Random Walks on Graphs

Based on materials

by J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://www.mmds.org
by LalaAdamic and Purnamrita Sarkar

Graph Data: Social Networks

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Graph Data: Media Networks

Connections between political blogs Polarization of the network [Adamic-Glance, 2005]

Graph Data: Information Nets

Citation networks and Maps of science
[Börner et al., 2012]

Graph Data: Communication Nets

Graph Data: Technological Networks

Seven Bridges of Königsberg
[Euler, 1735]
Return to the starting point by traveling each link of the graph once and only once.

Web as a Graph

- Web as a directed graph:
- Nodes: Webpages
- Edges: Hyperlinks

Stanford
University

Web as a Graph

- Web as a directed graph:
- Nodes: Webpages
- Edges: Hyperlinks

Web as a Directed Graph

Broad Question

- How to organize the Web?
- First try: Human curated Web directories
- Yahoo, DMOZ, LookSmart
- Second try: Web Search

- Information Retrieval investigates:

Find relevant docs in a small and trusted set

- Newspaper articles, Patents, etc.
- But: Web is huge, full of untrusted documents, random things, web spam, etc.

Web Search: 2 Challenges

2 challenges of web search:

- (1) Web contains many sources of information Who to "trust"?
- Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
- No single right answer
- Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

- All web pages are not equally "important"
- There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importances of nodes in a graph:
- Page Rank
- Topic-Specific (Personalized) Page Rank
- Web Spam Detection Algorithms

PageRank:
The "Flow" Formulation

Links as Votes

- Idea: Links as votes
- Page is more important if it has more links
- In-coming links? Out-going links?
- Think of in-links as votes:
- www.stanford.edu has 23,400 in-links
- Are all in-links are equal?
- Links from important pages count more
- Recursive question!

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page \boldsymbol{j} with importance $\boldsymbol{r}_{\boldsymbol{j}}$ has \boldsymbol{n} out-links, each link gets r_{j} / n votes
- Page j's own importance is the sum of the votes on its in-links

$$
r_{j}=r_{i} / 3+r_{k} / 4
$$

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_{j} for page \boldsymbol{j}

$$
\begin{array}{ll}
\boldsymbol{r}_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}} & \begin{array}{l}
\text { "Flow" equations: } \\
\mathrm{r}_{\mathrm{y}}=\mathrm{r}_{\mathrm{y}} / 2+\mathrm{r}_{\mathrm{a}} / 2 \\
\mathrm{r}_{\mathrm{a}}=\mathrm{r}_{\mathrm{y}} / 2+\mathrm{r}_{\mathrm{m}}
\end{array} \\
\mathrm{r}_{\mathrm{m}}=\mathrm{r}_{\mathrm{a}} / 2
\end{array}
$$

Solving the Flow Equations

Flow equations:

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

- No unique solution
- All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:
${ }^{-} r_{y}+r_{a}+r_{m}=1$
- Solution: $r_{y}=\frac{2}{5}, r_{a}=\frac{2}{5}, r_{m}=\frac{1}{5}$
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

PageRank: Matrix Formulation

- Stochastic adjacency matrix \boldsymbol{M}
- Let page i has d_{i} out-links
- If $i \rightarrow j$, then $M_{j i}=\frac{1}{d_{i}}$ else $M_{j i}=0$
- M is a column stochastic matrix
- Columns sum to 1
- Rank vector r : vector with an entry per page
- r_{i} is the importance score of page i
- $\sum_{i} r_{i}=1$
- The flow equations can be written

$$
\boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r}
$$

$$
r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}}
$$

Example

- Remember the flow equation: $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}}$

$$
M \cdot r=r
$$

- Suppose page i links to 3 pages, including j

Eigenvector Formulation

- The flow equations can be written

$$
\boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r}
$$

- So the rank vector r is an eigenvector of the stochastic web matrix M
- In fact, its first or principal eigenvector, with corresponding eigenvalue 1
- Largest eigenvalue of \boldsymbol{M} is $\mathbf{1}$ since \boldsymbol{M} is column stochastic (with non-negative entries)

NOTE: x is an eigenvector with
the corresponding eigenvalue $\boldsymbol{\lambda}$ if:
$A x=\lambda x$

- We know r is unit length and each column of \boldsymbol{M} sums to one, so $\mathbf{M r} \leq 1$
- We can now efficiently solve for r ! The method is called Power iteration

Example: Flow Equations \& M

	\mathbf{y}	\mathbf{a}	\mathbf{m}
\mathbf{y}	$1 / 2$	$1 / 2$	0
\mathbf{a}	$1 / 2$	0	1
\mathbf{m}	0	$1 / 2$	0

$r=M \cdot r$

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

y
a
m
:---:
$1 / 2$
0
m
a

Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
- Suppose there are N web pages
- Initialize: $\mathbf{r}^{(0)}=[1 / \mathrm{N}, \ldots, 1 / \mathrm{N}]^{\top}$
- Iterate: $\mathbf{r}^{(t+1)}=\mathbf{M} \cdot \mathbf{r}^{(t)}$

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}
$$

$d_{i} \ldots$ out-degree of node i

- Stop when $\left|\mathbf{r}^{(t+1)}-\mathbf{r}^{(t)}\right|_{1}<\varepsilon$ $|\mathbf{x}|_{1}=\sum_{1 \leq i \leq N}\left|x_{i}\right|$ is the L_{1} norm
Can use any other vector norm, e.g., Euclidean

PageRank: How to solve?

- Power Iteration:
- Set $r_{j}=1 / N$
- $1: r_{j}^{\prime}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Goto 1
- Example:

r_{y}	
r_{a}	$=$
r_{m}	

Iteration 0, 1, 2, ...

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	0	$1 / 2$	0

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

PageRank: How to solve?

- Power Iteration:
- Set $r_{j}=1 / N$
- $1: r_{j}^{\prime}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Goto 1
- Example:
\(\left(\begin{array}{l}r_{y}

r_{\mathrm{a}}

\mathrm{r}_{\mathrm{m}}\end{array}\right)=\)| $1 / 3$ | $1 / 3$ | $5 / 12$ | $9 / 24$ | $6 / 15$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 3$ | $3 / 6$ | $1 / 3$ | $11 / 24$ | \ldots | $6 / 15$ |
| $1 / 3$ | $1 / 6$ | $3 / 12$ | $1 / 6$ | | $3 / 15$ |

Iteration $0,1,2, \ldots$

6/15
6/15
3/15

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	0	$1 / 2$	0

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

Random Walk Interpretation

- Imagine a random web surfer:
- At any time \boldsymbol{t}, surfer is on some page \boldsymbol{i}
- At time $\boldsymbol{t}+\mathbf{1}$, the surfer follows an out-link from i uniformly at random
- Ends up on some page \boldsymbol{j} linked from \boldsymbol{i}

- Process repeats indefinitely
- Let:
- $\boldsymbol{p}(\boldsymbol{t})$... vector whose $\boldsymbol{i}^{\text {th }}$ coordinate is the prob. that the surfer is at page \boldsymbol{i} at time \boldsymbol{t}
- So, $\boldsymbol{p}(\boldsymbol{t})$ is a probability distribution over pages

The Stationary Distribution

- Where is the surfer at time $t+1$?
- Follows a link uniformly at random

$$
p(t+1)=M \cdot p(t)
$$

- Suppose the random walk reaches a state

$$
p(t+1)=M \cdot p(t)=p(t)
$$

then $\boldsymbol{p}(\boldsymbol{t})$ is stationary distribution of a random walk

- Our original rank vector \boldsymbol{r} satisfies $\boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r}$
- So, r is a stationary distribution for the random walk

What is a random walk

What is a random walk

What is a random walk

What is a random walk

Existence and Uniqueness

- A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time $\mathbf{t}=\mathbf{0}$

PageRank:
The Google Formulation

PageRank: Three Questions

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

Does this converge?

- Example:

Does it converge to what we want?

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}
$$

- Example:

PageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
- Random walk has "nowhere" to go to
- Such pages cause importance to "leak out"
- (2) Spider traps:
(all out-links are within the group)
- Random walked gets "stuck" in a trap
- And eventually spider traps absorb all importance

Problem: Spider Traps

- Power Iteration:
- Set $r_{j}=1$
- $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- And iterate

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	0
m	0	$1 / 2$	1

m is a spider trap

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2 \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2+\mathbf{r}_{\mathrm{m}}
\end{aligned}
$$

- Example:

[r_{y}		1/3	2/6	3/12	5/24	0
r_{a}	$=$	1/3	1/6	2/12	3/24	0
r_{m}		1/3	3/6	7/12	16/24	1

Iteration 0, 1, 2, ...
All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
- With prob. β, follow a link at random
- With prob. 1- β, jump to some random page
- Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

- Power Iteration:
- Set $r_{j}=1$
- $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- And iterate

$$
\begin{aligned}
& r_{y}=r_{y} / 2+r_{a} / 2 \\
& r_{a}=r_{y} / 2 \\
& r_{m}=r_{a} / 2
\end{aligned}
$$

- Example:
\(\left(\begin{array}{l}r_{y}

r_{\mathrm{a}}

\mathrm{r}_{\mathrm{m}}\end{array}\right)=\)| | $1 / 3$ | $2 / 6$ | $3 / 12$ | $5 / 24$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | | | | | |
| $1 / 3$ | $1 / 6$ | $2 / 12$ | $3 / 24$ | \ldots | 0 |
| $1 / 3$ | $1 / 6$ | $1 / 12$ | $2 / 24$ | | 0 |

Iteration $0,1,2, \ldots$
Here the PageRank "leaks" out since the matrix is not stochastic.

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	0
m	0	$1 / 2$	0

	y	a	m
y	$1 / 2$	$1 / 2$	$1 / 3$
a	$1 / 2$	0	$1 / 3$
m	0	$1 / 2$	$1 / 3$

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem, but with traps PageRank scores are not what we want
- Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
- The matrix is not column stochastic so our initial assumptions are not met
- Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all:

At each step, random surfer has two options:

- With probability β, follow a link at random
- With probability 1 - $\boldsymbol{\beta}$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N} \quad \begin{gathered}
\substack{d_{i} . . . \text { out-derree } \\
\text { of node } i}
\end{gathered}
$$

This formulation assumes that \boldsymbol{M} has no dead ends. We can either preprocess matrix \boldsymbol{M} to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

- PageRank equation [Brin-Page, '98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

- The Google Matrix A:

$$
A=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}
$$

- We have a recursive problem: $\boldsymbol{r}=\boldsymbol{A} \cdot \boldsymbol{r}$ And the Power method still works!
- What is β ?
- In practice $\beta=0.8,0.9$ (make 5 steps on avg., jump)

Random Teleports $(\beta=0.8)$

$0.8\left|\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 0 & 0 \\ 0 & 1 / 2 & 1\end{array}\right| \quad+0.2$
$[1 / \mathrm{N}]_{\mathrm{NXN}}$

$1 / 3$	$1 / 3$	$1 / 3$
$1 / 3$	$1 / 3$	$1 / 3$
$1 / 3$	$1 / 3$	$1 / 3$

y	$7 / 15$	$7 / 15$	$1 / 15$
a	$7 / 15$	$1 / 15$	$1 / 15$
m	$1 / 15$	$7 / 15$	$13 / 15$

y
a

m \quad| $1 / 3$ | 0.33 | 0.24 | 0.26 | |
| ---: | ---: | ---: | ---: | ---: |
| | $1 / 3$ | 0.20 | 0.20 | 0.18 |
| | $1 / 3$ | 0.46 | 0.52 | 0.56 |
| | | | $5 / 33$ | |
| $21 / 33$ | | | | |

