Random Walks on Graphs

Based on materials

by J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

And

by LalaAdamic and Purnamrita Sarkar

Graph Data: Social Networks

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Graph Data: Media Networks

Connections between political blogs Polarization of the network [Adamic-Glance, 2005]

Graph Data: Information Nets

Graph Data: Communication Nets

Graph Data: Technological Networks

Seven Bridges of Königsberg

[Euler, 1735] Return to the starting point by traveling each link of the graph once and only once.

Web as a Graph

Web as a directed graph:

Nodes: Webpages

Edges: Hyperlinks

Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

Web as a Directed Graph

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Broad Question

- How to organize the Web?
- First try: Human curated
 Web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search
 - Information Retrieval investigates: Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - <u>But:</u> Web is huge, full of untrusted documents, random things, web spam, etc.

Now Open: Yebool Dad Bhops Bap to Plat Web Launch Search 095018 Arts News (20ml) Humanities, Photography, Arthibuture, Volid [Brad], Dully, Curvat Events, ... · Business and Economy (Brat) Recreation Directory, Developments, Cherniteks, Tame, ... Sports [20ral], Gamer, Torrel, Avers, ... · Computers and Internet[Dout] Reference hereist, VVV, Solvers, Multinella, ... Librater, Distinguist, Phone Hughert, E4-acation Regional Universities, E-12, Courses, Construct, Regions, U.S. Buter, ... · Entertainment [20ml] Science TV, Movies, Music, Magazines, CS, Birligy, Advison y, Engineering, · Coverament Social Science Febries [20wal], Agencies, Low, Military, ... Authopology, Sociology, Eccasticity, Society and Culture Health Mehrine, Deuge, Dissour, Fitnere, People, Invisonment, Religion, . Text-Only Yahoo - Contributors

Web Search: 2 Challenges

- 2 challenges of web search:
- (1) Web contains many sources of information Who to "trust"?
 - Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

All web pages are not equally "important"

 There is large diversity in the web-graph node connectivity.
 Let's rank the pages by the link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importances of nodes in a graph:
 - Page Rank
 - Topic-Specific (Personalized) Page Rank
 - Web Spam Detection Algorithms

PageRank: The "Flow" Formulation

Links as Votes

Idea: Links as votes

Page is more important if it has more links

In-coming links? Out-going links?

Think of in-links as votes:

- www.stanford.edu has 23,400 in-links
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links, each link gets r_j / n votes
- Page j's own importance is the sum of the votes on its in-links

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important

pages

Define a "rank" r_j for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

$$d_i \dots$$
 out-degree of node i

"Flow" equations: $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2 + r_{m}$ $r_{m} = r_{a}/2$

Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
 - No unique solution

- Flow equations: $r_y = r_y/2 + r_a/2$ $r_a = r_y/2 + r_m$ $r_m = r_a/2$
- All solutions equivalent modulo the scale factor
 Additional constraint forces uniqueness:

$$\mathbf{r}_y + r_a + r_m = \mathbf{1}$$

• Solution: $r_y = \frac{2}{5}$, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

PageRank: Matrix Formulation

Stochastic adjacency matrix M

Let page i has d_i out-links

If
$$i \to j$$
, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$

- M is a column stochastic matrix
 - Columns sum to 1
- Rank vector r: vector with an entry per page
 - *r_i* is the importance score of page *i*
 - $\sum_i r_i = 1$
- The flow equations can be written

 $r = M \cdot r$

Example

- Remember the flow equation: $r_j = \sum_{i \to j} \frac{r_i}{d_i}$ Flow equation in the matrix form

$$M \cdot r = r$$

Suppose page *i* links to 3 pages, including *j*

Eigenvector Formulation

- The flow equations can be written $r = M \cdot r$
- So the rank vector r is an eigenvector of the stochastic web matrix M
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1
 - Largest eigenvalue of *M* is 1 since *M* is column stochastic (with non-negative entries)
 - We know r is unit length and each column of M sums to one, so $Mr \leq 1$

NOTE: x is an eigenvector with the corresponding eigenvalue λ if: $Ax = \lambda x$

We can now efficiently solve for r! The method is called Power iteration

Example: Flow Equations & M

 $r = M \cdot r$

$$r_{y} = r_{y}/2 + r_{a}/2$$
$$r_{a} = r_{y}/2 + r_{m}$$
$$r_{m} = r_{a}/2$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N,...,1/N]^{T}$

• Iterate:
$$\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$$

 $d_i \, \ldots \, out$ -degree of node i

• Stop when $|\mathbf{r}^{(t+1)} - \mathbf{r}^{(t)}|_1 < \varepsilon$

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |\mathbf{x}_i|$ is the L₁ norm Can use any other vector norm, e.g., Euclidean

PageRank: How to solve?

Power Iteration:

• Set
$$r_j = 1/N$$

• 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$

Goto 1

Example:

$$\begin{pmatrix} r_y \\ r_a \\ r_m \end{pmatrix} = \frac{1/3}{1/3}$$

Iteration 0, 1, 2, ...

	У	а	m
у	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2 + r_{m}$ $r_{m} = r_{a}/2$

PageRank: How to solve?

Power Iteration:

• Set
$$r_j = 1/N$$

• 1:
$$r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

Goto 1

Example:

Iteration 0, 1, 2, ...

	У	а	m
у	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2 + r_{m}$ $r_{m} = r_{a}/2$

Random Walk Interpretation

Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely
- Let:
 - *p*(*t*) ... vector whose *i*th coordinate is the prob. that the surfer is at page *i* at time *t*
 - So, p(t) is a probability distribution over pages

 $r_j = \sum_{i=1}^{n} \frac{r_i}{d}$ (i)

The Stationary Distribution

Where is the surfer at time t+1?

- Follows a link uniformly at random $p(t+1) = M \cdot p(t)$ $p(t+1) = M \cdot p(t)$
- Suppose the random walk reaches a state $p(t + 1) = M \cdot p(t) = p(t)$

then p(t) is stationary distribution of a random walk

• Our original rank vector r satisfies $r = M \cdot r$

 So, r is a stationary distribution for the random walk 3

Existence and Uniqueness

A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy **certain conditions**, the **stationary distribution is unique** and eventually will be reached no matter what the initial probability distribution at time **t** = **0** PageRank: The Google Formulation

PageRank: Three Questions

Does this converge?

- Does it converge to what we want?
- Are results reasonable?

Does this converge?

Does it converge to what we want?

PageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"

(2) Spider traps:

- (all out-links are within the group)
- Random walked gets "stuck" in a trap
- And eventually spider traps absorb all importance

Dead end

Problem: Spider Traps

- Power Iteration:
 - Set $r_j = 1$ • $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

m is a spider trap

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2$ $r_{m} = r_{a}/2 + r_{m}$

Example:

All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1-** β , jump to some random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

- Power Iteration:
 - Set $r_j = 1$ • $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	У	а	m
У	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2$ $r_{m} = r_{a}/2$

Example:

Here the PageRank "leaks" out since the matrix is not stochastic.

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem, but with traps
 PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all:
 - At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

d_i ... out-degree of node i

This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

The Google Matrix A:

 $[1/N]_{N \times N}$...N by N matrix where all entries are 1/N

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

- We have a recursive problem: $r = A \cdot r$ And the Power method still works!
- What is β ?
 - In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

Random Teleports ($\beta = 0.8$)

m 1/3 0.46 0.52 0.56 21/33

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org