

Introduction to Deep Learning MIT 6.S191

Alexander Amini

What is Deep Learning?

ARTIFICIAL INTELLIGENCE

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Learn underlying features in data using neural networks

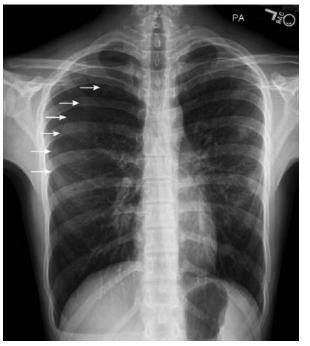
3 1 3 4 7 2 1 7 4 4 3 5

Deep Learning Success: Vision

Image Recognition

Deep Learning Success: Vision

Detect pneumothorax in real X-Ray scans



Deep Learning Success: Audio

Other sequences-model applications:

- predict stock price
- machine translation

- ...

Music Generation

Temporal dependence

Deep Learning Success

And so many more...

6.S191 Goals

Fundamentals

Practical Skills

Advancements

Community @ MIT

Knowledge, intuition, know-how, and community to do deep learning research and development

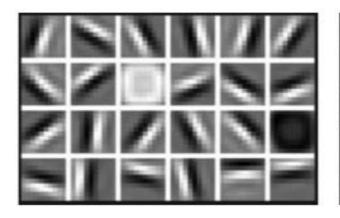
Why Deep Learning and Why Now?

Why Deep Learning?

Hand engineered features are time consuming, brittle and not scalable in practice

Can we learn the **underlying features** directly from data?

Low Level Features



Lines & Edges

Mid Level Features

Eyes & Nose & Ears

High Level Features

Facial Structure

Why Now?

1952

1958

•

1986

1995

•

Stochastic Gradient Descent

Perceptron

Learnable Weights

Backpropagation

Multi-Layer Perceptron

Deep Convolutional NN

• Digit Recognition

Neural Networks date back decades, so why the resurgence?

I. Big Data

- Larger Datasets
- EasierCollection &Storage

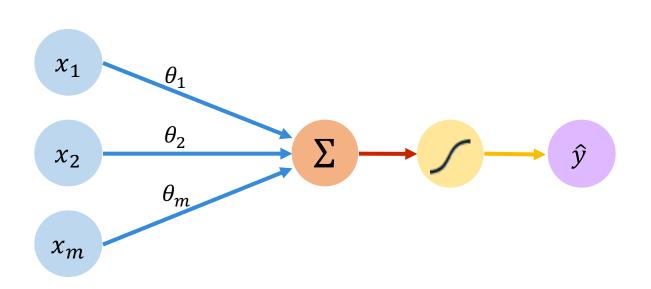
2. Hardware

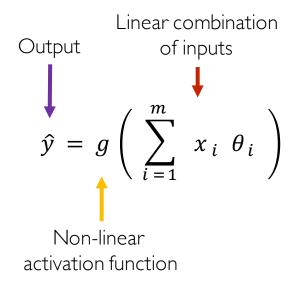
- Graphics Processing Units (GPUs)
- Massively Parallelizable

3. Software

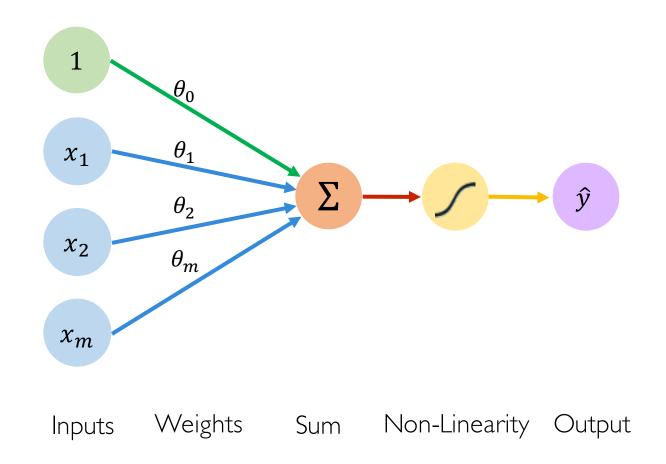
- Improved Techniques
- New Models
- Toolboxes

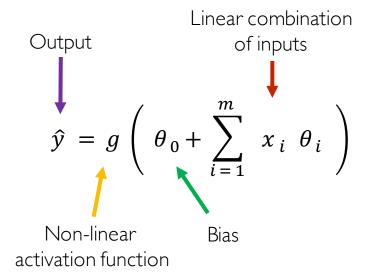
The Perceptron The structural building block of deep learning

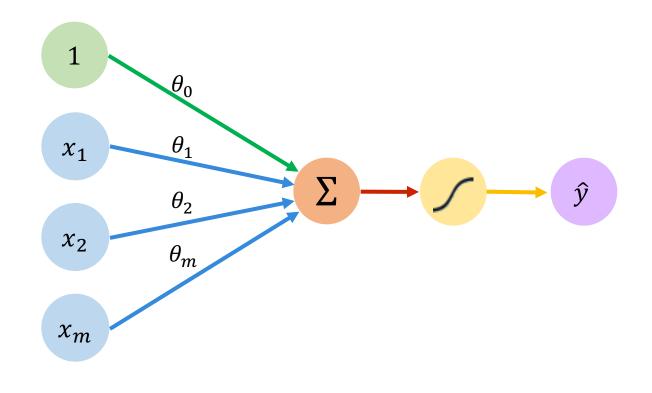




Inputs Weights Sum Non-Linearity Output







Sum

$$\hat{y} = g \left(\theta_0 + \sum_{i=1}^m x_i \theta_i \right)$$

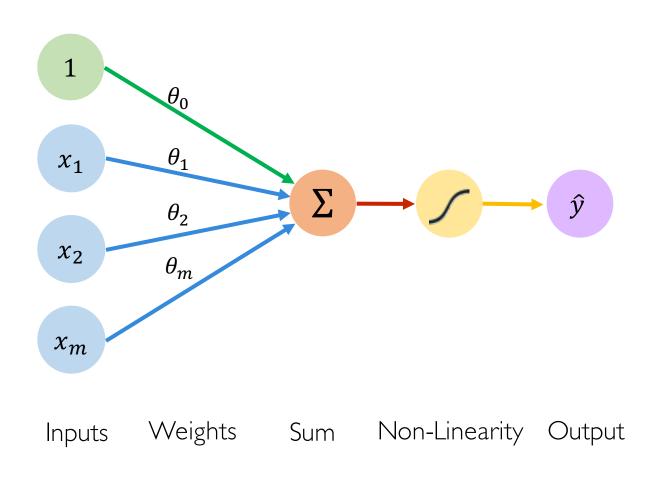
$$\hat{y} = g \left(\theta_0 + \boldsymbol{X}^T \boldsymbol{\theta} \right)$$

where:
$$\boldsymbol{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
 and $\boldsymbol{\theta} = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_m \end{bmatrix}$

Inputs

Weights

Non-Linearity Output

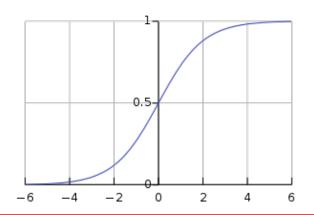


Activation Functions

$$\hat{y} = g \left(\theta_0 + X^T \theta \right)$$

• Example: sigmoid function

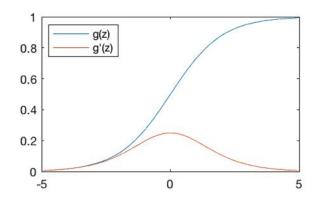
$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$



 \boldsymbol{Z}

Common Activation Functions

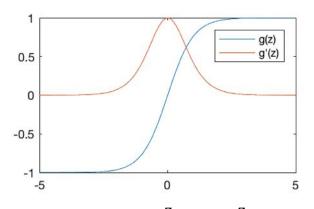
Sigmoid Function



$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

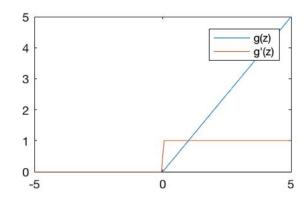
Hyperbolic Tangent



$$g(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)



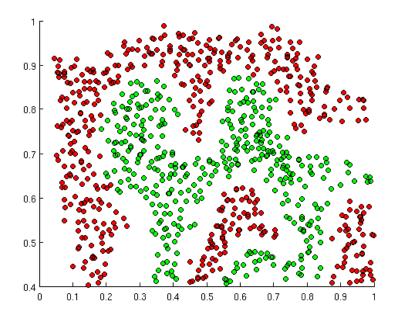
$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

NOTE: All activation functions are non-linear

Importance of Activation Functions

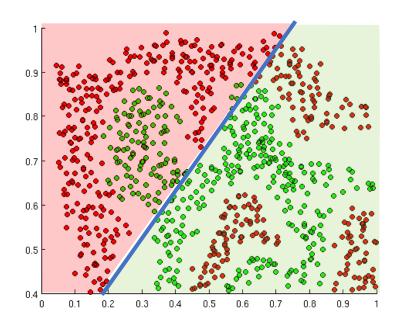
The purpose of activation functions is to **introduce non-linearities** into the network



What if we wanted to build a Neural Network to distinguish green vs red points?

Importance of Activation Functions

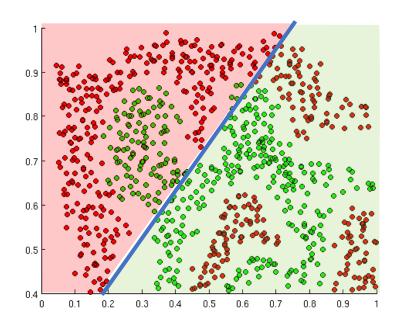
The purpose of activation functions is to **introduce non-linearities** into the network



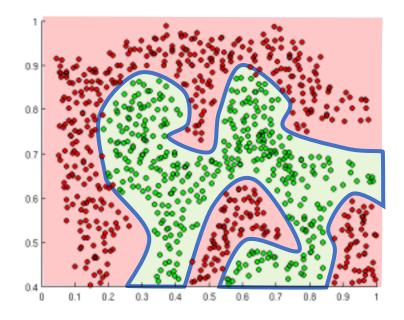
Linear Activation functions produce linear decisions no matter the network size

Importance of Activation Functions

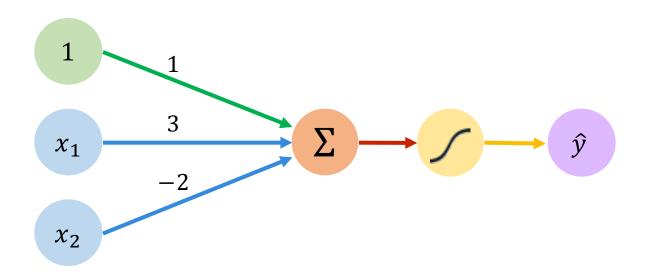
The purpose of activation functions is to **introduce non-linearities** into the network



Linear Activation functions produce linear decisions no matter the network size



Non-linearities allow us to approximate arbitrarily complex functions



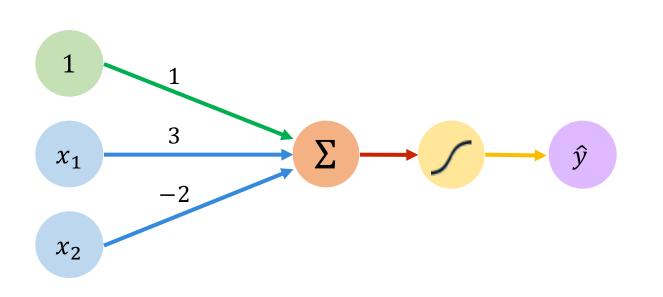
We have:
$$\theta_0 = 1$$
 and $\boldsymbol{\theta} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

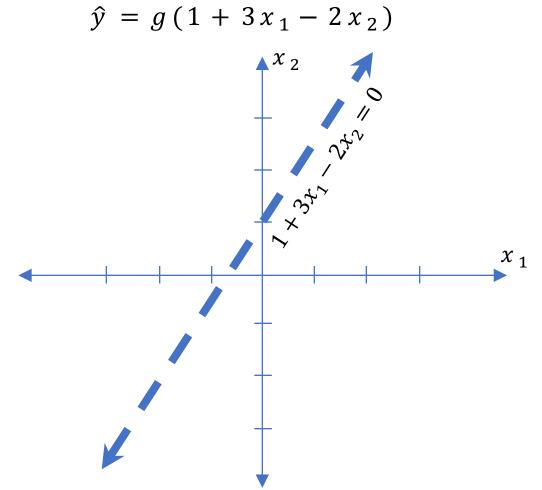
$$\hat{y} = g \left(\theta_0 + X^T \theta \right)$$

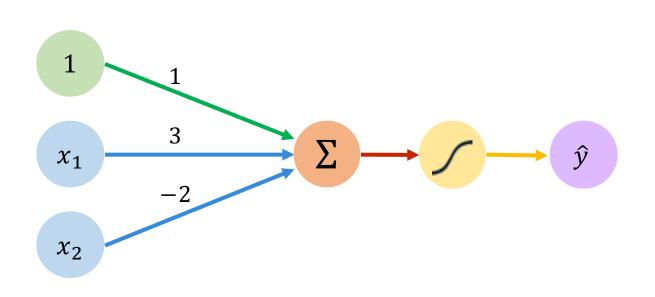
$$= g \left(1 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right)$$

$$\hat{y} = g \left(1 + 3x_1 - 2x_2 \right)$$

This is just a line in 2D!



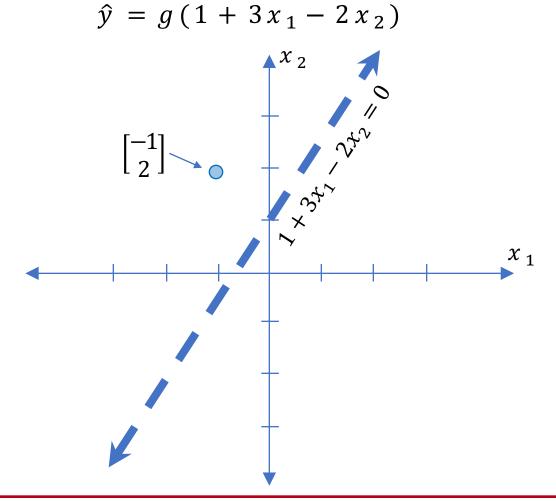


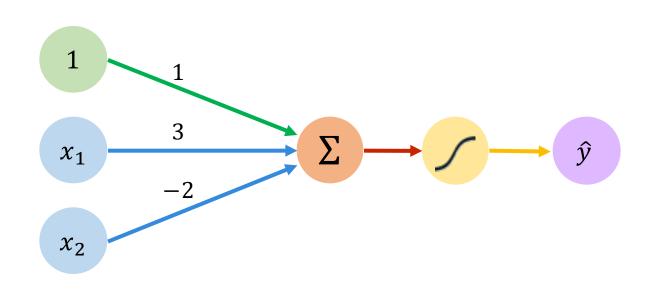


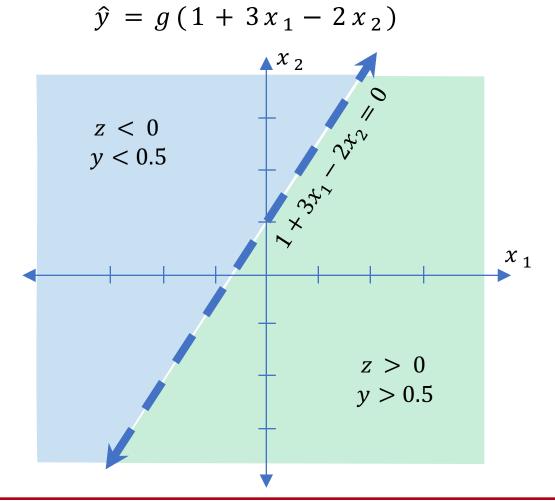
Assume we have input: $X = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

$$\hat{y} = g(1 + (3*-1) - (2*2))$$

= $g(-6) \approx 0.002$

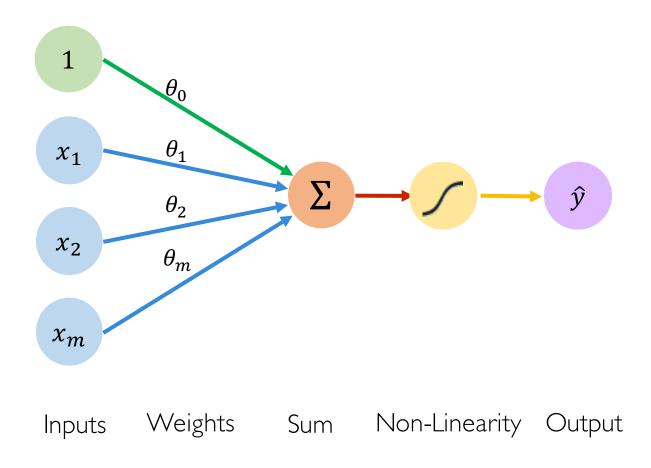




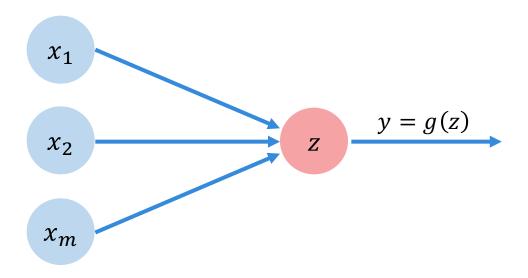


Building Neural Networks with Perceptrons

The Perceptron: Simplified

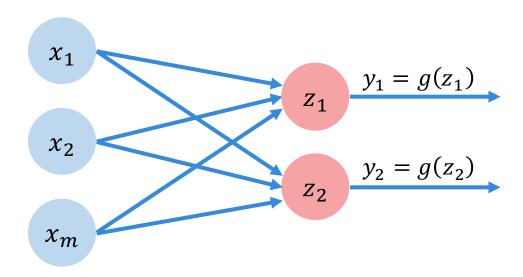


The Perceptron: Simplified



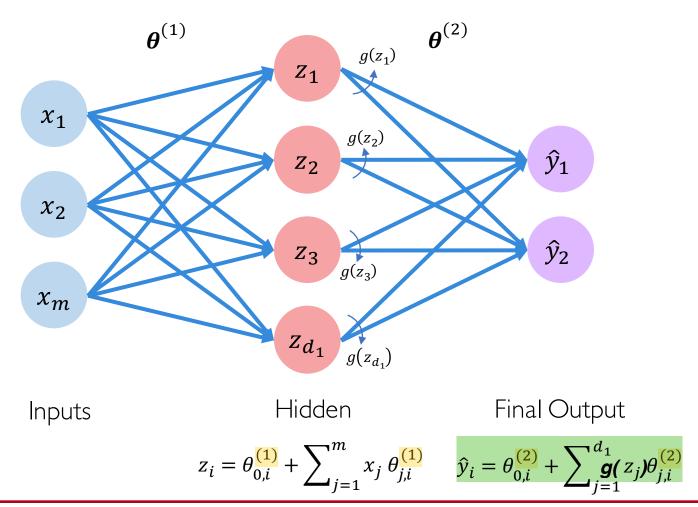
$$z = \theta_0 + \sum_{j=1}^m x_j \, \theta_j$$

Multi Output Perceptron

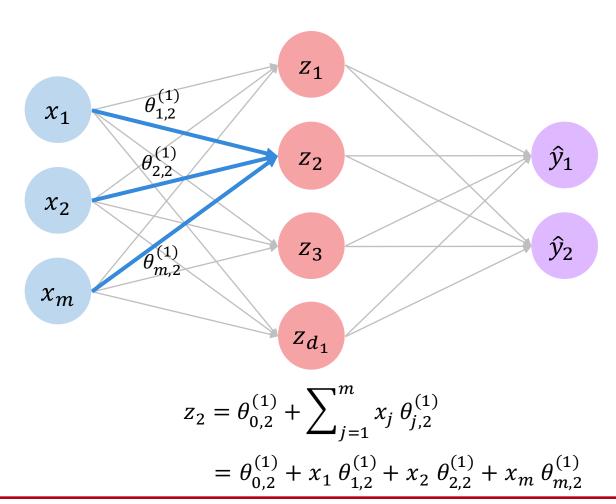


$$z_{\underline{i}} = \theta_{0,\underline{i}} + \sum_{j=1}^{m} x_j \ \theta_{j,\underline{i}}$$

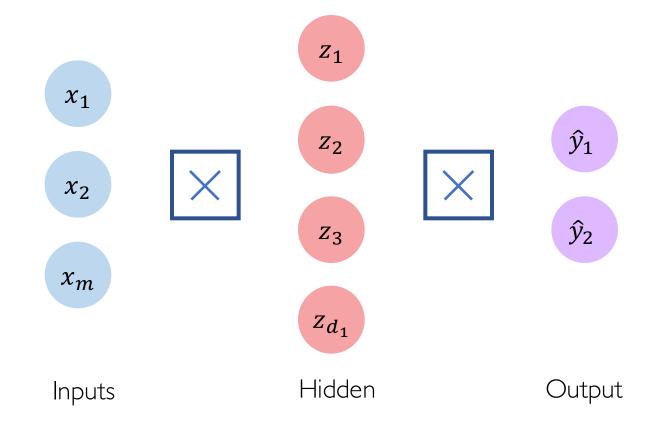
Single Layer Neural Network



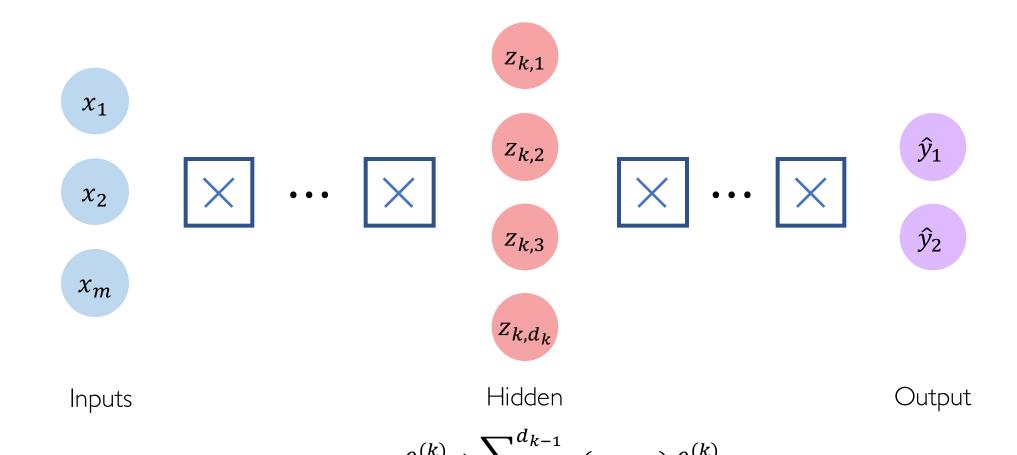
Single Layer Neural Network



Multi Output Perceptron



Deep Neural Network



Applying Neural Networks

Example Problem

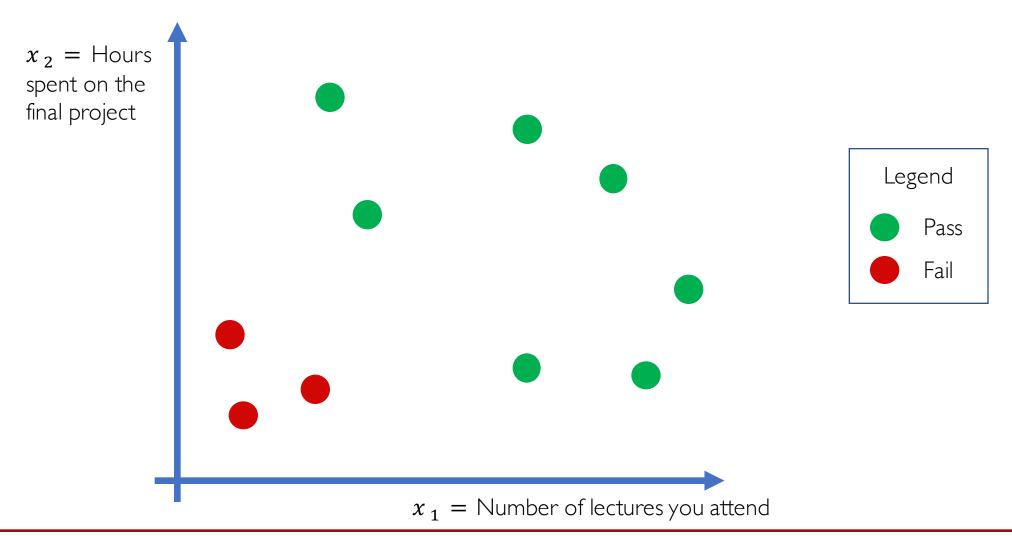
Will I pass this class?

Let's start with a simple two feature model

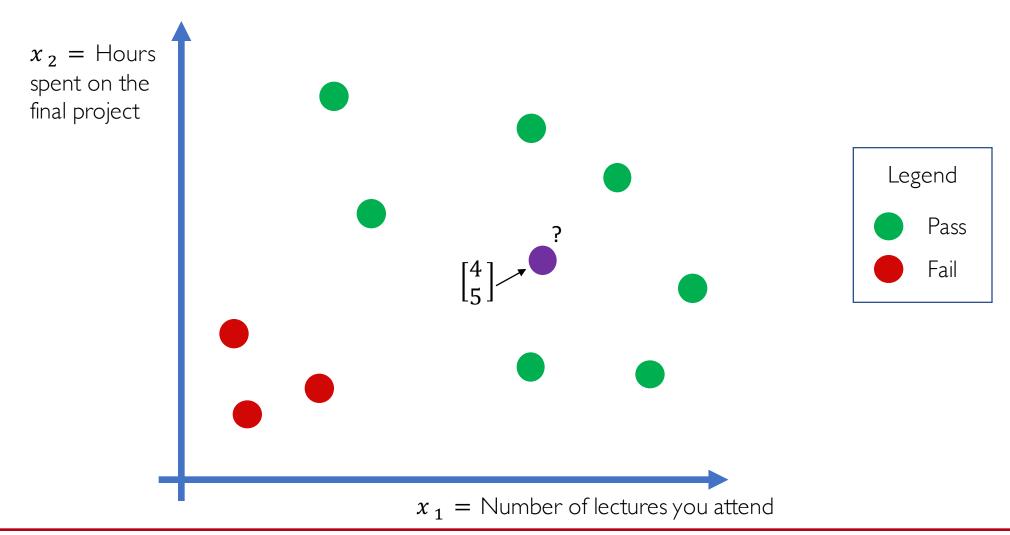
 x_1 = Number of lectures you attend

 x_2 = Hours spent on the final project

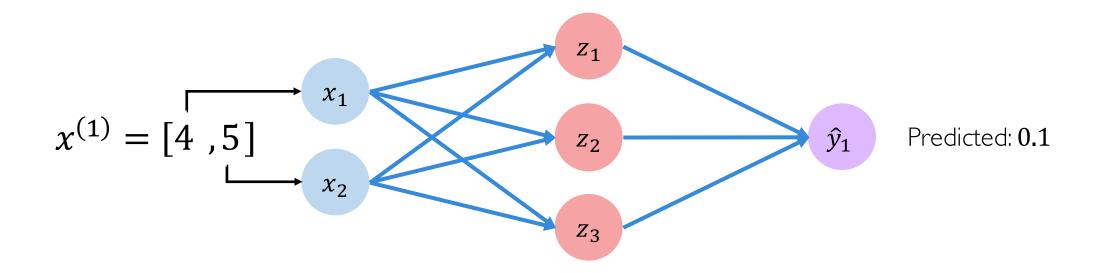
Example Problem: Will I pass this class?



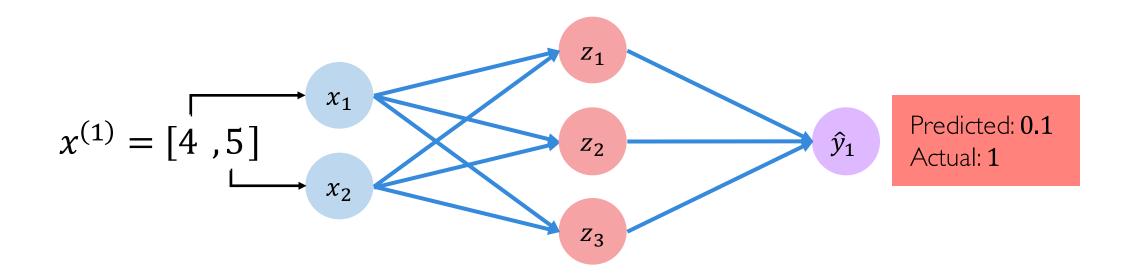
Example Problem: Will I pass this class?



Example Problem: Will I pass this class?

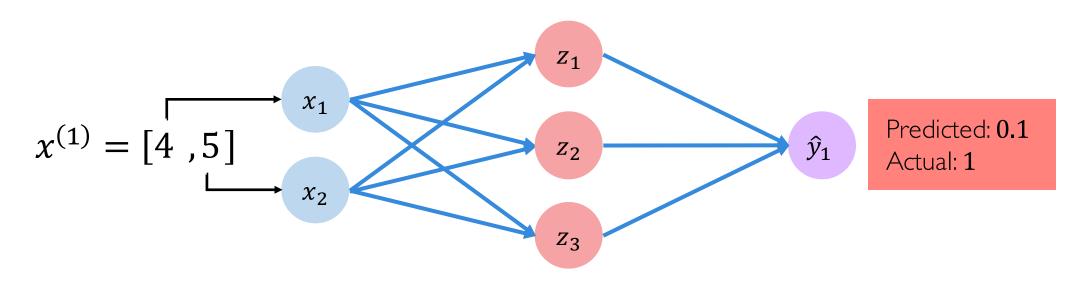


Example Problem: Will I pass this class?



Quantifying Loss

The **loss** of our network measures the cost incurred from incorrect predictions



$$\mathcal{L}\left(f\left(x^{(i)};\boldsymbol{\theta}\right),y^{(i)}\right)$$
Predicted Actual

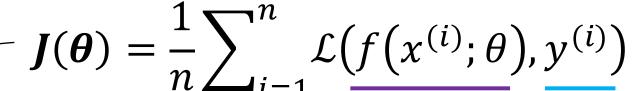
Empirical Loss

The **empirical loss** measures the total loss over our entire dataset

$$x = \begin{bmatrix} 4 & 5 \\ 2 & 1 \\ 5 & 8 \\ \vdots & \vdots \end{bmatrix} \qquad x_2 \qquad x_2 \qquad x_3 \qquad \begin{bmatrix} f(x) & y \\ 0 & 1 \\ 0 & 8 \\ 0 & 6 \\ \vdots \end{bmatrix} \qquad \begin{bmatrix} f(x) & y \\ 0 & 1 \\ 0 & 0 \\ \vdots \end{bmatrix}$$

Also known as:

- Objective function
- Cost function
- Empirical Risk



Predicted

Actual

Binary Cross Entropy Loss

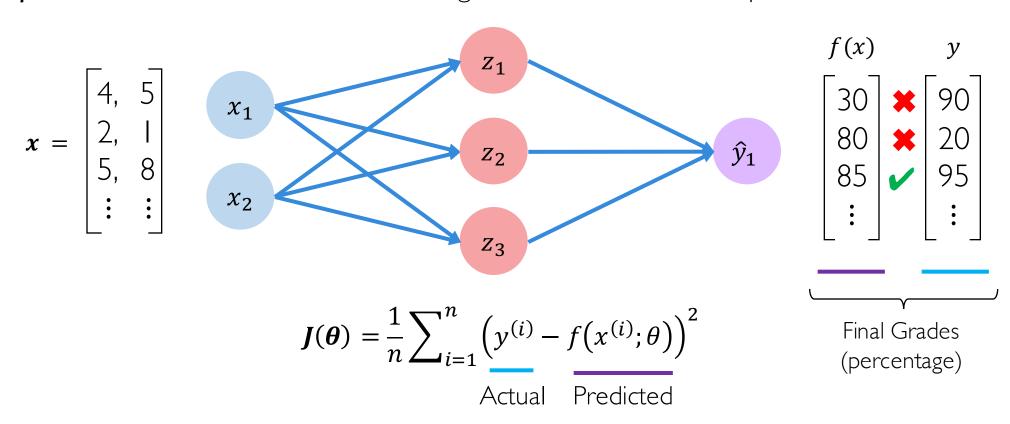
Cross entropy loss can be used with models that output a probability between 0 and 1

$$x = \begin{bmatrix} 4, & 5 \\ 2, & 1 \\ 5, & 8 \\ \vdots & \vdots \end{bmatrix} \qquad x_2 \qquad x_3 \qquad \begin{bmatrix} f(x) & y \\ 0.1 & y \\ 0.8 & 0.6 \\ \vdots \end{bmatrix} \qquad \begin{bmatrix} 0.1 & y \\ 0.8 & 0.6 \\ 0.6 & \vdots \end{bmatrix}$$

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)} \log \left(f(x^{(i)}; \theta) \right) + (1 - y^{(i)}) \log \left(1 - f(x^{(i)}; \theta) \right)$$
Actual Predicted Actual Predicted

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers



Training Neural Networks

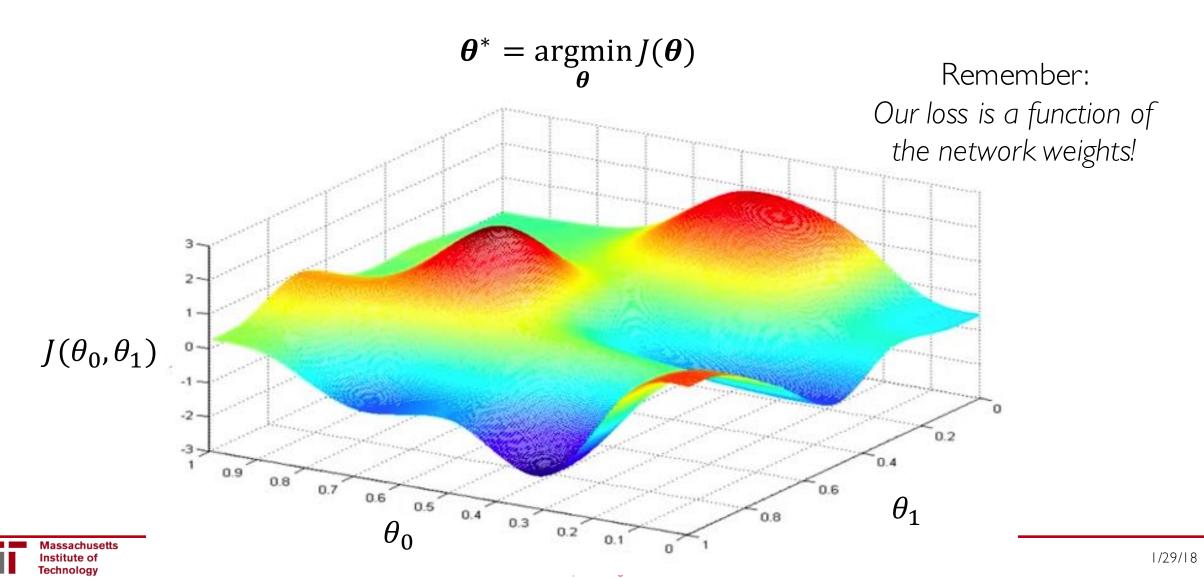
We want to find the network weights that achieve the lowest loss

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \mathcal{L}(f(x^{(i)}; \boldsymbol{\theta}), y^{(i)})$$
$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})$$

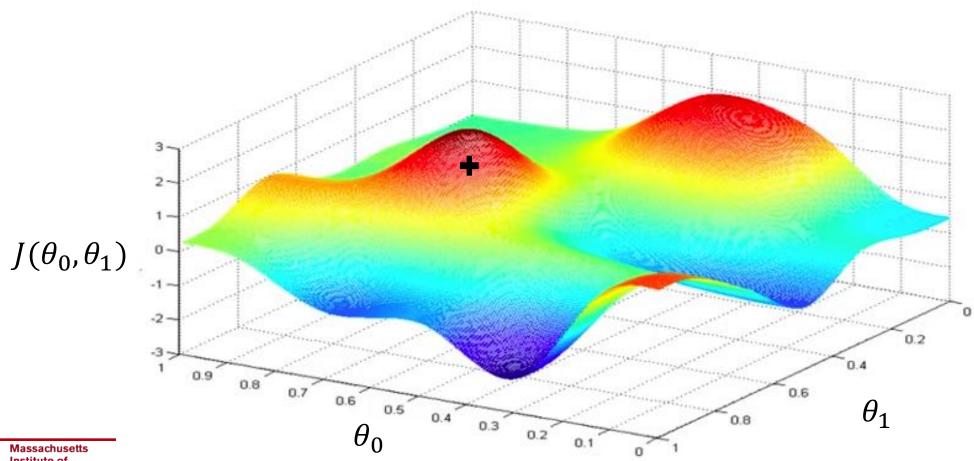
We want to find the network weights that achieve the lowest loss

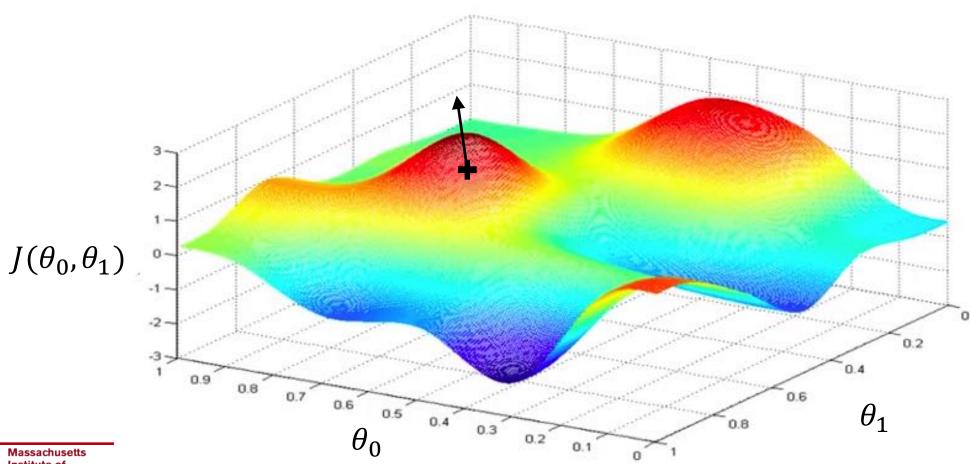
$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \mathcal{L}(f(x^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})$$
Remember:
$$\boldsymbol{\theta} = \{\theta^{(0)}, \theta^{(1)}, \dots\}$$

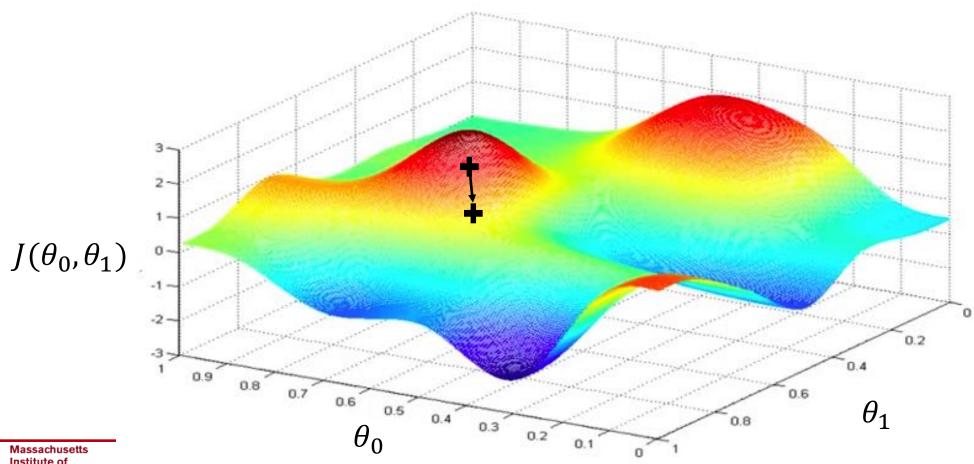


Randomly pick an initial (θ_0, θ_1)

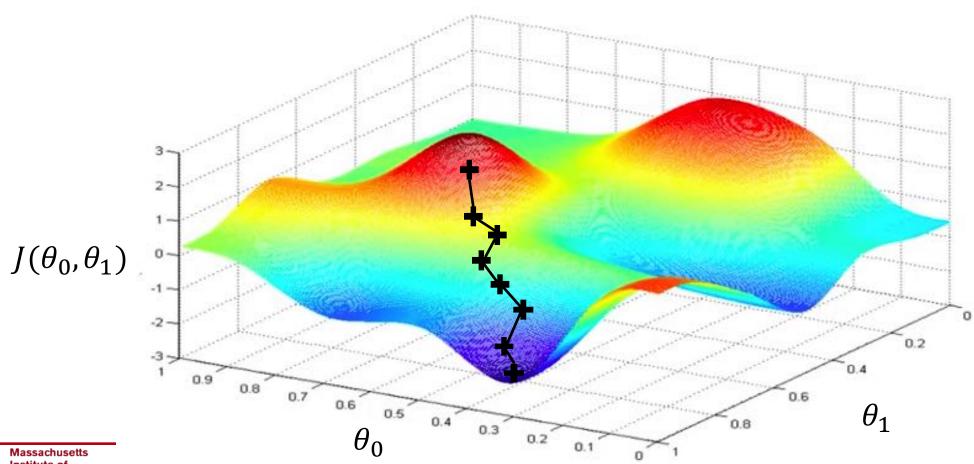




Take small step in opposite direction of gradient



Repeat until convergence



Algorithm

I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$

veights = tf.random_normal(shape, stddev=sigma)

- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(\theta)}{\partial \theta}$
- 4. Update weights, $\theta \leftarrow \theta \eta \frac{\partial J(\theta)}{\partial \theta}$
- 5. Return weights

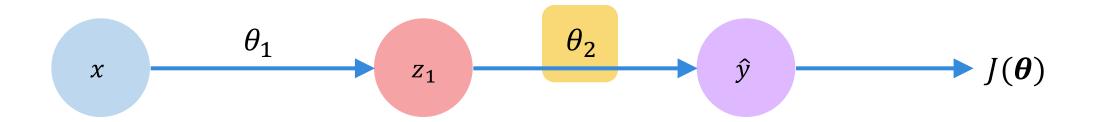
```
grads = tf.gradients(ys=loss, xs=weights)
```

Algorithm

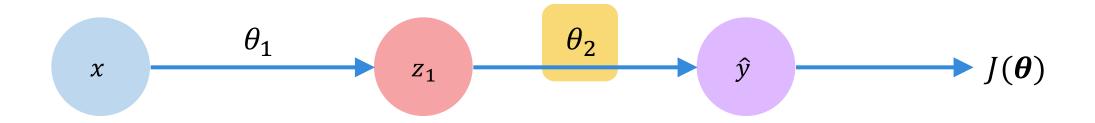
Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$

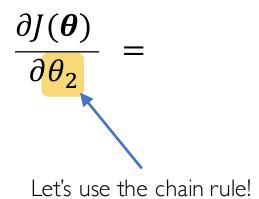
- Loop until convergence:
- 3.
- Compute gradient, $\frac{\partial J(\theta)}{\partial \theta}$ Update weights, $\theta \leftarrow \theta \eta \frac{\partial J(\theta)}{\partial \theta}$
- 5. Return weights

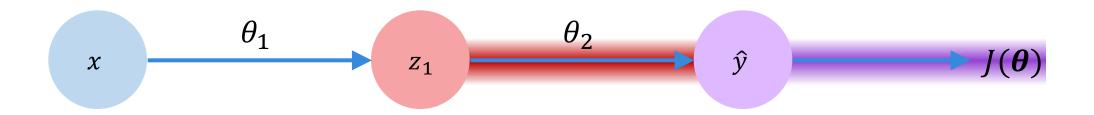
```
= tf.gradients(ys=loss, xs=weights)
```



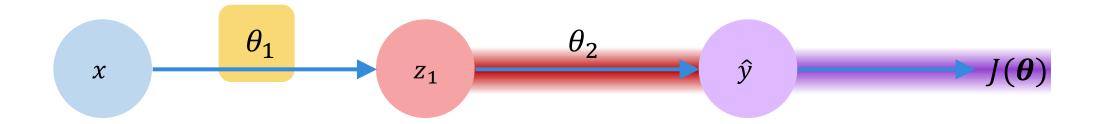
How does a small change in one weight (ex. θ_2) affect the final loss $J(\theta)$?



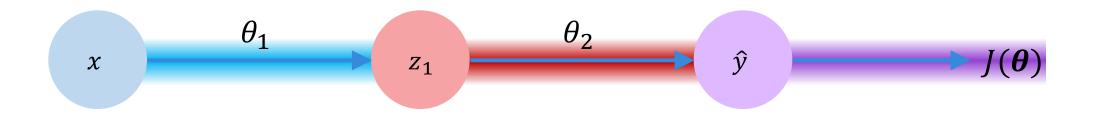




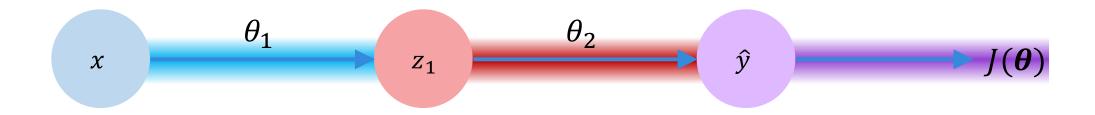
$$\frac{\partial J(\boldsymbol{\theta})}{\partial \theta_2} = \frac{\partial J(\boldsymbol{\theta})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial \theta_2}$$



$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_1} = \frac{\partial J(\boldsymbol{\theta})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial \boldsymbol{\theta}_1}$$
Apply chain rule! Apply chain rule!



$$\frac{\partial J(\boldsymbol{\theta})}{\partial \theta_1} = \frac{\partial J(\boldsymbol{\theta})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial \theta_1}$$



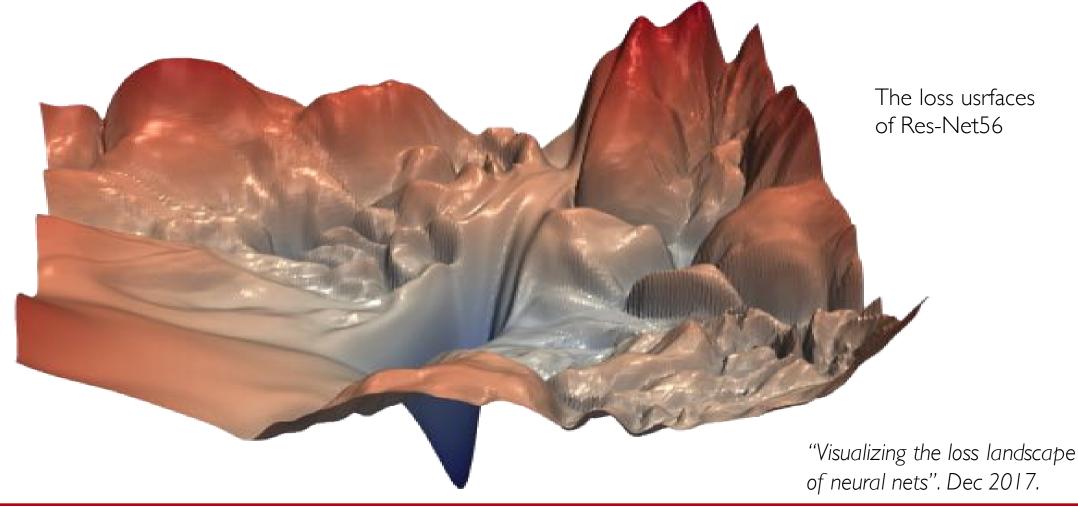
$$\frac{\partial J(\boldsymbol{\theta})}{\partial \theta_1} = \frac{\partial J(\boldsymbol{\theta})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial \theta_1}$$

Repeat this for every weight in the network using gradients from later layers

Neural Networks in Practice: Optimization

Training Neural Networks is Difficult

non-convex local minima



Loss Functions Can Be Difficult to Optimize

Remember:

Optimization through gradient descent

$$\theta \leftarrow \theta - \eta \, \frac{\partial J(\theta)}{\partial \theta}$$

Loss Functions Can Be Difficult to Optimize

Remember:

Optimization through gradient descent

$$\theta \leftarrow \theta - \eta \frac{\partial J(\theta)}{\partial \theta}$$
How can we set the learning rate?

Setting the Learning Rate

Play video at 32:11

How to deal with this?

Idea I:

Try lots of different learning rates and see what works "just right"

How to deal with this?

Idea I:

Try lots of different learning rates and see what works "just right"

Idea 2:

Do something smarter!

Design an adaptive learning rate that "adapts" to the landscape

Adaptive Learning Rates

- Learning rates are no longer fixed
- Can be made larger or smaller depending on:
 - how large gradient is
 - how fast learning is happening
 - size of particular weights
 - etc...

Adaptive Learning Rate Algorithms

- Momentum
- Adagrad
- Adadelta
- Adam
- RMSProp

Qian et al. "On the momentum term in gradient descent learning algorithms." 1999.

Duchi et al. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization." 2011.

Zeiler et al. "ADADELTA: An Adaptive Learning Rate Method." 2012.

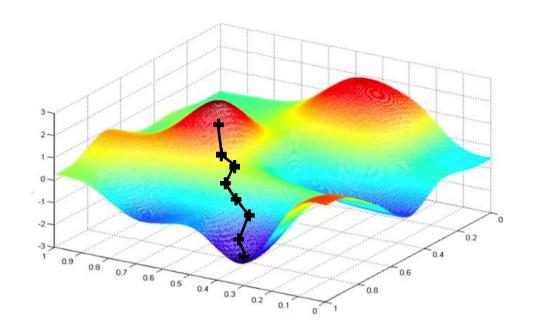
Kingma et al. "Adam: A Method for Stochastic Optimization." 2014.

Additional details: http://ruder.io/optimizing-gradient-descent/

Neural Networks in Practice: Mini-batches

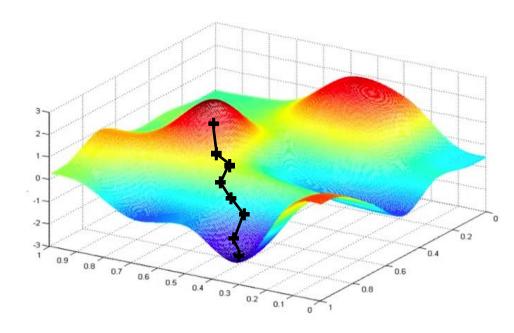
Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(\theta)}{\partial \theta}$
- 4. Update weights, $\theta \leftarrow \theta \eta \frac{\partial J(\theta)}{\partial \theta}$
- 5. Return weights



Algorithm

- Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- Loop until convergence:
- Compute gradient, $\frac{\partial J(\theta)}{\partial \theta}$ Update weights, $\theta \leftarrow \theta \eta \frac{\partial J(\theta)}{\partial \theta}$ 3.
- 5. Return weights

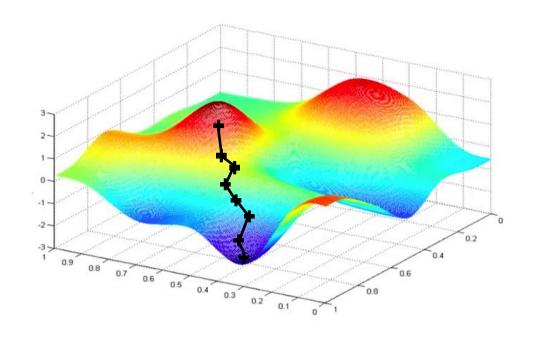


Can be very computational to compute!

Stochastic Gradient Descent

Algorithm

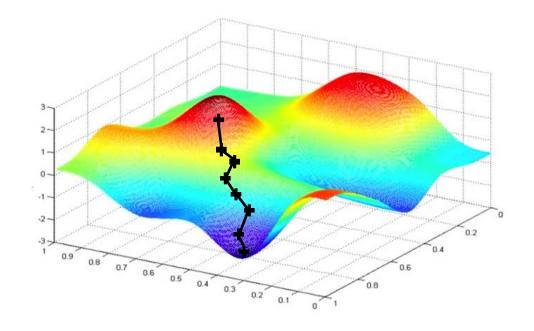
- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick single data point i
- 4. Compute gradient, $\frac{\partial J_i(\theta)}{\partial \theta}$
- 5. Update weights, $\theta \leftarrow \theta \eta \frac{\partial J(\theta)}{\partial \theta}$
- 6. Return weights



Stochastic Gradient Descent

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick single data point i
- 4. Compute gradient, $\frac{\partial J_i(\theta)}{\partial \theta}$
- 5. Update weights, $\theta \leftarrow \theta \eta \frac{\partial J(\theta)}{\partial \theta}$
- 6. Return weights



Easy to compute but **very noisy** (stochastic)!

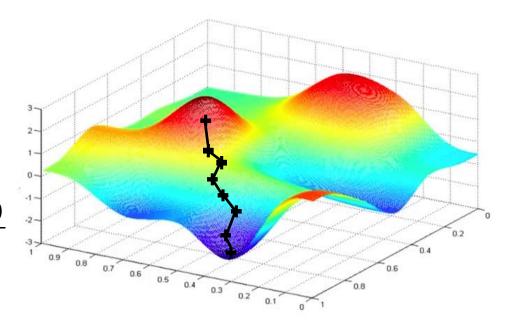
Stochastic Gradient Descent

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick batch of B data points

4. Compute gradient,
$$\frac{\partial J(\theta)}{\partial \theta} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(\theta)}{\partial \theta}$$

- 5. Update weights, $\theta \leftarrow \theta \eta \frac{\partial J(\theta)}{\partial \theta}$
- 6. Return weights



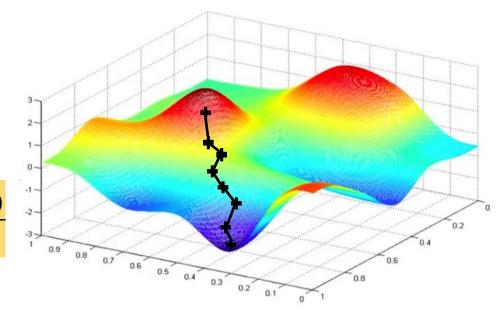
Stochastic Gradient Descent

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick batch of B data points

4. Compute gradient,
$$\frac{\partial J(\theta)}{\partial \theta} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(\theta)}{\partial \theta}$$

- 5. Update weights, $\theta \leftarrow \theta \eta \frac{\partial J(\theta)}{\partial \theta}$
- 6. Return weights



Fast to compute and a much better estimate of the true gradient!

Mini-batches while training

More accurate estimation of gradient

Smoother convergence Allows for larger learning rates

Mini-batches while training

More accurate estimation of gradient

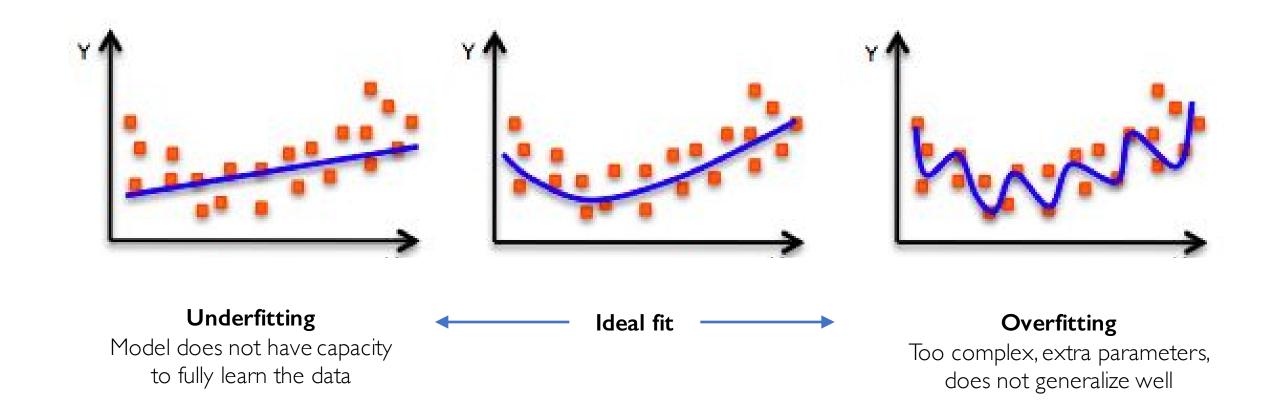
Smoother convergence
Allows for larger learning rates

Mini-batches lead to fast training!

Can parallelize computation + achieve significant speed increases on GPU's

Neural Networks in Practice: Overfitting

The Problem of Overfitting



Regularization

What is it?

Technique that constrains our optimization problem to discourage complex models

Regularization

What is it?

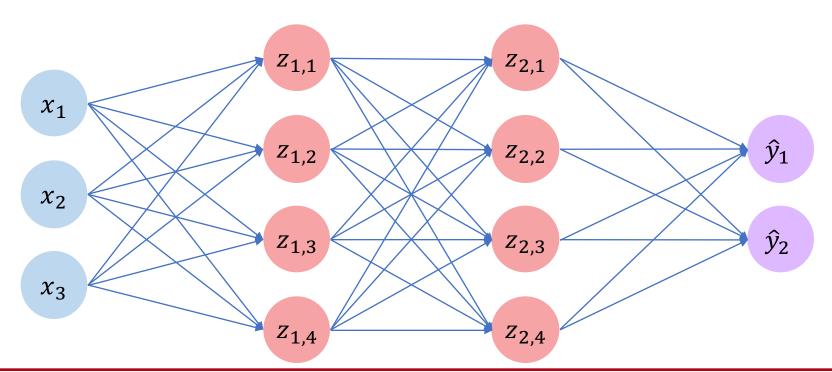
Technique that constrains our optimization problem to discourage complex models

Why do we need it?

Improve generalization of our model on unseen data

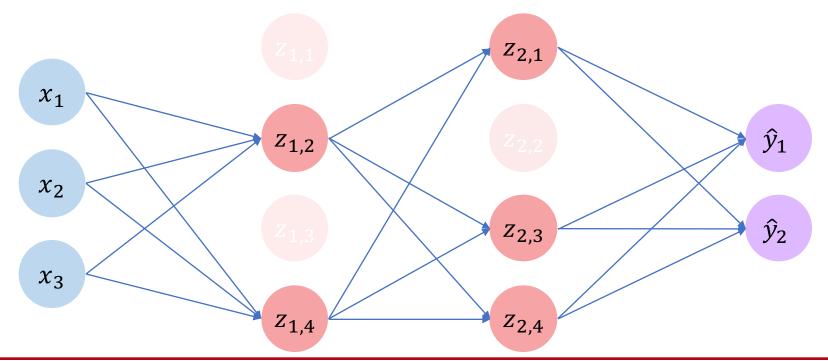
Regularization I: Dropout

During training, randomly set some activations to 0



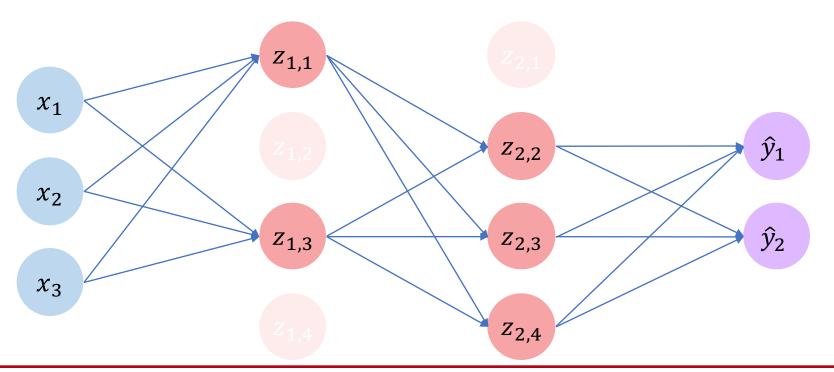
Regularization I: Dropout

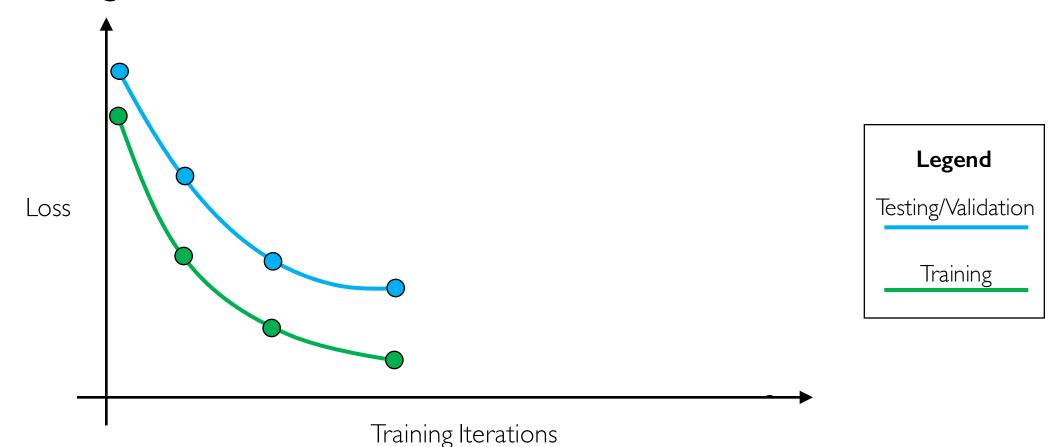
- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer
 - Forces network to not rely on any I node

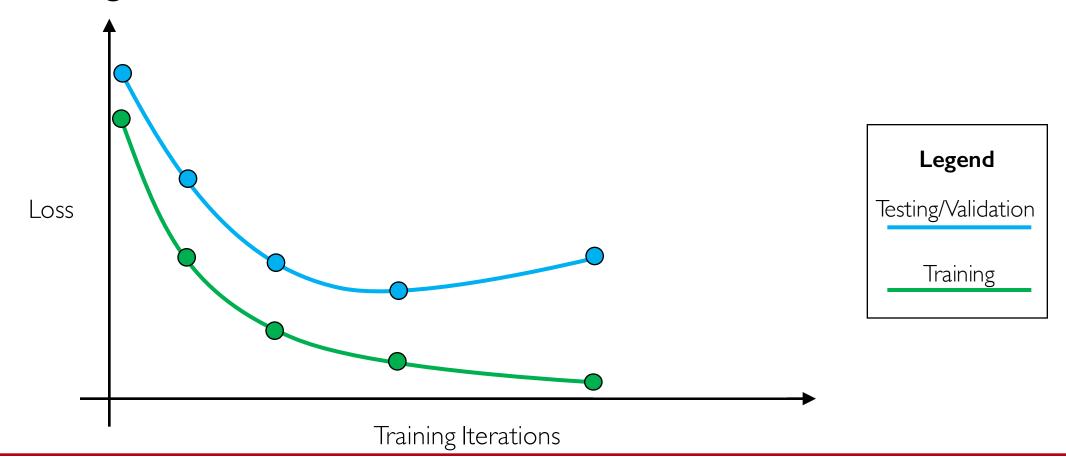


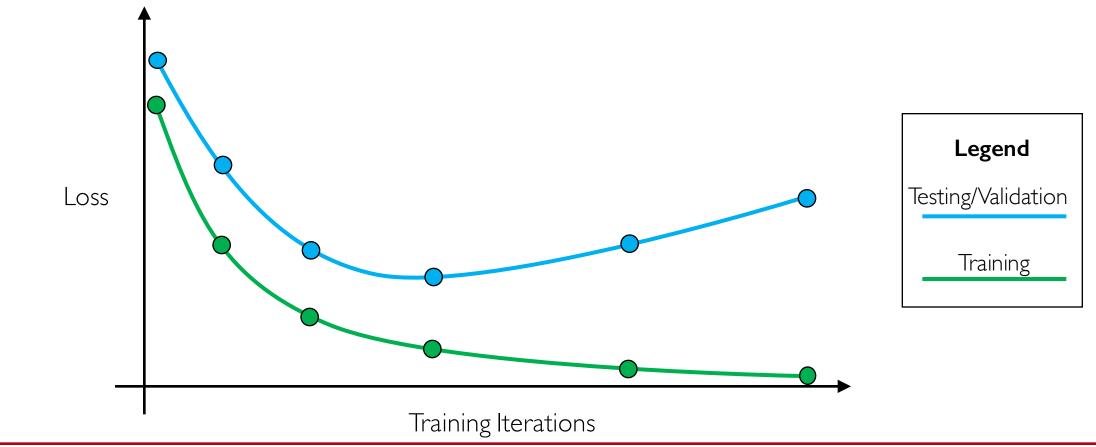
Regularization I: Dropout

- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer
 - Forces network to not rely on any I node

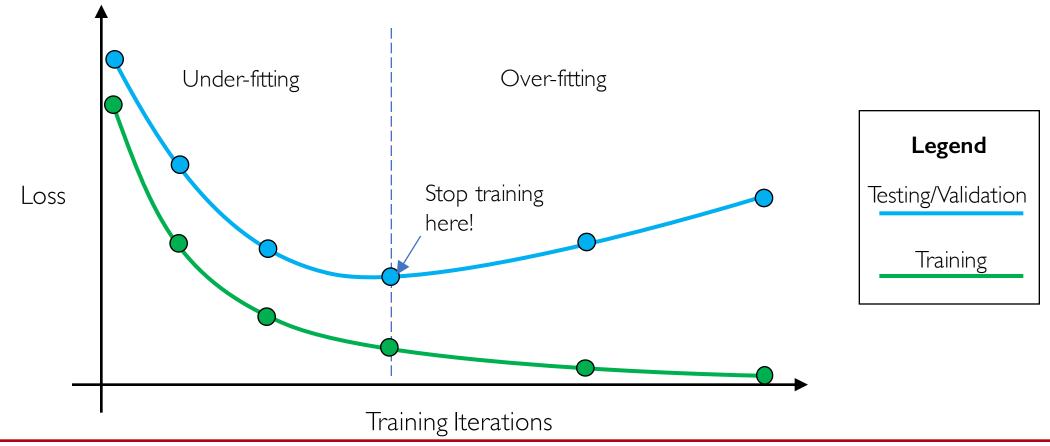








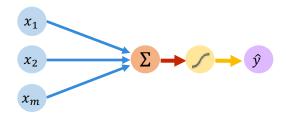




Core Foundation Review

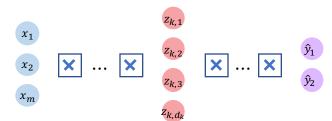
The Perceptron

- Structural building blocks
- Nonlinear activation functions



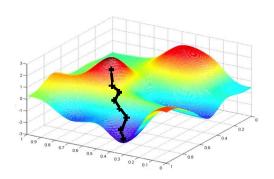
Neural Networks

- Stacking Perceptrons to form neural networks
- Optimization through backpropagation



Training in Practice

- Adaptive learning
- Batching
- Regularization



Questions?