledge is:

- ambiguous
- incomplete
- inconsistent
- Ex: Cynthia Lennon, Yoko Ono
- Ex: exclusive labels (alive, dead)
- Ex: domain-range constraints

Graph Construction Issues

Extracted knowledge is:

- ambiguous
- incomplete
- inconsistent

Graph Construction approach

- Graph construction cleans and completes extraction graph
- Incorporate ontological constraints and relational patterns
- Discover statistical relationships within knowledge graph

Knowledge Graph Construction

TOPICS:
Problem Setting
Probabilistic Models
Embedding Techniques

Graph Construction Probabilistic Models

TOPICS:
Overview
Graphical models
Random Walk Methods

Graph Construction Probabilistic Models

TOPICS:
OVERVIEW
Graphical models
Random Walk Methods

Beyond Pure Reasoning

- Classical AI approach to knowledge: reasoning

Lbl(Socrates, Man) \& Sub(Man, Mortal) -> Lbl(Socrates, Mortal)

Beyond Pure Reasoning

- Classical AI approach to knowledge: reasoning

Lbl(Socrates, Man) \& Sub(Man, Mortal) -> Lbl(Socrates, Mortal)

- Reasoning difficult when extracted knowledge has errors

Beyond Pure Reasoning

- Classical AI approach to knowledge: reasoning

Lbl(Socrates, Man) \& Sub(Man, Mortal) -> Lbl(Socrates, Mortal)

- Reasoning difficult when extracted knowledge has errors
- Solution: probabilistic models

P(Lbl(Socrates, Mortal)|Lbl(Socrates,Man)=0.9)

Graph Construction Probabilistic Models

TOPICS:
Overview
Graphical models
Random Walk Methods

Graphical Models: Overview

- Define joint probability distribution on knowledge graphs
- Each candidate fact in the knowledge graph is a variable
- Statistical signals, ontological knowledge and rules parameterize the dependencies between variables
- Find most likely knowledge graph by optimization/sampling

Knowledge Graph Identification

Define a graphical model to perform all three of these tasks simultaneously!

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- How are they related (edges)?

Knowledge Graph Identification

Probabilistic Models

- Use dependencies between facts in KG
- Probability defined jointly over facts

What determines probability?

- Statistical signals from text extractors and classifiers

What determines probability?

- Statistical signals from text extractors and classifiers
- $P(R($ John,Spouse,Yoko) $)=0.75 ; ~ P(R($ John,Spouse,Cynthia) $)=0.25$
- LevenshteinSimilarity(Beatles, Beetles) $=0.9$

What determines probability?

- Statistical signals from text extractors and classifiers
- Ontological knowledge about domain

What determines probability?

- Statistical signals from text extractors and classifiers
- Ontological knowledge about domain
- Functional(Spouse) \& R(A,Spouse,B) -> !R(A,Spouse,C)
- Range(Spouse, Person) \& R(A,Spouse,B) -> Type(B, Person)

What determines probability?

- Statistical signals from text extractors and classifiers
- Ontological knowledge about domain
- Rules and patterns mined from data

What determines probability?

- Statistical signals from text extractors and classifiers
- Ontological knowledge about domain
- Rules and patterns mined from data
- R(A, Spouse, B) \& R(A, Lives, L) -> R(B, Lives, L)
- R(A, Spouse, B) \& R(A, Child, C) -> R(B, Child, C)

What determines probability?

- Statistical signals from text extractors and classifiers
- $P(R($ John,Spouse,Yoko $))=0.75 ; P(R($ John,Spouse,Cynthia) $)=0.25$
- LevenshteinSimilarity(Beatles, Beetles) $=0.9$
- Ontological knowledge about domain
- Functional(Spouse) \& R(A,Spouse,B) -> !R(A,Spouse,C)
- Range(Spouse, Person) \& R(A,Spouse,B) -> Type(B, Person)
- Rules and patterns mined from data
- R(A, Spouse, B) \& R(A, Lives, L) -> R(B, Lives, L)
- R(A, Spouse, B) \& R(A, Child, C) -> R(B, Child, C)

Example: The Fab Four

BEATLES

Illustration of KG Identification

Uncertain Extractions:
.5: Lbl(Fab Four, novel)
.7: Lbl(Fab Four, musician)
.9: Lbl(Beatles, musician)
.8: Rel(Beatles,AlbumArtist, Abbey Road)

Illustration of KG Identification

Uncertain Extractions:
.5: Lbl(Fab Four, novel)
.7: Lbl(Fab Four, musician)
.9: Lbl(Beatles, musician)
.8: Rel(Beatles,AlbumArtist,
Abbey Road)

(Annotated) Extraction Graph

Illustration of KG Identification

Uncertain Extractions:
.5: Lbl(Fab Four, novel)
.7: Lbl(Fab Four, musician)
.9: Lbl(Beatles, musician)
.8: Rel(Beatles,AlbumArtist, Abbey Road)
Ontology:
Dom(albumArtist, musician) Mut(novel, musician)

Extraction Graph

Illustration of KG Identification

Uncertain Extractions:
.5: Lbl(Fab Four, novel)
.7: Lbl(Fab Four, musician)
.9: Lbl(Beatles, musician)
.8: Rel(Beatles,AlbumArtist, Abbey Road)
Ontology:
Dom(albumArtist, musician)
Mut(novel, musician)
Entity Resolution:
SameEnt(Fab Four, Beatles)

(Annotated) Extraction Graph

Illustration of KG Identification

Probabilistic graphical model for KG

Defining graphical models

- Many options for defining a graphical model
- We focus on two approaches, MLNs and PSL, that use rules
- MLNs treat facts as Boolean, use sampling for satisfaction
- PSL infers a "truth value" for each fact via optimization

Rules for KG Model

100:	Subsumes (L1, L2)	\& Label(E, L1)	->	Label(E, L2)
100:	Exclusive(L1, L2)	\& Label(E,L1)	->	! Label(E, L2)
100:	Inverse(R1, R2)	\& Relation(R1, E, 0)	->	Relation(R2, 0, E)
100:	Subsumes (R1, R2)	\& Relation(R1, E, 0)	->	Relation(R2, E, 0)
100:	Exclusive(R1, R2)	\& Relation(R1, E, 0)	->	!Relation(R2, E, O)
100:	$\operatorname{Domain}(R, L)$	\& Relation($\mathrm{R}, \mathrm{E}, 0$)	->	Label(E, L)
100:	Range (R,L)	\& Relation($\mathrm{R}, \mathrm{E}, 0$)	->	Label(0, L)
10:	SameEntity (E1, E2)	\& Label(E1, L)	->	Label(E2, L)
10:	SameEntity(E1, E2)	\& Relation(R, E1, 0)	->	Relation(R, E2, 0)
1:	Label_OBIE (E, L)		->	Label(E, L)
1:	Label_OpenIE (E, L)		->	Label(E, L)
1:	Relation_Pattern(R,	R, E, O)	->	Relation(R, E, O)
1:				!Relation(R, E, O)
1:				! Label(E, L)

Rules to Distributions

-Rules are grounded by substituting literals into formulas $\mathbf{w}_{\mathbf{r}}$: SAmEEnt(Fab Four, Beatles) \wedge

LbL(Beatles, musician) \Rightarrow LbL(Fab Four, musician)

- Each ground rule has a weighted satisfaction derived from the formula's truth value
$P(G \mid E)=\frac{1}{Z} \exp$

- Together, the ground rules provide a joint probability distribution over knowledge graph facts, conditioned on the extractions

Probability Distribution over KGs

$$
P(G \mid E)=\frac{1}{Z} \exp \left[-\sum_{r \in R} w_{r} \varphi_{r}(G)\right]
$$

$\left\{\begin{array}{l}\text { CAndLBL }_{T} \text { (FabFour, novel) } \\ \text { Mut(novel, musician) } \\ \text { SAMEEnT(Beatles, FabFour) }\end{array}\right.$
\Rightarrow LBL(FabFour, novel)
\wedge LBL(Beatles, novel)
$\Rightarrow \neg$ LBL(Beatles, musician)
\wedge LBL(Beatles,musician)
\Rightarrow LBL(FabFour,musician)

How do we get a knowledge graph?

Have: $P(K G)$ forall KGs

Need: best KG

MAP inference: optimizing over distribution to find the best knowledge graph

Inference and KG optimization

- Finding the best KG satisfying weighed rules: NP Hard
- MLNs [discrete]: Monte Carlo sampling methods
- Solution quality dependent on burn-in time, iterations, etc.
-PSL [continuous]: optimize convex linear surrogate
- Fast optimization, $3 / 4$-optimal MAX SAT lower bound

Graphical Models Experiments

Data: $\sim 1.5 \mathrm{M}$ extractions, $\sim 70 \mathrm{~K}$ ontological relations, ~ 500 relation/label types
Task: Collectively construct a KG and evaluate on 25 K target facts

Comparisons:

Extract Average confidences of extractors for each fact in the NELL candidates
Rules Default, rule-based heuristic strategy used by the NELL project
MLN Jiang+, ICDM12 - estimates marginal probabilities with MC-SAT
PSL Pujara+, ISWC13 - convex optimization of continuous truth values with ADMM
Running Time: Inference completes in 10 seconds, values for 25 K facts

	AUC	F1
Extract	.873	.828
Rules	.765	.673
MLN (Jiang, 12)	.899	.836
PSL (Pujara, 13)	.904	.853

Graphical Models: Pros/Cons

BENEFITS

- Define probability distribution over KGs
- Easily specified via rules
- Fuse knowledge from many different sources

DRAWBACKS

- Requires optimization over all KG facts - overkill
- Dependent on rules from ontology/expert
- Require probabilistic semantics - unavailable

Graph Construction Probabilistic Models

TOPICS:
Overview
Graphical models
Random Walk Methods

Random Walk Overview

- Given: a query of an entity and relation
- Starting at the entity, randomly walk the KG
- Random walk ends when reaching an appropriate goal
- Learned parameters bias choices in the random walk
- Output relative probabilities of goal states

Random Walk Illustration

Query: R(Lennon, PlaysInstrument, ?)

Random Walk Illustration

Query: R(Lennon, PlaysInstrument, ?)

Random Walk Illustration

Query: R(Lennon, PlaysInstrument, ?)

Random Walk Illustration

Query Q: R(Lennon, PlaysInstrument, ?)

Random Walk Illustration

Query Q: R(Lennon, PlaysInstrument, ?)

Random Walk Illustration

Query Q: R(Lennon, PlaysInstrument, ?)

Random Walk Illustration

Query Q: R(Lennon, PlaysInstrument, ?)

Random Walk Illustration

Query Q: R(Lennon, PlaysInstrument, ?)

Random Walk Illustration

Query Q: R(Lennon, PlaysInstrument, ?)

Random Walk Illustration

Query Q: R(Lennon, PlaysInstrument, ?)

Random Walk Illustration

Query Q: R(Lennon, PlaysInstrument, ?)

$\mathrm{P}\left(\mathrm{Q} \mid \pi=<\right.$ albumArtist,hasinstrument>) $\mathbf{W}_{\boldsymbol{\pi}}$

Random Walk Illustration

Query Q: R(Lennon, PlaysInstrument, ?)

$\mathbf{P}\left(\mathbf{Q} \mid \pi=<\right.$ albumArtist, hasinstrument>) $\mathbf{W}_{\boldsymbol{\pi}}$

Random Walk Illustration

Query: R(Lennon, PlaysInstrument, ?)

Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns parameters for paths through the KG

ProPPR: Programming with Personalized PageRank

- Constructs proof graph
- Nodes are partially-ground clauses with one or more facts
- Edges are proof-transformations
- Parameters are learned for each ground entity and rule

Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns parameters for paths through the KG

ProPPR: Programming with Personalized PageRank

- Constructs proof graph
- Nodes are partially-ground clauses with one or more facts
- Edges are proof-transformations
- Parameters are learned for each ground entity and rule

PRA in a nutshell

$$
\operatorname{score}(q . s \rightarrow e ; q)=\sum_{\pi_{i} \in \Pi_{b}} P\left(q . s \rightarrow e ; \pi_{i}\right) W_{\pi_{i}}
$$

PRA in a nutshell

$$
\operatorname{score}(q . s \rightarrow e ; q)=\sum_{\pi_{i} \in \operatorname{(TB)}} P\left(q . s \rightarrow e ; \pi_{i}\right) W_{\pi_{i}}
$$

Filter paths based on HITS and accuracy

PRA in a nutshell

$$
\operatorname{score}(q . s \rightarrow e ; q)=\sum_{\pi_{i} \in\left(\Pi_{b}\right)} P\left(q . s \rightarrow e ; \pi_{i}\right) W_{\pi_{i}}
$$

Estimate probabilities efficiently with dynamic programming

PRA in a nutshell

$$
\begin{aligned}
& \quad \operatorname{score}(q . s \rightarrow e ; q)=\sum_{\pi_{i} \in\left(\Pi_{b}\right)} P\left(q . s \rightarrow e ; \pi_{i}\right) W_{\pi_{i}} \\
& \text { Filter paths based on HITS and accuracy }
\end{aligned}
$$

Estimate probabilities efficiently with dynamic programming

Path weights are learned with logistic regression

Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns parameters for paths through the KG

ProPPR: ProbLog + Personalized PageRank

- Constructs proof graph
- Nodes are partially-ground clauses with one or more facts
- Edges are proof-transformations
- Parameters are learned for each ground entity and rule

ProPPR-ized PRA example

Query Q: R(Lennon, PlaysInstrument, ?)

ProPPR-ized PRA example

Query Q: R(Lennon, PlaysInstrument, ?)

ProPPR-ized PRA example

Query Q: R(Lennon, PlaysInstrument, ?)

ProPPR-ized PRA example

Query Q: R(Lennon, PlaysInstrument, ?)

ProPPR-ized PRA example

Query Q: R(Lennon, PlaysInstrument, ?)

$R($ B
R(S, PlaysInstrument,)

ProPPR-ized PRA example

Query Q: R(Lennon, PlaysInstrument, ?)

ProPPR-ized PRA example

Query Q: R(Lennon, PlaysInstrument, ?)

ProPPR-ized PRA example

Query Q: R(Lennon, PlaysInstrument, ?)

ProPPR in a nutshell

$$
\min _{\mathbf{w}}-\left(\sum_{k \in+} \log \mathbf{p}_{\nu_{0}}\left[u_{+}^{k}\right]+\sum_{k \in-} \log \left(1-\mathbf{p}_{\nu_{0}}\left[u_{-}^{k}\right]\right)+\mu\|\mathbf{w}\|_{2}^{2}\right.
$$

- Input:queries positive answers, negative answers
- Goal: $\mathbf{p}_{\nu_{0}}\left[u_{+}^{k}\right] \geq \mathbf{p}_{\nu_{0}}\left[u_{-}^{k}\right]$ (page rank from RW)
- Learn: random walk weights
- Train via stochastic gradient descent

Results from PRA and ProPPR

- Task:
- 1M extractions for 3 domains;
- ~100s of training queries
- ~1000s of test queries
- AUC of extractions alone is 0.7

Random Walks: Pros/Cons

BENEFITS

- KG query estimation independent of KG size
- Model training produces interpretable, logical rules

DRAWBACKS

- Full KG completion task inefficient
- Training data difficult to obtain at scale
- Robust to noisy extractions through probabilistic form
- Input must follow probabilistic semantics

Two classes of Probabilistic Models

GRAPHICAL MODELS

- Possible facts in KG are variables
- Logical rules relate facts
- Probability \propto satisfied rules
- Universally-quantified

RANDOM WALK METHODS

- Possible facts posed as queries
- Random walks of the KG constitute "proofs"
- Probability \propto path lengths/transitions
- Locally grounded

Embedding-Based Techniques

MATRICES, TENSORS, AND NEURAL NETWORKS

Probabilistic Models: Downsides

Embeddings

Limitation to Logical Relations

- Representation restricted by manual design
- Clustering? Assymetric implications?
- Information flows through these relations
- Difficult to generalize to unseen entities/relations

Computational Complexity of Algorithms

- Complexity depends on explicit dimensionality
- Often NP-Hard, in size of data
- More rules, more expensive inference
- Query-time inference is sometimes NP-Hard
- Not trivial to parallelize, or use GPUs
- Everything as dense vectors
- Can capture many relations
- Learned from data
- Complexity depends on latent dimensions
- Learning using stochastic gradient, back-propagation
- Querying is often cheap
- GPU-parallelism friendly

Two Related Tasks

Two Related Tasks

What is NLP?

John was born in Liverpool, to Julia and Alfred Lennon.

Natural Language
Processing

Lennon..
John Lennon...

Mrs. Lennon..

his father | | Location | Person |
| :---: | :---: | :---: |
| $\begin{array}{ll}\text { Person } & \text { he } \\ \text { John was born in Liverpool, to Julia and Alfred Lennon. } \\ \text { Jorson }\end{array}$ | | |

What is Information Extraction?

Relation Extraction From Text

John was born in Liverpool, to Julia and Alfred Lennon.

Relation Extraction From Text

John was born in Liverpool, to Julia and Alfred Lennon.

"Distant" Supervision

No direct supervision gives us this information.
Supervised: Too expensive to label sentences
Rule-based: Too much variety in language
Both only work for a small set of relations, i.e. 10s, not 100s

Relation Extraction as a Matrix

John was born in Liverpool, to Julia and Alfred Lennon.

John Lennon, Liverpool
John Lennon, Julia Lennon
John Lennon, Alfred Lennon
Julia Lennon, Alfred Lennon

Barack Obama, Hawaii
Barack Obama, Michelle Obama
1

Matrix Factorization

Training: Stochastic Updates

relations

relations

Pick an observed cell, $R(i, j)$:

- Update $\mathbf{p}_{i j} \& \mathbf{r}_{R}$ such that $R(i, j)$ is higher

Pick any random cell, assume it is negative:

- Update $\mathbf{p}_{x y} \& \mathbf{r}_{R^{\prime}}$ such that $R^{\prime}(x, y)$ is lower

Relation Embeddings

Embeddings ~ Logical Relations

Relation Embeddings, w

- Similar embedding for 2 relations denote they are paraphrases
- is married to, spouseOf(X, Y), /person/spouse
- One embedding can be contained by another
- w(topEmployeeOf) $\subset w(e m p l o y e e O f)$
- topEmployeeOf(X,Y) \rightarrow employeeOf(X,Y)
- Can capture logical patterns, without needing to specify them!

Entity Pair Embeddings, v

Similar entity pairs denote similar relations between them
Entity pairs may describe multiple "relations"
independent foundedBy and employeeOf
relations

Similar Embeddings

similar underlying embedding
X own percentage of $Y \quad X$ buy stake in Y

Successfully predicts "Volvo owns percentage of Scania A.B." from "Volvo bought a stake in Scania A.B."

Implications

X historian at $Y \rightarrow X$ professor at Y
X professor at $Y \quad X$ historian at Y

(Freeman, Harvard) \rightarrow (Boyle,OhioState)	Ohio State
	R. Freeman Harvard

Learns asymmetric entailment:
PER historian at UNIV \rightarrow PER professor at UNIV
But,
PER professor at UNIV \rightarrow PER historian at UNIV

Two Related Tasks

Graph Completion

Graph Completion

Tensor Formulation of KG

Factorize that Tensor

$$
S(r(a, b))=f\left(\mathbf{v}_{r}, \mathbf{v}_{a}, \mathbf{v}_{b}\right)
$$

Many Different Factorizations

CANDECOMP/PARAFAC-Decomposition

$$
S(r(a, b))=\sum_{k} R_{r, k} \cdot e_{a, k} \cdot e_{b, k}
$$

Tucker2 and RESCAL Decompositions

$$
S(r(a, b))=\left(\mathbf{R}_{r} \times \mathbf{e}_{a}\right) \times \mathbf{e}_{b}
$$

Model E

$$
S(r(a, b))=\mathbf{R}_{r, 1} \cdot \mathbf{e}_{a}+\mathbf{R}_{r, 2} \cdot \mathbf{e}_{b}
$$

Holographic Embeddings

Not tensor factorization
(per se)

$$
S(r(a, b))=\mathbf{R}_{r} \times\left(\mathbf{e}_{a} \star \mathbf{e}_{b}\right)
$$

Translation Embeddings

TransE

$$
S(r(a, b))=-\left\|\mathbf{e}_{a}+\mathbf{R}_{r}-\mathbf{e}_{b}\right\|_{2}^{2}
$$

TransH

$$
\begin{gathered}
S(r(a, b))=-\left\|\mathbf{e}_{a}^{\perp}+\mathbf{R}_{r}-\mathbf{e}_{b}^{\perp}\right\|_{2}^{2} \\
\mathbf{e}_{a}^{\perp}=\mathbf{e}_{a}-\mathbf{w}_{r}^{T} \mathbf{e}_{a} \mathbf{w}_{r}
\end{gathered}
$$

TransR
$S(r(a, b))=-\left\|\mathbf{e}_{a} \mathbf{M}_{r}+\mathbf{R}_{r}-\mathbf{e}_{b} \mathbf{M}_{r}\right\|_{2}^{2}$

Parameter Estimation

Observed cell: increase score

$$
S(r(a, b))
$$

Unobserved cell: decrease score

$$
S\left(r^{\prime}(x, y)\right)
$$

Matrix vs Tensor Factorization

- Vectors for each entity pair
- Can only predict for entity pairs that appear in text together
- No sharing for same entity in different entity pairs

- Vectors for each entity
- Assume entity pairs are "low-rank"
- But many relations are not!
- Spouse: you can have only ~1
- Cannot learn pair specific information

What they can, and can't, do..

- Red: deterministically implied by Black
- needs pair-specific embedding
- Only F is able to generalize
- Green: needs to estimate entity types
- needs entity-specific embedding
- Tensor factorization generalizes, F doesn't

- Blue: implied by Red and Green
- Nothing works much better than random

Joint Extraction+Completion

Compositional Neural Models

So far, we're learning vectors for each entity/surface pattern/relation..
But learning vectors independently ignores "composition"

Composition in Surface Patterns

- Every surface pattern is not unique
- Synonymy:
A is B's spouse.

$$
\mathrm{A} \text { is married to } \mathrm{B} \text {. }
$$

- Inverse: X is Y^{\prime} s parent.

$$
\mathbf{Y} \text { is one of } \mathrm{X}^{\prime} \text { s children. }
$$

- Can the representation learn this?

Composition in Relation Paths

- Every relation path is not unique
- Explicit: A parent B, B parent C

A grandparent \mathbf{C}

- Implicit:

```
X bornInCity Y, Y cityInState Z
    X "bornInState" Z
```

- Can the representation capture this?

Composing Dependency Paths

... was born to ..

\parentsOf
(never appears in training data)

But we don't need linked data to know they mean similar things...
Use neural networks to produce the embeddings from text!

... was born to ...

... 's parents are ...

\parentsOf

Composing Relational Paths

Review: Embedding Techniques

Two Related Tasks:

- Relation Extraction from Text
- Graph (or Link) Completion

Relation Extraction:

- Matrix Factorization Approaches

Graph Completion:

- Tensor Factorization Approaches

Compositional Neural Models

- Compose over dependency paths
- Compose over relation paths

\Rightarrow Symbolic Reasoning

The evolution of knowledge representation

Why is a big knowledge graph not enough?

- Large knowledge graphs have billions of facts
- However, it doesn't provide much help in logic reasoning
- The knowledge is not symbolized logic knowledge
- Lack of reasoning rules allow machines to do reasoning automatically
- More importantly, lack of common sense

The pyramid of knowledge

Knowledge in symbolic logic form

- Symbols are abstract identifiers can be manipulated in an algebra system
- Variables
- Functions
- Symbolic expression is a finite combination of symbols
- Symbolic transformation: a symbolic expression can be transformed into another symbolic expression according to the rules of a predefined reasoning algebra
- An inference engine tries to derive answers for a logic question by performing logical deductions

Represents Satori facts and common sense knowledge in RHHG

Functions and relations are just hyperedges!

- $f(x, y, z)$ is just a hyperedge f connecting three nodes x, y, z.
- A logical expression a AND b AND c can be written as $\operatorname{AND}(a, b, c)$.

Hyperedges

- Symbolic transformation is just graph pattern matching and graph transformation!

Use graph transformation to do logic deduction

The logical deduction of a transitive relation

Graph transformation: whenever we see a graph G_{a} with a certain pattern p, replace it with a graph G_{b}.

Our "shallow" yet reasonable answer

- Why can Albert Einstein think, computer can't
- [brain] is Capable Of [think]
- [person] have [brain]
- [Albert Einstein] is a [person]
- [think] requires [brain]
- [computer] does not have [brain]

Multimodal KB Embeddings

Knowledge as Supervision

(2) Future research directions: Online KG Construction

- One shot KG construction \rightarrow Online KG construction
- Consume online stream of data
- Temporal scoping of facts
- Discovering new concepts automatically
- Self-correcting systems

(2) Future research directions: Online KG Construction

- Continuously learning and self-correcting systems
- [Selecting Actions for Resource-bounded Information Extraction using Reinforcement Learning, Kanani and McCallum, WSDM 2012]
- Presented a reinforcement learning framework for budget constrained information extraction
- [Never-Ending Learning, Mitchell et al. AAAI 2015]
- Tom Mitchell says "Self reflection and an explicit agenda of learning subgoals" is an important direction of future research for continuously learning systems.

