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Evaluation

How do we measure generalization performance?
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Evaluating Classifiers: Plain Accuracy

Number of correct decisions made

Accuracy= —
y Total number of decisions made

=1—error rate

* Too simplistic..
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Evaluating Classifiers: The Confusion Matrix

» A confusion matrix for a problem involving n classes is an nxn
matrix,

with the columns labeled with actual classes and the rows labeled with
predicted classes

» |t separates out the decisions made by the classifier,

making explicit how one class is being confused for another

Actual class

Predicted Y  lrue Positives False Positives
class

N False Negatives  True Negatives

* The errors of the classifier are the false positives and false
negatives
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Building a Confusion Matrix

1: Default

0: No Default
Actual | Predicted
Class Class

0 0

1 1

R OO~ |O

R OO~ |O
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Predicted
class

)

Actual class

De(f1al)UIt Def:t:)lt(O) Total
Default (1) 3 2 5
No Default (0) 1 5
Total 4 6 10
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Other Evaluation Metrics

.. TP "
* Precision = pp— out of all reported positives, how many percent

were true positives.

* FPR=FP/(FP+TN): out of all ground-truth negatives, how
many percent were false positives

e Recall = TPZPFN: out of all ground-truth positives, how many

percent were true positives

« TPR = TP/(TP+FN)=Recall

9% precisionxrecall
precision+recall

 F;—measure (F;-score) =

Fg [edit]
A more general F score, Fﬂ, that uses a positive real factor B, where f is chosen such that recall is
considered B times as important as precision, is:

precision - recall
Fp=(1+p)-

(52 - precision) + recall
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* Finding chance occurrences in data that look like interesting
patterns, but which do not generalize, is called over-fitting the data

 We want models to apply not just to the exact training set but to the
general population from which the training data came

- Generalization
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Over-fitting

* The tendency of DM procedures to tailor models to the
training data, at the expense of generalization to
previously unseen data points.

« All data mining procedures have the tendency to over-fit to some
extent

Some more than others.
« “If you torture the data long enough, it will confess”

« There is no single choice or procedure that will eliminate over-fitting

recognize over-fitting and manage complexity in a principled way.
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What's over-fitting ?
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@ Introduction to Machine Learning: Decision Tree Learning
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What's over-fitting ?

_* h €H overfits training data
if there’s an alternative A’
€H such that:

err train(h) <err train(h ’)

AND

erriy(h) > errey(h’)

o/

An example of over-fitting in DTree

e Each leaf corresponds to a single training point and the full tree

is merely a convenient implementation of a lookup table

@ Introduction to Machine Learning: Decision Tree Learning

P. Adamopoulos New York University



Tree Complexity and Over-fitting
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Fitting Graph
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Over-fitting in tree induction
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Good Over-fitting

. In sample evaluation is in favor or “memorizing”
. On the training data the right model would be best

. But on new data it would be bad
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Over-fitting
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« Over-fitting: Model “memorizes” the properties of the particular training
set rather than learning the underlying concept or phenomenon
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 We are interested in generalization

- The performance on data not used for training

» Given only one data set, we hold out some data for evaluation
Holdout set for final evaluation is called the test set

« Accuracy on training data is sometimes called “in-sample”
accuracy, vs. “out-of-sample” accuracy on test data
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Cross-Validation

Five folds

Original

dataset
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Cross-Validation
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From Holdout Evaluation to Cross-Validation

Not only a simple estimate of the generalization performance, but
also some statistics on the estimated performance,

such as the mean and variance

Better use of a limited dataset
Cross-validation computes its estimates over all the data

Used for comparing different learning procedure

e.g. Decision Trees vs Logistic Regression

Used for comparing hyper-parameters in a specific procedure

e.g. the maximum depth (minimum amount of data in the leaf node) of
the decision tree.
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Avoid over-fitting

e Two ways of avoid over-fitting for DTree

I.  Stop growing when data split not statistically significant

(pre-pruning)
II. Grow full tree, then post-pruning

For OptionI: o
@)

Hard to estimate the

size of the tree

e Introduction to Machine Learning: Decision Tree Learning
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Pre-Pruning: When to stop splitting
(I) Number of instances

e Frequently, a node is not split further if

e The number of training instances reaching a node is
smaller than a certain percentage of the training set
(e.g. 5%)
e Regardless the impurity or error.

e Any decision based on too few instances causes variance
and thus generalization error.

@ Introduction to Machine Learning: Decision Tree Learning
A\
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Pre-Pruning: When to stop splitting
(2) Threshold of information gain value

B Set a small threshold value, splitting is stopped if

Ai(s) < B

B Benefits: Use all the training data. Leaf nodes can lie
in different levels of the tree.

B Drawback: Difficult to set a good threshold

6 Introduction to Machine Learning: Decision Tree Learning
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Avoid over-fitting

e Two ways of avoid over-fitting for D-Tree
I. Stop growing when data split not statistically significant (pre-pruning)
I1. Grow full tree, then post-pruning

For option II:

e How to select “best” tree?

e Measure performance over training data (statistical pruning)

Confidence level (will be introduced later)

e Measure performance over separate validation data set
e MDL (Minimize Description Length 5 /M1 K E):

minimize ( size(tree) + size(misclassifications(tree)) )

@ Introduction to Machine Learning: Decision Tree Learning
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Post-pruning (1). Reduced-Error pruning

e Split data into training set and validation set
e Validation set:
Known label
Test performance
No model updates during this test!
e Do until further pruning is harmful:
e Evaluate impact on validation set of pruning

each possible node (plus the subtree it roots)
e Greedily remove the one that most improvesSralidation set

aCCIlI'acy
How to assign the label
of the new leaf node?

@ Introduction to Machine Learning: Decision Tree Learning
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ROC Graphs and Curves
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Generating ROC curve: Algorithm

« For each test, count the number of true positives TP (positives with
prediction above the cutoff) and false positives FP (negatives above
the cutoff)

« Calculate TP rate (TP/P) and FP (FP/N) rate

* Plot current number of TP/P as a function of current FP/N

P. Adamopoulos New York University



ROC Graphs and Curves

« ROC graphs decouple classifier performance from the conditions
under which the classifiers will be used

* Not the most intuitive visualization for many business stakeholders
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Area Under the ROC Curve (AUC)

 The area under a classifier’s curve expressed as a fraction of the
unit square

lts value ranges from zero to one

 The AUC is useful when a single number is needed to summarize
performance, or when nothing is known about the operating
conditions

A ROC curve provides more information than its area
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P-R Curve: Tradeoff between Precision and Recall

Precision

1 . : ‘ '
Algorithm 1
Algorithm 2 -——
0.8 ]
.. TP
*Precision =
TP+FP
0.6 | ¥
*Recall =
TP+FN

0 A A A L
0 0.2 0.4 0.6 0.8 1

Recall

AUPRC: Area under P-R Curve
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Thanks!
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Questions?
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