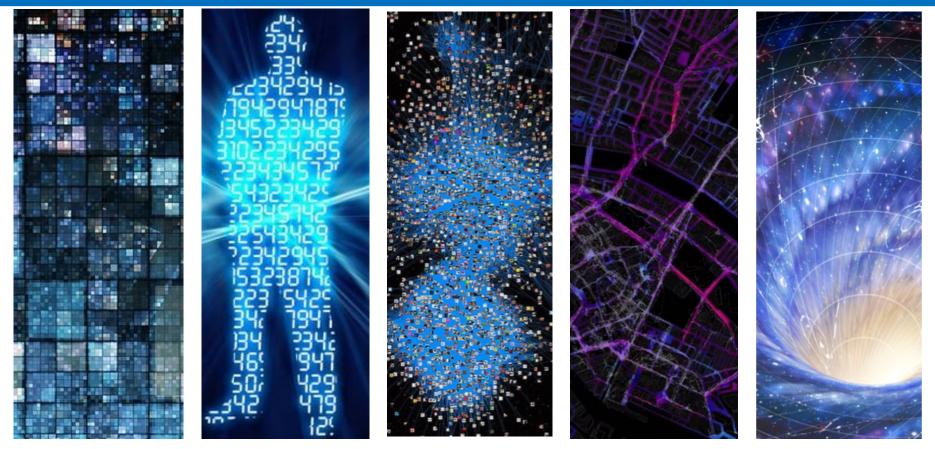
How Powerful are Graph Neural Networks

Joint work with R. Ying, J. You, M. Zitnik, W. Hamilton, W. Hu, et al.

Jure Leskovec

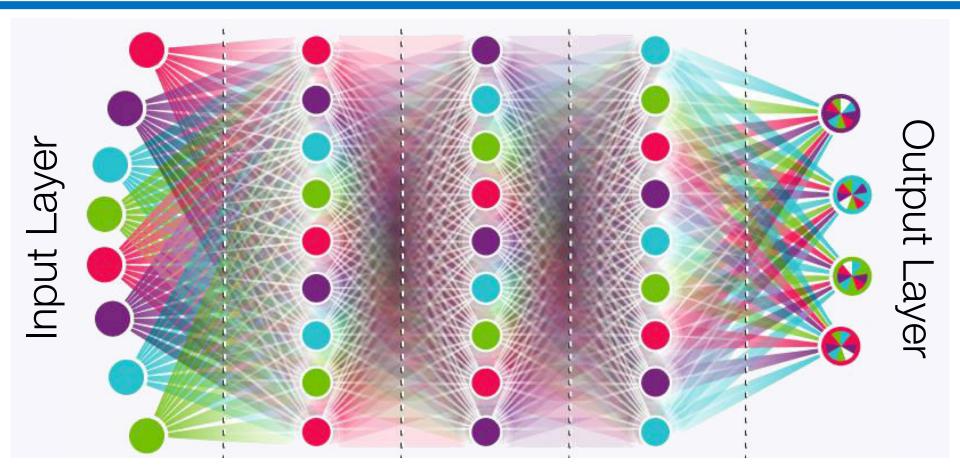
CHAN ZUCKERBERG BIOHUB

BIG Data



Digital transformation of science and society

Machine Learning



Advances in Machine Learning & Statistics

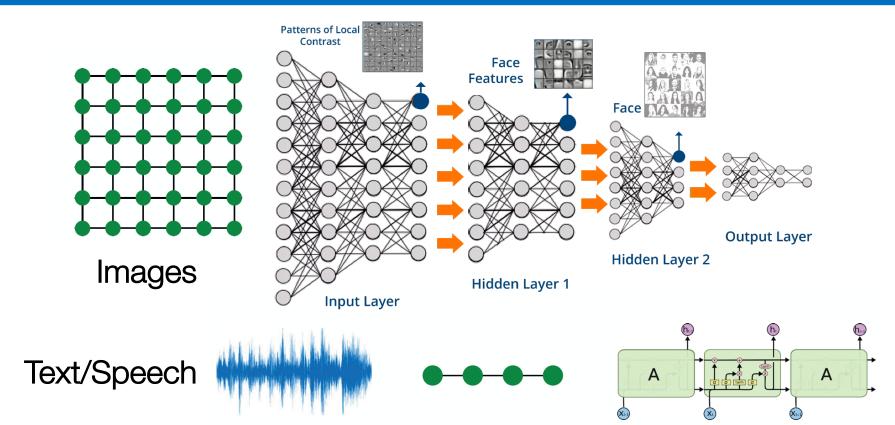
New Paradigm For Discovery

Massive data: Observe "invisible" patterns

Models and

insights

Modern ML Toolbox



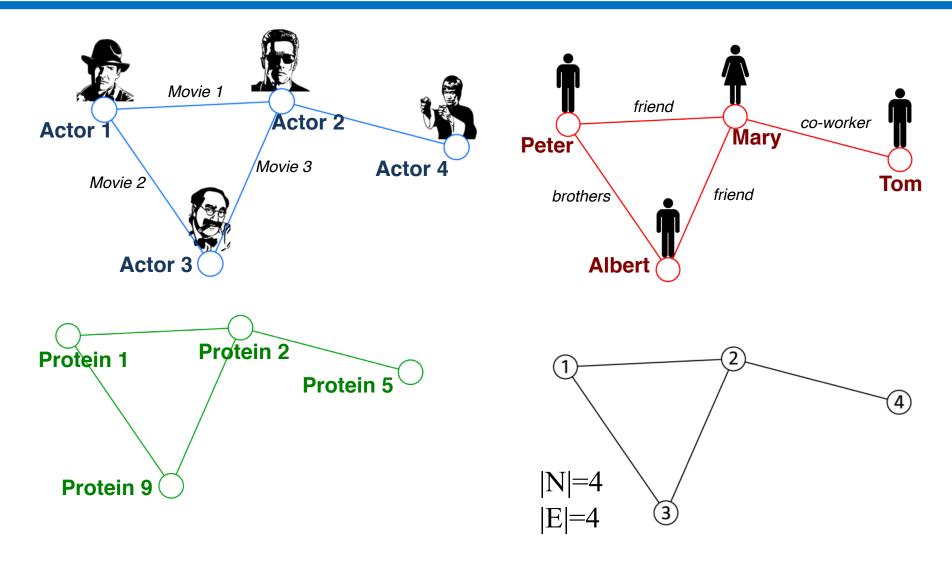
Modern deep learning toolbox is designed for simple sequences & grids

But not everything can be represented as a sequence or a grid

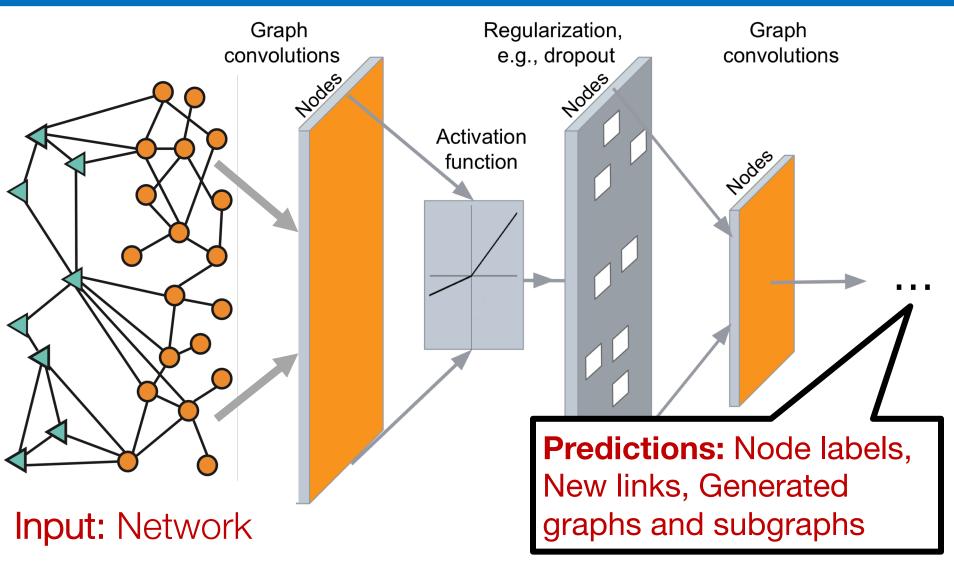
How can we develop neural networks that are much more broadly applicable?

New frontiers beyond classic neural networks that learn on images and sequences

Networks: Common Language



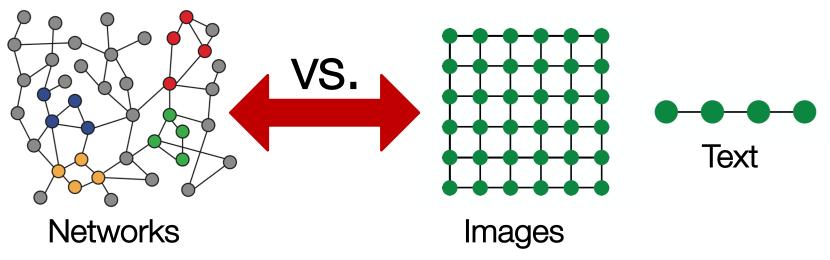
Deep Learning in Graphs



Why is it Hard?

But networks are far more complex!

 Arbitrary size and complex topological structure (i.e., no spatial locality like grids)



- No fixed node ordering or reference point
- Often dynamic and have multimodal features

GraphSAGE: Graph Neural Networks

Inductive Representation Learning on Large Graphs.

W. Hamilton, R. Ying, J. Leskovec. Neural Information Processing Systems (NIPS), 2017.
 <u>Representation Learning on Graphs: Methods and Applications</u>.
 W. Hamilton, R. Ying, J. Leskovec. IEEE Data Engineering Bulletin, 2017.

http://snap.stanford.edu/graphsage

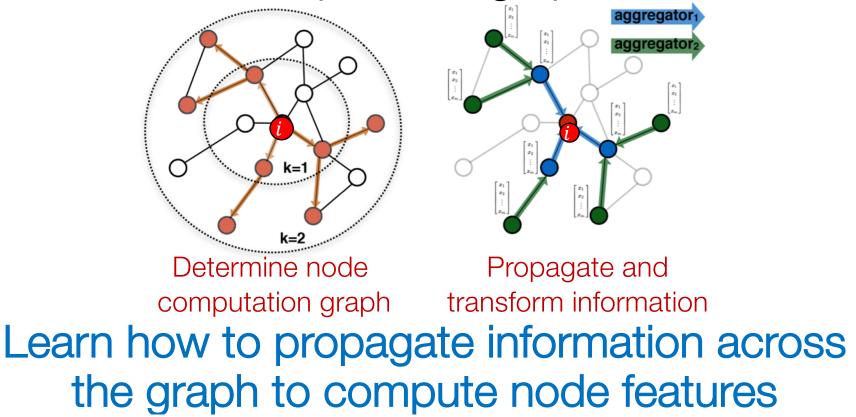
Setup

We have a graph G:

- V is the vertex set
- A is the (binary) adjacency matrix
- $X \in \mathbb{R}^{m \times |V|}$ is a matrix of **node features**
 - Meaningful node features:
 - Social networks: User profile
 - Biological networks: Gene expression profiles, gene functional information

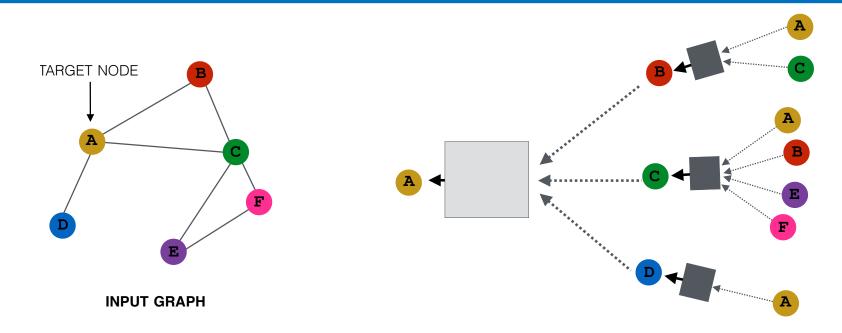
Graph Neural Networks

Idea: Node's neighborhood defines a computation graph



<u>The Graph Neural Network Model</u>. Scarselli et al. *IEEE Transactions on Neural Networks* 2005 <u>Semi-Supervised Classification with Graph Convolutional Networks</u>. T. N. Kipf, M. Welling, ICLR 2017

Graph Neural Networks

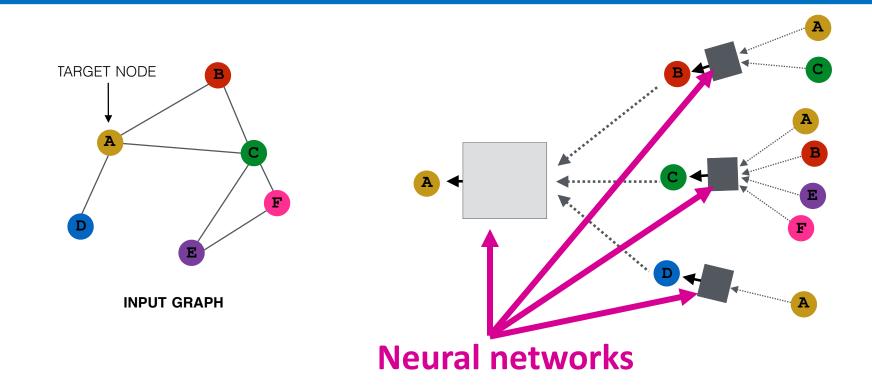


Each node defines a computation graph

 Each edge in this graph is a transformation/aggregation function

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.

Graph Neural Networks

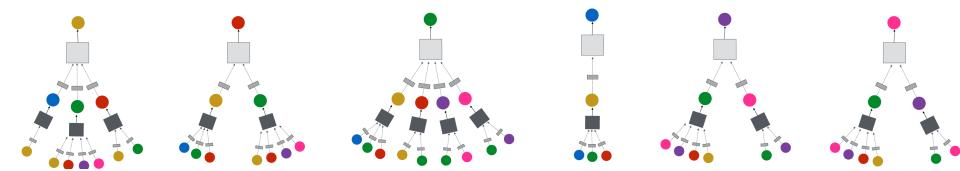


Intuition: Nodes aggregate information from their neighbors using neural networks

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.

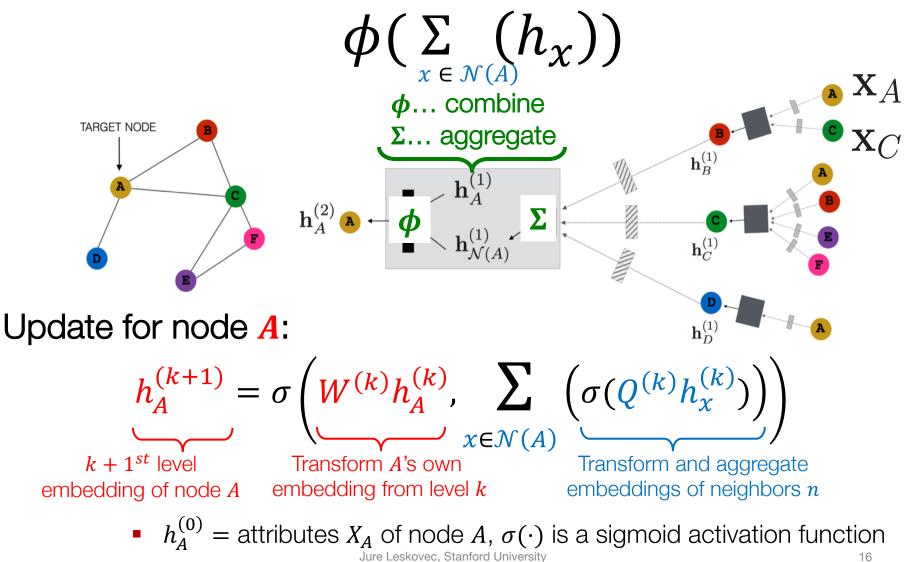
Idea: Aggregate Neighbors

Intuition: Network neighborhood defines a computation graph Every node defines a computation graph based on its neighborhood!



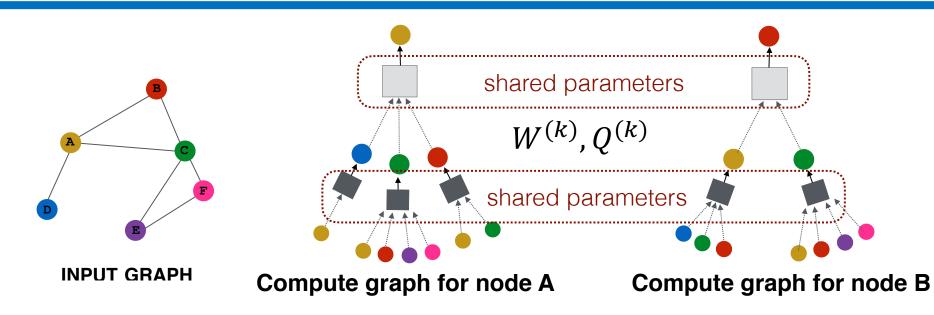
Can be viewed as learning a generic linear combination of graph low-pass and high-pass operators

Our Approach: GraphSAGE



[NIPS '17]

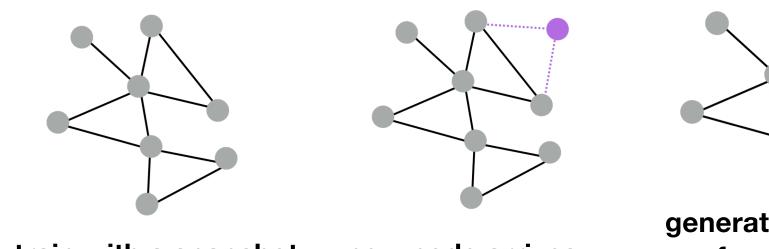
GraphSAGE: Training



- Aggregation parameters are shared for all nodes
- Number of model parameters is independent of [V]
- Can use different loss functions:
 - Classification/Regression: $\mathcal{L}(h_A) = ||y_A f(h_A)||^2$
 - Pairwise Loss: $\mathcal{L}(h_A, h_B) = \max(0, 1 dist(h_A, h_B))$

[NIPS '17]

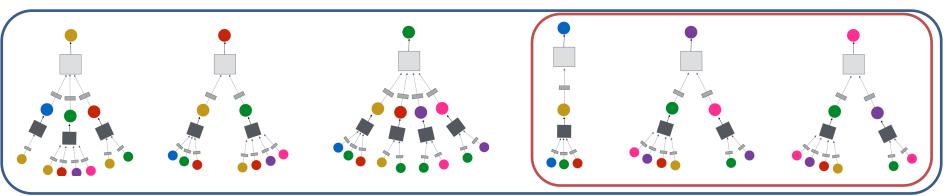
Inductive Capability



train with a snapshot

new node arrives

generate embedding for new node

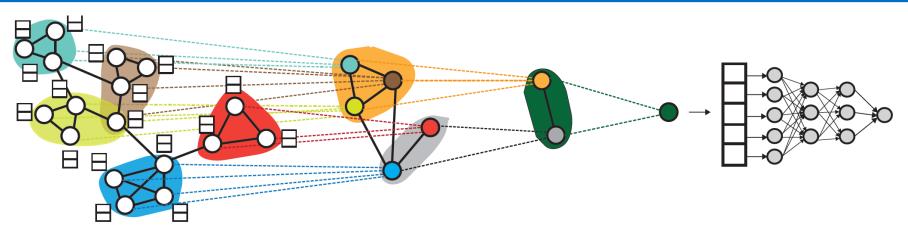


Even for nodes we never trained on!

 \mathbf{Z}_{u}

[NeurIPS '18]

Embedding Entire Graphs



Don't just embed individual nodes. Embed the entire graph.

Problem: Learn how to hierarchical pool the nodes to embed the entire graph

Our solution: DIFFPOOL

- Learns hierarchical pooling strategy
- Sets of nodes are pooled hierarchically

<u>Hierarchical Graph Representation Learning with Differentiable Pooling</u>. R. Ying, et al. NeurIPS 2018.

[NeurIPS '18]

Embedding Entire Graphs

How expressive are Dor Graph Neural Networks? Em Pro е nod Our solution. DIFFFUUL Learns hierarchical pooling strategy

Sets of nodes are pooled hierarchically

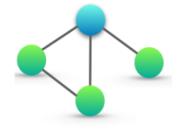
Hierarchical Graph Representation Learning with Differentiable Pooling. R. Ying, et al. NeurIPS 2018.

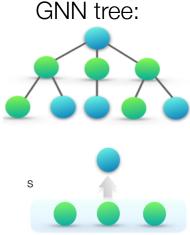
How expressive are GNNs?

Theoretical framework: Characterize GNN's discriminative power:

- Characterize upper bound of the discriminative power of GNNs
- Propose a maximally powerful GNN
- Characterize discriminative power of popular GNNs

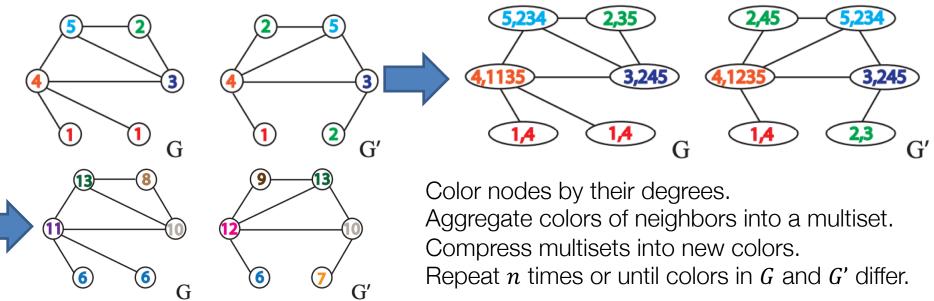
How Powerful are Graph Neural Networks? K. Xu, et al. ICLR 2019.





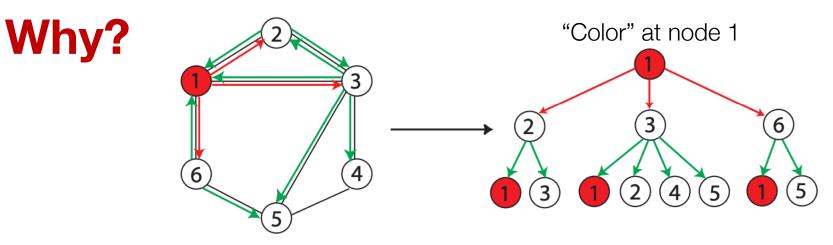
Discriminative Power of GNNs

Theorem: GNNs can be at most as powerful as the Weisfeiler-Lehman graph isomorphism test (a.k.a. canonical labeling or color refinement)



Discriminative Power of GNNs

Theorem: Power(GNNs) \leq Power(WL)



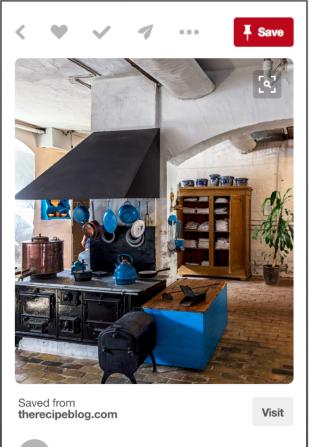
So, to distinguish 2 nodes, GNN needs to distinguish structure of their rooted subtrees

We develop GIN – provably most powerful GNN!

PinSAGE for Recommender Systems

<u>Graph Convolutional Neural Networks for Web-Scale Recommender Systems</u>. R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, J. Leskovec. *KDD*, 2018.

Pinterest





Blue accents 219 Pins

Vintage kitchen 377 Pins

300M users
4+B pins, 2+B boards

Application: Pinterest

PinSage graph convolutional network:

- Goal: Generate embeddings for nodes in a largescale Pinterest graph containing billions of objects
- Key Idea: Borrow information from nearby nodes
 - E.g., bed rail Pin might look like a garden fence, but gates and beds are rarely adjacent in the graph

- Pin embeddings are essential to various tasks like recommendation of Pins, classification, ranking
 - Services like "Related Pins", "Search", "Shopping", "Ads"

Pinterest Graph

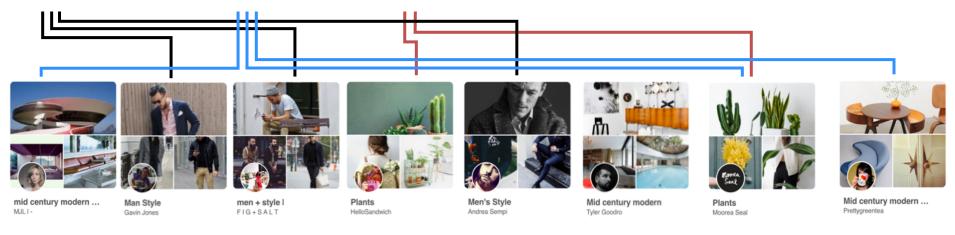
Human curated collection of pins

Very ape blue structured coat Nitty Gritty

Hans Wegner chair Room and Board

This is just a beautiful image for thoughts. Yay or nay, your choice.

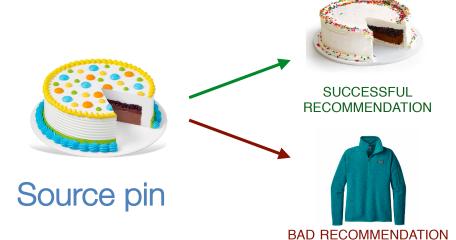
Pins: Visual bookmarks someone has saved from the internet to a board they've created. Pin features: Image, text, links



Jure Leskovec, Stanford University

Boards

Task: Recommend related pins to users

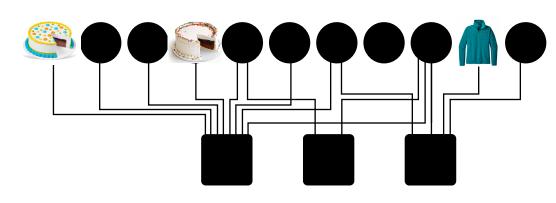


Task: Learn nodeembeddings z_i suchthat $d(z_{cake1}, z_{cake2})$

 $< d(z_{cake1}, z_{sweater})$

Ζ 🍋

Predict whether two nodes in a graph are related



PinSAGE Training

Goal: Identify target pin among 3B pins

- Issue: Need to learn with resolution of 100 vs. 3B
- Massive size: 3 billion nodes, 20 billion edges
- Idea: Use harder and harder negative samples

Source pin

Positive

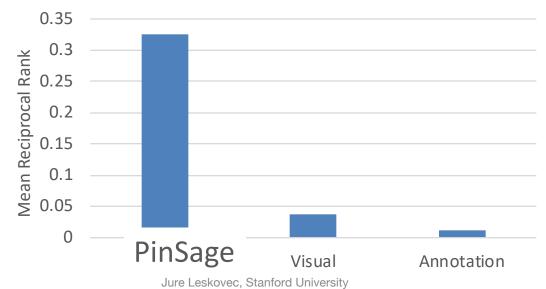
Easy negative

tive Hard negative

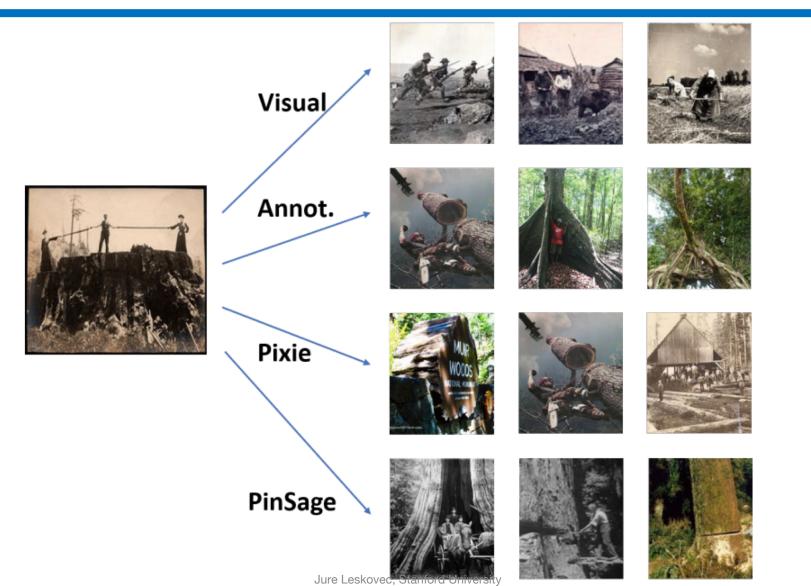
PinSAGE Performance

Related Pin recommendations

- Given a user is looking at pin Q, predict what pin X are they going to save next
- Setup: Embed 3B pins, perform nearest neighbor to generate recommendations



PinSAGE Example



Computational Drug Discovery: Drug Side Effect Prediction

<u>Modeling Polypharmacy Side Effects with Graph Convolutional Networks</u>. M. Zitnik, M. Agrawal, J. Leskovec. Bioinformatics, 2018.

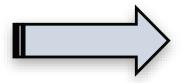
http://snap.stanford.edu/decagon/

Polypharmacy side effects

Many patients take multiple drugs to treat complex or co-existing diseases:

- 46% of people ages 70-79 take more than 5 drugs
- Many patients take more than 20 drugs to treat heart disease, depression, insomnia, etc.

Task: Given a pair of drugs predict adverse side effects



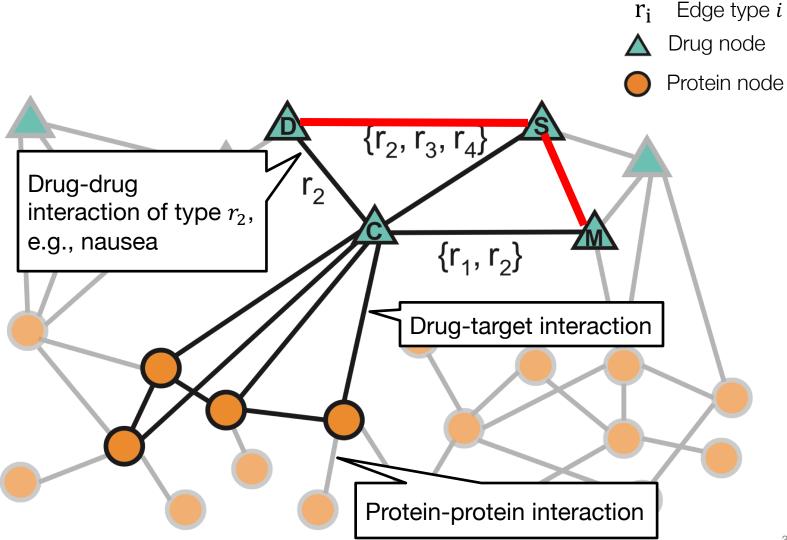
65%

prob

30%

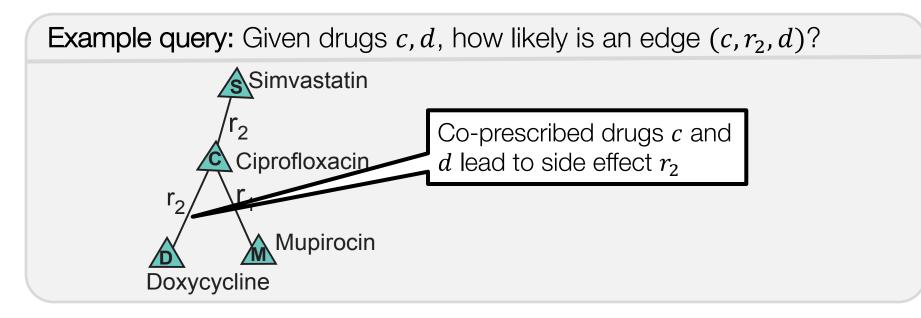
prob.

Approach: Build a Graph



Task: Link Prediction

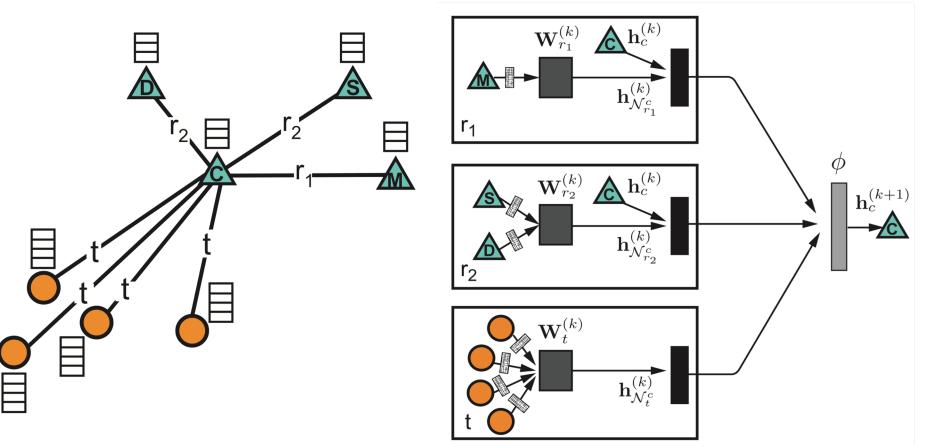
Task: Given a partially observed graph, predict labeled edges between drug nodes



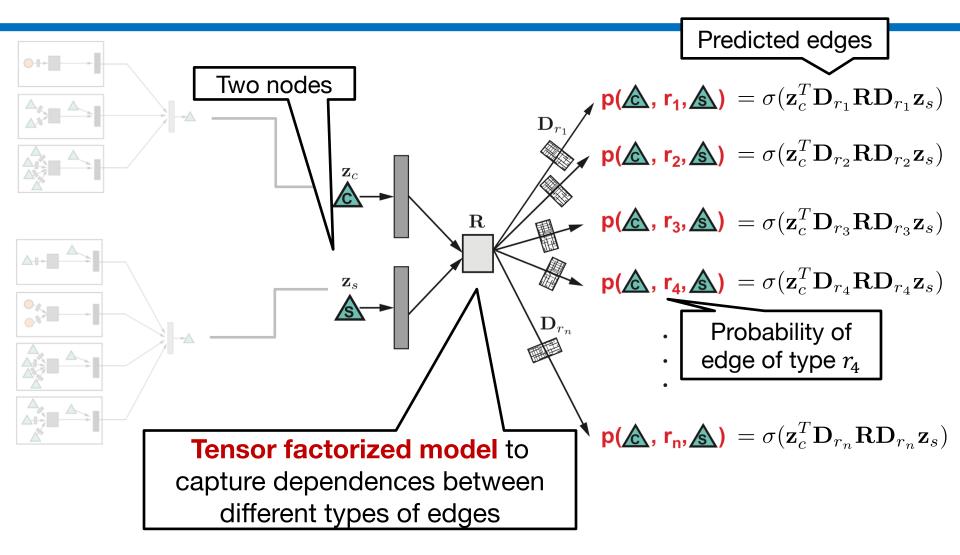
Decagon: Graph Neural Net

Network neighborhood of node *C*

Node *C*'s computation graph

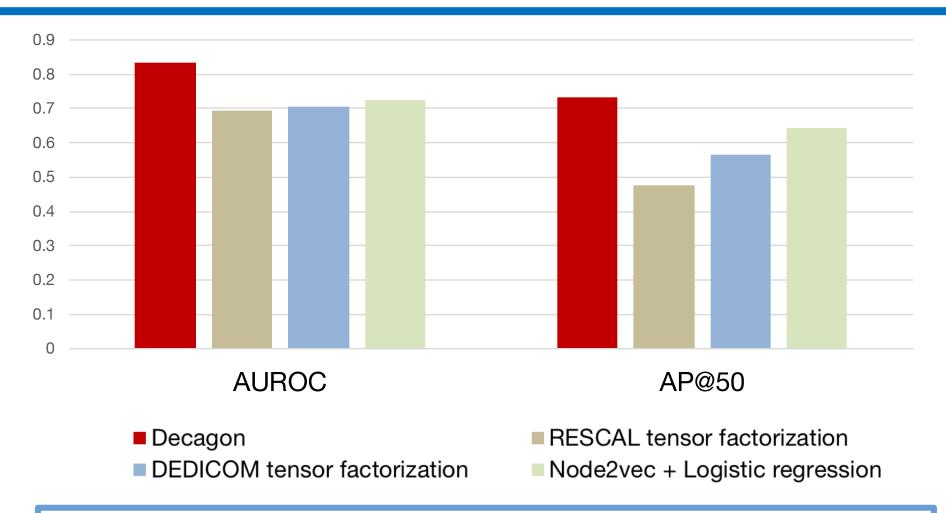


Decoder: Link Prediction



 $\mathbf{R}, \mathbf{D}_{r_i}$ Parameter weight matrices

Results: Side Effect Prediction



36% average in AP@50 improvement over baselines

De novo Predictions

Rank	Drug c	Drug d	Side effect r
1	Pyrimethamine	Aliskiren	Sarcoma
2	Tigecycline	Bimatoprost	Autonomic neuropathy
3	Omeprazole	Dacarbazine	Telangiectases
4	Tolcapone	Pyrimethamine	Breast disorder
5	Minoxidil	Paricalcitol	Cluster headache
6	Omeprazole	Amoxicillin	Renal tubular acidosis
7	Anagrelide	Azelaic acid	Cerebral thrombosis
8	Atorvastatin	Amlodipine	Muscle inflammation
9	Aliskiren	Tioconazole	Breast inflammation
10	Estradiol	Nadolol	Endometriosis

De novo Predictions

Rank	Drug c	Drug d	Side effect r	Evidence found		
1	Pyrimethamine	Aliskiren	Sarcoma	Stage <i>et al.</i> 2015		
2	Tigecycline	Bimatoprost	Autonomic neuropathy			
3	Omeprazole	Dacarbazine	Telangiectases			
4	Tolcapone	Pyrimethamine	Breast disorder	Bicker et al. 2017		
5	Minoxidil	Paricalcitol	Cluster headache			
6	Omeprazole	Amoxicillin	Renal tubular acidosis	Russo et al. 2016		
7	Anagrelide	Azelaic acid	Cerebral thrombosis			
8	Atorvastatin	Amlodipine	Muscle inflammation	Banakh et al. 2017		
9	Aliskiren	Tioconazole	Breast inflammation	Parving et al. 2012		
10	Estradiol	Nadolol	Endometriosis			

Case Report

Severe Rhabdomyolysis due to Presumed Drug Interactions between Atorvastatin with Amlodipine and Ticagrelor

Predictions in the Clinic

Clinical validation via drug-drug interaction markers, lab values, and

	Robert Ma	artin _{Male}					Medication List	Simple List	Timeline	Back to the Book	Feedback	Task List
show brand pm current (16) all (23)									Q,			
	Medication 👻	Brand 🔻	Dose	Frequency	Quantity	Refill	s Condition 👻	Provider 🔻	Prescribed 🔻	2011 2012 2013	2014 Renew b	y •
	beclomethasone HFA	QVAR HFA	2 puffs	bid		12	Asthma	Barnes	19 Feb 2011		19 Sej	p 2013
	chlorthalidone		25 mg	1 daily	90	3	Hypertension	Barnes	19 Sep 2006		19 Sej	p 2013
	insulin glargine	Lantus	28 u	daily	90	11	Diabetes	Ballard	19 Nov 2012	_	19 Sej	p 2013
	metformin		1000 mg	1 bid	180	3	Diabetes	Barnes	4 Mar 2008		19 Sej	p 2013
	naproxen	Aleve	500 mg	1 bid	90	0	Rheumatoid arthritis	Barnes	4 Mar 2008		19 Sej	p 2013
	prednisone		20 mg	2 d x5d prn	84	0	Asthma	Barnes	12 Sep 2010		19 Sej	p 2013
	zolpidem		5 mg	1 hs	90	0	Insomnia	Barnes	15 Mar 2012		22 Sej	p 2013
	simvastatin		40 mg	1 daily	84	0	High cholesterol	Belden	19 Mar 2010		30 Sej	p 2013
	terbinafine		250 mg	1 daily	84	0	Onychomycosis	Foote	30 Jul 2013	•	19 Oc	t 2013

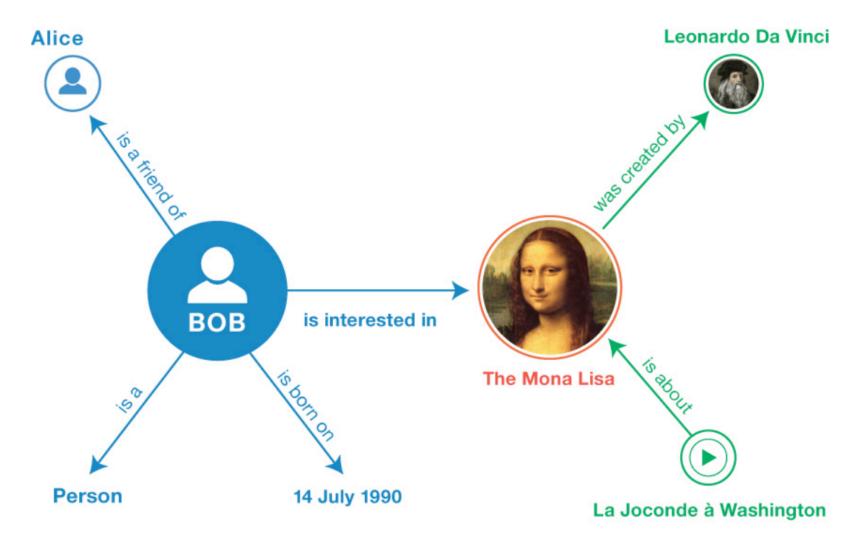
NEWTON-WELLESLEY HOSPITAL

First method to predict side effects of drug pairs, even for drug combinations not yet used in patients

Reasoning in Knowledge Graphs

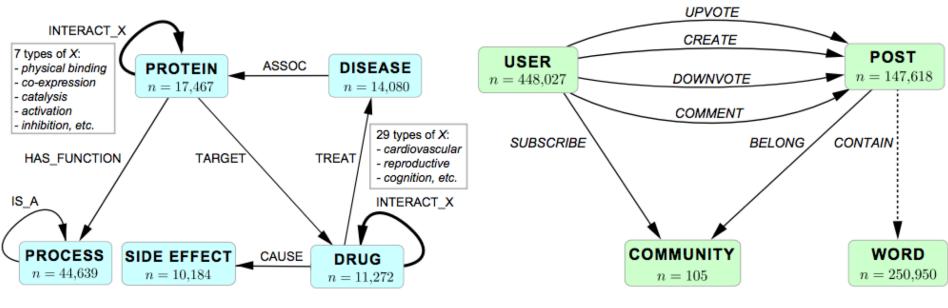
Embedding Logical Queries on Knowledge Graphs. W. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, J. Leskovec. *Neural Information Processing Systems (NIPS)*, 2018.

Knowledge as a Graph



Knowledge Graph

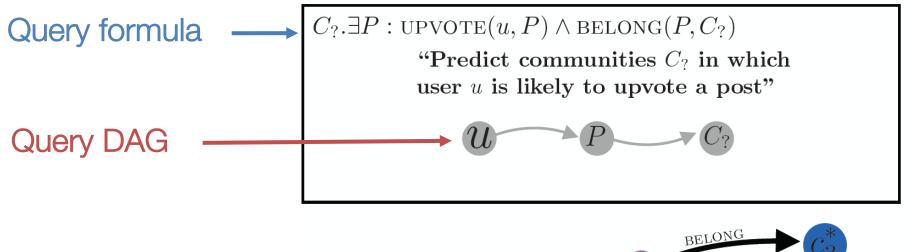
Heterogeneous Knowledge Graphs



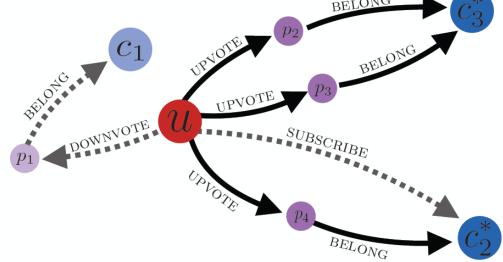
Biological interactions

Online communities

Conjunctive Graph Queries



Example subgraphs that satisfy the query



Predictive Graph Queries

Key challenges: Big graphs and queries can involve noisy and unobserved data!

Some links might be noisy or unobserved or haven't occurred yet

Problem: Naïve link prediction and graph template matching are too expensive

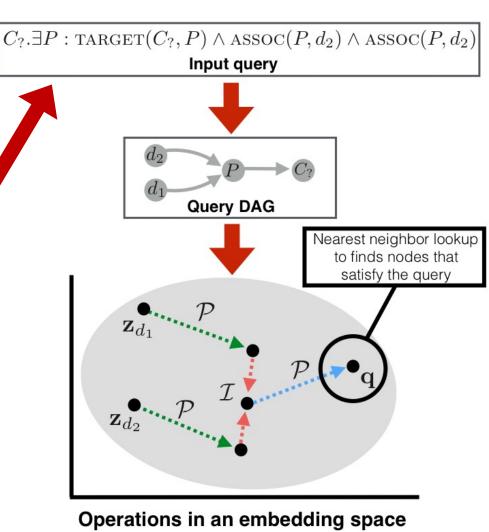
Overview of Our Framework

Goal: Answer complex logical queries

E.g.: "Predict drugs C

likely <u>target</u> proteins P <u>associated</u> with diseases d₁ and d₂"

Idea: Logical operators become spatial operators



Model Specification

Given: Knowledge graph Find: τ... edge type γ... node type $R_τ...$ matrix $W_γ...$ matrix Ψ... aggregator NN... neural net

- Node embeddings
- Projection operator *P*: $P(q, \tau) = R_{\tau} \cdot z_q$
 - Applies transition R_{τ} of relation τ to q
- Intersection operator *I*: $I(q_{1...n}) = W_{\gamma} \cdot AGG_{j=1...n}(NN(q_i))$
 - Set intersection in the embedding space

Model Training

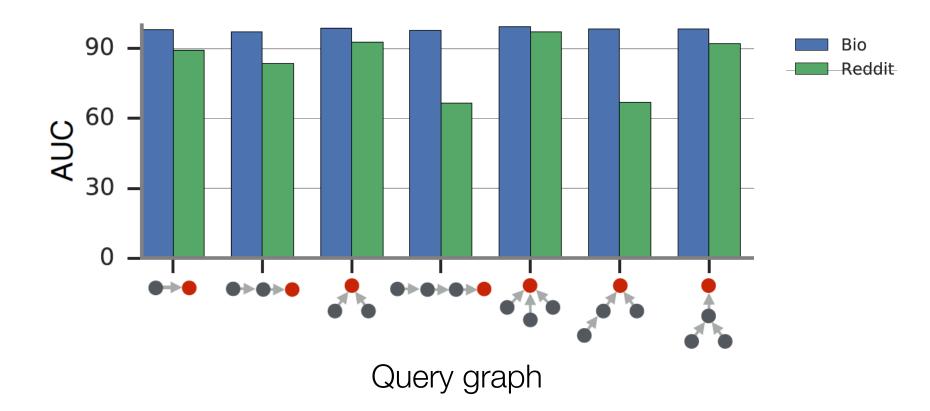
Training examples: Queries on the graph

- Positives: Path with a known answer
- "Standard" negatives: Random nodes of the correct answer type
- "Hard" negatives: Correct answers if a logical conjunction is relaxed to a disjunction

• LOSS:
$$\mathcal{L}(q) = \max(0, 1 - \mathtt{score}(\mathbf{q}, \mathbf{z}_{v^*}) + \mathtt{score}(\mathbf{q}, \mathbf{z}_{v_N}))$$

Performance

Performance on different query types:



How can this technology be used for other problems?

We can now apply neural networks much more broadly

New frontiers beyond classic neural networks that learn on images and sequences

Many other applications:

- Nodes: Predict tissue-specific protein functions
- Subgraphs: Predict which drug treats what disease
- Graphs: Predict properties of molecules/drugs

Summary

- Graph Convolutional Neural Networks
 - Generalize beyond simple convolutions
- Fuses node features & graph info
 - State-of-the-art accuracy for node classification and link prediction
- Model size independent of graph size; can scale to billions of nodes
 - Largest embedding to date (3B nodes, 20B edges)
- Leads to significant performance gains

Conclusion

- Results from the past 2-3 years have shown:
- Representation learning paradigm can be extended to graphs
- No feature engineering necessary
- Can effectively combine node attribute data with the network information
- State-of-the-art results in a number of domains/tasks
- Use end-to-end training instead of multi-stage approaches for better performance

Industry Partnerships

PhD Students

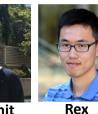
Weihua

Hu

Alexandra

Porter

Ruiz Donnat



Pierson

Ying

Jiaxuan You

Bowen Liu

Mohit Tiwari

Post-Doctoral Fellows

Baharan Mirzasoleiman

Srijan

Kumar

Marinka Zitnik

Hingwei

Wang

Michele Catasta

Research

Staff

Li

Li

Adrijan Rok Sosic Bradaschia

Collaborators

Dan Jurafsky, Linguistics, Stanford University David Grusky, Sociology, Stanford University Stephen Boyd, Electrical Engineering, Stanford University David Gleich, Computer Science, Purdue University VS Subrahmanian, Computer Science, University of Maryland Sarah Kunz, Medicine, Harvard University **Russ Altman, Medicine, Stanford University** Jochen Profit, Medicine, Stanford University Eric Horvitz, Microsoft Research Jon Kleinberg, Computer Science, Cornell University Sendhill Mullainathan, Economics, Harvard University Scott Delp, Bioengineering, Stanford University James Zou, Medicine, Stanford University

References

- Tutorial on Representation Learning on Networks at WWW 2018 http://snap.stanford.edu/proj/embeddings-www/
- <u>Inductive Representation Learning on Large Graphs</u>.
 W. Hamilton, R. Ying, J. Leskovec. NIPS 2017.
- <u>Representation Learning on Graphs: Methods and Applications</u>. W. Hamilton, R. Ying, J. Leskovec. IEEE Data Engineering Bulletin, 2017.
- <u>Graph Convolutional Neural Networks for Web-Scale Recommender Systems</u>. R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, J. Leskovec. KDD, 2018.
- <u>Modeling Polypharmacy Side Effects with Graph Convolutional Networks</u>. M. Zitnik, M. Agrawal, J. Leskovec. Bioinformatics, 2018.
- <u>Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation.</u> J. You, B. Liu, R. Ying, V. Pande, J. Leskovec, NeurIPS 2018.
- <u>Embedding Logical Queries on Knowledge Graphs</u>. W. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, J. Leskovec. NeuIPS, 2018.
- <u>How Powerful are Graph Neural Networks?</u> K. Xu, W. Hu, J. Leskovec, S. Jegelka. ICLR 2019.
- Code:
 - http://snap.stanford.edu/graphsage
 - <u>http://snap.stanford.edu/decagon/</u>
 - https://github.com/bowenliu16/rl_graph_generation
 - https://github.com/williamleif/graphgembed
 - https://github.com/snap-stanford/GraphRNN