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BIG Data

Digital transformation of 
science and society
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Machine Learning
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New Paradigm For Discovery

Massive data: Observe “invisible” patterns

Data Science,
Machine Learning

Data
Models and

insights
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Modern ML Toolbox
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Images

Text/Speech

Modern deep learning toolbox is 
designed for simple sequences & grids
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But not everything 
can be represented as 
a sequence or a grid

How can we develop neural 
networks that are much more 

broadly applicable?
New frontiers beyond classic neural 
networks that learn on images and 

sequences



Networks: Common Language

Jure Leskovec, Stanford University 7

Peter Mary

Albert

Tom

co-worker

friendbrothers

friend

Protein 1 Protein 2
Protein 5

Protein 9

Movie 1

Movie 3
Movie 2

Actor 3

Actor 1 Actor 2

Actor 4

|N|=4
|E|=4



Deep Learning in Graphs

…
z

Input: Network

Predictions: Node labels, 
New links, Generated 
graphs and subgraphs
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Why is it Hard?
But networks are far more complex!

§ Arbitrary size and complex topological 
structure (i.e., no spatial locality like grids)

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features
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vs.

Networks Images

Text
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GraphSAGE: 
Graph Neural Networks

Jure Leskovec, Stanford University

Inductive Representation Learning on Large Graphs. 
W. Hamilton, R. Ying, J. Leskovec. Neural Information Processing Systems (NIPS), 2017.
Representation Learning on Graphs: Methods and Applications. 
W. Hamilton, R. Ying, J. Leskovec. IEEE Data Engineering Bulletin, 2017. 

http://snap.stanford.edu/graphsage

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
http://snap.stanford.edu/graphsage


Setup

We have a graph !:

§ " is the vertex set

§ # is the (binary) adjacency matrix

§ $ ∈ ℝ'×|*| is a matrix of node features

§ Meaningful node features:
§ Social networks: User profile

§ Biological networks: Gene expression profiles, 
gene functional information

Jure Leskovec, Stanford University 11



Graph Neural Networks

Learn how to propagate information across 
the graph to compute node features
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Determine node 
computation graph

!

Propagate and
transform information

!

Idea: Node’s neighborhood defines a 
computation graph

The Graph Neural Network Model. Scarselli et al. IEEE Transactions on Neural Networks 2005
Semi-Supervised Classification with Graph Convolutional Networks. T. N. Kipf, M. Welling, ICLR 2017

http://ieeexplore.ieee.org/document/4700287/
https://arxiv.org/pdf/1609.02907.pdf
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Graph Neural Networks
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Each node defines a computation graph
§ Each edge in this graph is a 

transformation/aggregation function 
Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf


INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Graph Neural Networks

14Jure Leskovec, Stanford University

Intuition: Nodes aggregate information from 
their neighbors using neural networks

Neural networks

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf


Idea: Aggregate Neighbors

Intuition: Network neighborhood 
defines a computation graph

Jure Leskovec, Stanford University 15

Every node defines a computation 
graph based on its neighborhood!

Can be viewed as learning a generic linear combination 
of graph low-pass and high-pass operators



Our Approach: GraphSAGE
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[NIPS ‘17]
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GraphSAGE: Training

§ Aggregation parameters are shared for all nodes
§ Number of model parameters is independent of |V|
§ Can use different loss functions:

§ Classification/Regression: ℒ ℎ% = '% − ) ℎ%
*

§ Pairwise Loss: ℒ ℎ%, ℎ, = max(0, 1 − 3456 ℎ%, ℎ, )
Jure Leskovec, Stanford University 17
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Inductive Capability
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train with a snapshot new node arrives
generate embedding 

for new node

Jure Leskovec, Stanford University

zu

Even for nodes we 
never trained on!



Embedding Entire Graphs

19Jure Leskovec, Stanford University

Don’t just embed individual nodes. 
Embed the entire graph.
Problem: Learn how to hierarchical pool the 
nodes to embed the entire graph
Our solution: DIFFPOOL

§ Learns hierarchical pooling strategy
§ Sets of nodes are pooled hierarchically

Hierarchical Graph Representation Learning with Differentiable Pooling. R. Ying, et al. NeurIPS 2018.

[NeurIPS ‘18]

https://arxiv.org/abs/1806.08804


Embedding Entire Graphs
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Don’t just embed individual nodes. 
Embed the entire graph.
Problem: Learn how to hierarchical pool the 
nodes to embed the entire graph
Our solution: DIFFPOOL

§ Learns hierarchical pooling strategy
§ Sets of nodes are pooled hierarchically

Hierarchical Graph Representation Learning with Differentiable Pooling. R. Ying, et al. NeurIPS 2018.

[NeurIPS ‘18]

How expressive are 
Graph Neural Networks?

https://arxiv.org/abs/1806.08804


How expressive are GNNs?

Theoretical framework: Characterize 
GNN’s discriminative power:
§ Characterize upper bound of the 

discriminative power of GNNs
§ Propose a maximally powerful GNN
§ Characterize discriminative power 

of popular GNNs

Jure Leskovec, Stanford University 21

How Powerful are Graph Neural 
Networks? K. Xu, et al. ICLR 2019.

GNN tree:

https://arxiv.org/abs/1810.00826


Discriminative Power of GNNs

Theorem: GNNs can be at most as 
powerful as the Weisfeiler-Lehman 
graph isomorphism test (a.k.a. canonical 

labeling or color refinement)

Jure Leskovec, Stanford University 22

Color nodes by their degrees. 
Aggregate colors of neighbors into a multiset.
Compress multisets into new colors. 
Repeat ! times or until colors in " and "’ differ.



Discriminative Power of GNNs

Theorem: Power(GNNs) ≤ Power(WL)

Why?

So, to distinguish 2 nodes, GNN needs to 
distinguish structure of their rooted subtrees

Jure Leskovec, Stanford University 23

We develop GIN – provably most powerful GNN!

“Color” at node 1



PinSAGE for 
Recommender Systems

24

Graph Convolutional Neural Networks for Web-Scale Recommender Systems. R. Ying, R. 
He, K. Chen, P. Eksombatchai, W. L. Hamilton, J. Leskovec. KDD, 2018.

https://cs.stanford.edu/people/jure/pubs/pinsage-kdd18.pdf


Pinterest

§ 300M users

§ 4+B pins, 2+B boards



Under review as a conference paper at ICLR 2019

sum - multiset

>
mean - distribution max - set

>
Input

Figure 2: Ranking by expressive power for sum, mean and max-pooling aggregators over a multiset.
Left panel shows the input multiset and the three panels illustrate the aspects of the multiset a given
aggregator is able to capture: sum captures the full multiset, mean captures the proportion/distribution
of elements of a given type, and the max aggregator ignores multiplicities (reduces the multiset to a
simple set).

vs.

(a) Mean and Max both fail

vs.

(b) Max fails

vs.

(c) Mean and Max both fail

Figure 3: Examples of simple graph structures that mean and max-pooling aggregators fail to
distinguish. Figure 2 gives reasoning about how different aggregators “compress” different graph
structures/multisets.

existing GNNs instead use a 1-layer perceptron � �W (Duvenaud et al., 2015; Kipf & Welling, 2017;
Zhang et al., 2018), a linear mapping followed by a non-linear activation function such as a ReLU.
Such 1-layer mappings are examples of Generalized Linear Models (Nelder & Wedderburn, 1972).
Therefore, we are interested in understanding whether 1-layer perceptrons are enough for graph
learning. Lemma 7 suggests that there are indeed network neighborhoods (multisets) that models
with 1-layer perceptrons can never distinguish.

Lemma 7. There exist finite multisets X1 6= X2 so that for any linear mapping W ,P
x2X1

ReLU (Wx) =
P

x2X2
ReLU (Wx) .

The main idea of the proof for Lemma 7 is that 1-layer perceptrons can behave much like linear
mappings, so the GNN layers degenerate into simply summing over neighborhood features. Our
proof builds on the fact that the bias term is lacking in the linear mapping. With the bias term and
sufficiently large output dimensionality, 1-layer perceptrons might be able to distinguish different
multisets. Nonetheless, unlike models using MLPs, the 1-layer perceptron (even with the bias term)
is not a universal approximator of multiset functions. Consequently, even if GNNs with 1-layer
perceptrons can embed different graphs to different locations to some degree, such embeddings may
not adequately capture structural similarity, and can be difficult for simple classifiers, e.g., linear
classifiers, to fit. In Section 7, we will empirically see that GNNs with 1-layer perceptrons, when
applied to graph classification, sometimes severely underfit training data and often underperform
GNNs with MLPs in terms of test accuracy.

5.2 STRUCTURES THAT CONFUSE MEAN AND MAX-POOLING

What happens if we replace the sum in h (X) =
P

x2X f(x) with mean or max-pooling as in GCN
and GraphSAGE? Mean and max-pooling aggregators are still well-defined multiset functions because
they are permutation invariant. But, they are not injective. Figure 2 ranks the three aggregators by
their representational power, and Figure 3 illustrates pairs of structures that the mean and max-pooling
aggregators fail to distinguish. Here, node colors denote different node features, and we assume the
GNNs aggregate neighbors first before combining them with the central node.

In Figure 3a, every node has the same feature a and f(a) is the same across all nodes (for any
function f ). When performing neighborhood aggregation, the mean or maximum over f(a) remains
f(a) and, by induction, we always obtain the same node representation everywhere. Thus, mean and
max-pooling aggregators fail to capture any structural information. In contrast, a sum aggregator
distinguishes the structures because 2 · f(a) and 3 · f(a) give different values. The same argument
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Application: Pinterest

PinSage graph convolutional network:
§ Goal: Generate embeddings for nodes in a large-

scale Pinterest graph containing billions of objects
§ Key Idea: Borrow information from nearby nodes

§ E.g., bed rail Pin might look like a garden fence, but 
gates and beds are rarely adjacent in the graph

§ Pin embeddings are essential to various tasks like 
recommendation of Pins, classification, ranking
§ Services like “Related Pins”, “Search”, “Shopping”, “Ads”

Jure Leskovec, Stanford University 26
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Pinterest Graph

27

Human curated collection of pins
Pins: Visual bookmarks someone 
has saved from the internet to a 
board they’ve created.
Pin features: Image, text, links

Boards
7Jure Leskovec, Stanford University



Pin Recommendation

Task: Recommend related pins to users

Source pin

8

Predict whether two nodes in a graph are related

Task: Learn node 
embeddings !" such 
that
# !$%&'(, !$%&'*
< #(!$%&'(, !-.'%/'0)

!



PinSAGE Training

Goal: Identify target pin among 3B pins
§ Issue: Need to learn with resolution of 100 vs. 3B
§ Massive size: 3 billion nodes, 20 billion edges
§ Idea: Use harder and harder negative samples

29

Source pin Positive Hard negativeEasy negative
Jure Leskovec, Stanford University



PinSAGE Performance

Related Pin recommendations
§ Given a user is looking at pin Q, predict 

what pin X are they going to save next 

§ Setup: Embed 3B pins, perform nearest 
neighbor to generate recommendations

Jure Leskovec, Stanford University 30
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PinSAGE Example

31Jure Leskovec, Stanford University



Computational Drug 
Discovery: Drug Side 

Effect Prediction

32

Modeling Polypharmacy Side Effects with Graph Convolutional Networks. M. Zitnik, M. Agrawal, J. 
Leskovec. Bioinformatics, 2018.

http://snap.stanford.edu/decagon/

https://cs.stanford.edu/people/jure/pubs/drugcomb-ismb18.pdf
https://cs.stanford.edu/people/jure/pubs/drugcomb-ismb18.pdf


Polypharmacy side effects

Many patients take multiple drugs to 
treat complex or co-existing diseases:
§ 46% of people ages 70-79 take more than 5 drugs

§ Many patients take more than 20 drugs to treat heart 
disease, depression, insomnia, etc.

Task: Given a pair of drugs predict 
adverse side effects

,
30% 
prob.

65% 
prob.

33Jure Leskovec, Stanford University



Approach: Build a Graph

34

r" Edge type #
Drug node

Protein node

Drug-drug 
interaction of type $%, 
e.g., nausea

Drug-target interaction

Protein-protein interaction



Task: Link Prediction

Task: Given a partially observed graph, 
predict labeled edges between 

drug nodes

35

Ciprofloxacin
r1

r2

Simvastatin

Mupirocin

r2

Doxycycline

S

C

MD

Example query: Given drugs !, #, how likely is an edge (!, %&, #)?

Co-prescribed drugs ! and 
# lead to side effect %&

Jure Leskovec, Stanford University



Decagon: Graph Neural Net

36

Node !’s computation 
graph

Network neighborhood of 
node !



Decoder: Link Prediction

37
Parameter weight matrices

Probability of 
edge of type !"

Two nodes

Predicted edges

Tensor factorized model to 
capture dependences between 

different types of edges



Results: Side Effect Prediction

36% average in AP@50 improvement over baselines
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De novo Predictions
Drug c Drug d

39Jure Leskovec, Stanford University



De novo Predictions

Evidence foundDrug c Drug d

40Jure Leskovec, Stanford University



Predictions in the Clinic

Clinical validation via drug-drug 
interaction markers, lab values, and 
surrogates

41

First method to predict side effects of drug pairs, even 
for drug combinations not yet used in patients



Reasoning in 
Knowledge Graphs

42

Embedding Logical Queries on Knowledge Graphs. W. Hamilton, P. Bajaj, M. Zitnik, D. 
Jurafsky, J. Leskovec. Neural Information Processing Systems (NIPS), 2018.

https://arxiv.org/abs/1806.01445


Knowledge as a Graph

Jure Leskovec, Stanford University 43



Knowledge Graph

Heterogeneous Knowledge Graphs

44Jure Leskovec, Stanford University

Biological interactions Online communities



Conjunctive Graph Queries

45

Query formula

Query DAG

Example subgraphs 
that satisfy the query

Jure Leskovec, Stanford University



Predictive Graph Queries

Key challenges: Big graphs and queries 
can involve noisy and unobserved data!

Problem: Naïve link prediction and graph 
template matching are too expensive

46

?
Some links might be 

noisy or unobserved or 
haven’t occurred yet

?

Jure Leskovec, Stanford University



Overview of Our Framework

Goal: Answer 
complex logical 
queries
E.g.: “Predict drugs C
likely target proteins
P associated with 
diseases d1 and d2”

Idea: Logical operators
become spatial operators

Jure Leskovec, Stanford University 47



Model Specification

Given: Knowledge graph

Find:
§ Node embeddings

§ Projection operator !: ! ", $ = &' ⋅ )*
§ Applies transition &' of relation $ to "

§ Intersection operator +: 
+ ",…. = /0 ⋅ AGG34,...6(NN(q:))
§ Set intersection in the embedding space

Jure Leskovec, Stanford University 48

τ… edge type
γ… node type
R?… matrix
WA… matrix

Ψ… aggregator
NN… neural net



Model Training

Training examples: Queries on the graph

§ Positives: Path with a known answer
§ “Standard” negatives: Random nodes of the 

correct answer type
§ “Hard” negatives: Correct answers if a logical 

conjunction is relaxed to a disjunction
§ Loss:

Jure Leskovec, Stanford University 49



Performance

§ Performance on different query types:

50

Query graph

Jure Leskovec, Stanford University



How can this technology 
be used for other problems?

Many other applications: 
§ Nodes: Predict tissue-specific protein functions
§ Subgraphs: Predict which drug treats what disease
§ Graphs: Predict properties of molecules/drugs

We can now apply neural networks 
much more broadly

New frontiers beyond classic neural networks 
that learn on images and sequences

51Jure Leskovec, Stanford University



Summary

§ Graph Convolutional Neural Networks
§ Generalize beyond simple convolutions

§ Fuses node features & graph info
§ State-of-the-art accuracy for node 

classification and link prediction

§ Model size independent of graph size; 
can scale to billions of nodes
§ Largest embedding to date (3B nodes, 20B edges)

§ Leads to significant performance gains
Jure Leskovec, Stanford University 52



Conclusion

Results from the past 2-3 years have shown:

§ Representation learning paradigm can be 
extended to graphs

§ No feature engineering necessary

§ Can effectively combine node attribute data 
with the network information

§ State-of-the-art results in a number of 
domains/tasks

§ Use end-to-end training instead of 
multi-stage approaches for better performance

Jure Leskovec, Stanford University 53
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