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Tutorial	Outline
1. Knowledge	Graph	Primer	 [Jay]

2.	 Knowledge	Extraction	Primer [Jay]

3. Knowledge	Graph	Construction
a. Probabilistic	Models	 [Jay]

Coffee	Break

b. Embedding	Techniques	 [Sameer]

4. Critical	Overview	and	Conclusion	 [Sameer]
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Knowledge	Graph	
Construction

TOPICS:

PROBLEM SETTING

PROBABILISTIC MODELS

EMBEDDING TECHNIQUES
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Knowledge	Graph	
Construction

TOPICS:

PROBLEM SETTING
PROBABILISTIC MODELS

EMBEDDING TECHNIQUES
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Reminder:	Basic	problems

•Who	are	the	entities	
(nodes)	in	the	graph?

•What are	their	attributes	
and	types	(labels)?

• How	are	they	related	
(edges)?
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Graph	Construction	Issues
Extracted	knowledge	is:

• ambiguous:
◦ Ex:	Beetles,	beetles,	Beatles
◦ Ex:	citizenOf,	livedIn,	bornIn
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Graph	Construction	Issues
Extracted	knowledge	is:

• ambiguous

• incomplete
◦ Ex:	missing	relationships
◦ Ex:	missing	labels
◦ Ex:	missing	entities
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Graph	Construction	Issues
Extracted	knowledge	is:

• ambiguous

• incomplete

• inconsistent
◦ Ex:	Cynthia	Lennon,	Yoko	Ono
◦ Ex:	exclusive	labels	(alive,	dead)
◦ Ex:	domain-range	constraints
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Graph	Construction	Issues
Extracted	knowledge	is:

• ambiguous

• incomplete

• inconsistent
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Graph	Construction	approach
•Graph	construction	cleans	and	completes	extraction	graph

•Incorporate	ontological	constraints	and	relational	patterns

•Discover	statistical	relationships	within	knowledge	graph
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Knowledge	Graph	
Construction

TOPICS:

PROBLEM SETTING

PROBABILISTIC MODELS

EMBEDDING TECHNIQUES
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Graph	Construction
Probabilistic	Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS
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Graph	Construction
Probabilistic	Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS
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Beyond	Pure	Reasoning

•Classical	AI	approach	to	knowledge:	reasoning
Lbl(Socrates,	Man)	&	Sub(Man,	Mortal)	->	Lbl(Socrates,	Mortal)

15



Beyond	Pure	Reasoning

•Classical	AI	approach	to	knowledge:	reasoning
Lbl(Socrates,	Man)	&	Sub(Man,	Mortal)	->	Lbl(Socrates,	Mortal)

•Reasoning	difficult	when	extracted	knowledge	has	errors
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Beyond	Pure	Reasoning

•Classical	AI	approach	to	knowledge:	reasoning
Lbl(Socrates,	Man)	&	Sub(Man,	Mortal)	->	Lbl(Socrates,	Mortal)

•Reasoning	difficult	when	extracted	knowledge	has	errors

•Solution:	probabilistic	models	

P(Lbl(Socrates,	Mortal)|Lbl(Socrates,Man)=0.9)
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Graph	Construction
Probabilistic	Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS
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Graphical	Models:	Overview
•Define	joint	probability	distribution on	knowledge	graphs

•Each	candidate	fact	in	the	knowledge	graph	is	a	variable

•Statistical	signals,	ontological	knowledge	and	rules	
parameterize	the	dependencies	between	variables

•Find	most	likely	knowledge	graph	by	optimization/sampling
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Knowledge	Graph	Identification
Define	a	graphical	model	to	
perform	all	three	of	these	
tasks	simultaneously!

•Who	are	the	entities	
(nodes)	in	the	graph?

•What are	their	attributes	
and	types	(labels)?

• How	are	they	related	
(edges)?
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Knowledge	Graph	Identification

P(Who,	What,	How|Extractions)
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Probabilistic	Models
•Use	dependencies	between	facts	in	KG	

•Probability	defined	jointly over	facts

22
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What	determines	probability?
•Statistical	signals	from	text	extractors	and	classifiers
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What	determines	probability?
•Statistical	signals	from	text	extractors	and	classifiers
• P(R(John,Spouse,Yoko))=0.75;	P(R(John,Spouse,Cynthia))=0.25
• LevenshteinSimilarity(Beatles,	Beetles)	=	0.9
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What	determines	probability?
•Statistical	signals	from	text	extractors	and	classifiers

•Ontological	knowledge	about	domain
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What	determines	probability?
•Statistical	signals	from	text	extractors	and	classifiers

•Ontological	knowledge	about	domain
• Functional(Spouse)	&	R(A,Spouse,B)	->	!R(A,Spouse,C)
• Range(Spouse,	Person)	&	R(A,Spouse,B)	->	Type(B,	Person)
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What	determines	probability?
•Statistical	signals	from	text	extractors	and	classifiers

•Ontological	knowledge	about	domain

•Rules	and	patterns	mined	from	data
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What	determines	probability?
•Statistical	signals	from	text	extractors	and	classifiers

•Ontological	knowledge	about	domain

•Rules	and	patterns	mined	from	data
• R(A,	Spouse,	B)	&	R(A,	Lives,	L)	->	R(B,	Lives,	L)
• R(A,	Spouse,	B)	&	R(A,	Child,	C)	->	R(B,	Child,	C)
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What	determines	probability?
•Statistical	signals	from	text	extractors	and	classifiers
• P(R(John,Spouse,Yoko))=0.75;	P(R(John,Spouse,Cynthia))=0.25
• LevenshteinSimilarity(Beatles,	Beetles)	=	0.9

•Ontological	knowledge	about	domain
• Functional(Spouse)	&	R(A,Spouse,B)	->	!R(A,Spouse,C)
• Range(Spouse,	Person)	&	R(A,Spouse,B)	->	Type(B,	Person)

•Rules	and	patterns	mined	from	data
• R(A,	Spouse,	B)	&	R(A,	Lives,	L)	->	R(B,	Lives,	L)
• R(A,	Spouse,	B)	&	R(A,	Child,	C)	->	R(B,	Child,	C)
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Example:	The	Fab	Four

30



Illustration	of	KG	Identification
Uncertain Extractions:
.5: Lbl(Fab Four, novel)
.7: Lbl(Fab Four, musician)
.9: Lbl(Beatles, musician)

.8: Rel(Beatles,AlbumArtist, 
Abbey Road)

PUJARA+ISWC13;	PUJARA+AIMAG15



Illustration	of	KG	Identification
Uncertain Extractions:
.5: Lbl(Fab Four, novel)
.7: Lbl(Fab Four, musician)
.9: Lbl(Beatles, musician)

.8: Rel(Beatles,AlbumArtist, 
Abbey Road)

musician

Fab	Four Beatles

novel

Abbey	Road

(Annotated)	Extraction	Graph

PUJARA+ISWC13;	PUJARA+AIMAG15



Illustration	of	KG	Identification

Ontology:
Dom(albumArtist, musician)
Mut(novel, musician)

Uncertain Extractions:
.5: Lbl(Fab Four, novel)
.7: Lbl(Fab Four, musician)
.9: Lbl(Beatles, musician)

.8: Rel(Beatles,AlbumArtist, 
Abbey Road)

musician

Fab	Four Beatles

novel

Abbey	Road

Extraction	Graph

PUJARA+ISWC13;	PUJARA+AIMAG15



Illustration	of	KG	Identification

Ontology:
Dom(albumArtist, musician)
Mut(novel, musician)

Uncertain Extractions:
.5: Lbl(Fab Four, novel)
.7: Lbl(Fab Four, musician)
.9: Lbl(Beatles, musician)

.8: Rel(Beatles,AlbumArtist, 
Abbey Road)

Entity Resolution:
SameEnt(Fab Four, Beatles)

musician

Fab	Four Beatles

novel

Abbey	Road

SameEnt

(Annotated)	Extraction	Graph
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Illustration	of	KG	Identification

Ontology:
Dom(albumArtist, musician)
Mut(novel, musician)

Uncertain Extractions:
.5: Lbl(Fab Four, novel)
.7: Lbl(Fab Four, musician)
.9: Lbl(Beatles, musician)

.8: Rel(Beatles,AlbumArtist, 
Abbey Road)

Entity Resolution:
SameEnt(Fab Four, Beatles)

Beatles

Fab	Four
Abbey	Roadmusician

Rel(AlbumArtist)Lbl

musician

Fab	Four Beatles

novel

Abbey	Road

SameEnt

(Annotated)	Extraction	Graph

After	Knowledge	Graph	Identification

PUJARA+ISWC13;	PUJARA+AIMAG15



Probabilistic	graphical	model	for	KG

Lbl(Fab	Four,	
musician)

Lbl(Beatles,	
musician)

Rel(Beatles,	
AlbumArtist,	
Abbey	Road)

Rel(Fab	Four,	
AlbumArtist,	
Abbey	Road)

Lbl(Beatles,	novel)

Lbl(Fab	Four,	novel)



Defining	graphical	models
•Many	options	for	defining	a	graphical	model

•We	focus	on	two	approaches,	MLNs	and	PSL,	that	use	rules

•MLNs	treat	facts	as	Boolean,	use	sampling	for	satisfaction

•PSL	infers	a	“truth	value”	for	each	fact	via	optimization
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100: Subsumes(L1,L2) & Label(E,L1) -> Label(E,L2)
100: Exclusive(L1,L2) & Label(E,L1) -> !Label(E,L2)

100: Inverse(R1,R2) & Relation(R1,E,O) -> Relation(R2,O,E)
100: Subsumes(R1,R2) & Relation(R1,E,O) -> Relation(R2,E,O)
100: Exclusive(R1,R2) & Relation(R1,E,O) -> !Relation(R2,E,O)

100: Domain(R,L) & Relation(R,E,O) ->  Label(E,L)
100: Range(R,L) & Relation(R,E,O) -> Label(O,L)

10: SameEntity(E1,E2) & Label(E1,L) -> Label(E2,L)
10: SameEntity(E1,E2) & Relation(R,E1,O) -> Relation(R,E2,O)

1: Label_OBIE(E,L) -> Label(E,L)
1: Label_OpenIE(E,L) -> Label(E,L)
1: Relation_Pattern(R,E,O) -> Relation(R,E,O)
1: !Relation(R,E,O)
1: !Label(E,L)

Rules	for	KG	Model

JIANG+ICDM12;	PUJARA+ISWC13,	PUJARA+AIMAG15 38



Rules	to	Distributions
•Rules	are	grounded by	substituting	literals	into	formulas

•Each	ground	rule	has	a	weighted	satisfaction	derived	
from	the	formula’s	truth	value

•Together,	the	ground	rules	provide	a	joint	probability	
distribution	over	knowledge	graph	facts,	conditioned	on	
the	extractions

P (G|E) =

1

Z
exp

"
X

r2R

wr�r(G,E)

#

wr : SameEnt(Fab Four,Beatles) ^
Lbl(Beatles,musician) ) Lbl(Fab Four,musician)

JIANG+ICDM12;	PUJARA+ISWC13



Probability	Distribution	over	KGs

P(G | E) = 1
Z
exp − wrr∈R∑ ϕr (G)$

%
&
'

CandLblT (FabFour, novel) ) Lbl(FabFour, novel)

Mut(novel, musician) ^ Lbl(Beatles, novel)

) ¬Lbl(Beatles, musician)

SameEnt(Beatles, FabFour) ^ Lbl(Beatles, musician)

) Lbl(FabFour, musician)



Lbl(Fab	Four,
musician)

φ1

Lbl(Fab	Four,
novel)

Lbl(Beatles,
novel)

Lbl(Beatles,
musician)

Rel(Beatles,	
albumArtist,	
Abbey	Road)

φ5 φ

φ2

φ3 φ4

φ

φ

φ

φ[�1] CandLblstruct(FabFour, novel)

) Lbl(FabFour, novel)

[�2] CandRelpat(Beatles, AlbumArtist, AbbeyRoad)

) Rel(Beatles, AlbumArtist, AbbeyRoad)

[�3] SameEnt(Beatles, FabFour)

^ Lbl(Beatles, musician)

) Lbl(FabFour, musician)

[�4] Dom(AlbumArtist, musician)

^Rel(Beatles, AlbumArtist, AbbeyRoad)

) Lbl(Beatles, musician)

[�5] Mut(musician, novel)

^ Lbl(FabFour, musican)

) ¬Lbl(FabFour, novel)

PUJARA+ISWC13;	PUJARA+AIMAG15



How	do	we	get	a	knowledge	graph?
Have:	P(KG)	forall KGs Need:	best	KG

42

MAP	inference:	optimizing	over	distribution	to	
find	the	best	knowledge	graph	
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Inference	and	KG	optimization
•Finding	the	best	KG	satisfying	weighed	rules:	NP	Hard

•MLNs	[discrete]:	Monte	Carlo	sampling	methods
•Solution	quality	dependent	on	burn-in	time,	iterations,	etc.

•PSL	[continuous]:	optimize	convex	linear	surrogate
•Fast	optimization,	¾-optimal	MAX	SAT	lower	bound	
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Graphical	Models	Experiments
Data:	~1.5M	extractions,	~70K	ontological	relations,	~500	relation/label	types
Task:	Collectively	construct	a	KG	and	evaluate	on	25K	target	facts

Comparisons:
Extract Average	confidences	of	extractors	for	each	fact	in	the	NELL	candidates
Rules Default,	rule-based	heuristic	strategy	used	by	the	NELL	project
MLN Jiang+,	ICDM12	– estimates	marginal	probabilities	with	MC-SAT
PSL Pujara+,	ISWC13	– convex	optimization	of	continuous	truth	values	with	ADMM

Running	Time:	Inference	completes	in	10	seconds,	values	for	25K	facts

JIANG+ICDM12;	PUJARA+ISWC13

AUC F1

Extract .873 .828

Rules .765 .673

MLN	(Jiang, 12) .899 .836

PSL	(Pujara,	13) .904 .853



Graphical	Models:	Pros/Cons
BENEFITS
• Define	probability	
distribution	over	KGs

• Easily	specified	via	rules

• Fuse	knowledge	from	many	
different	sources

DRAWBACKS

45

• Requires	optimization	over	
all	KG	facts	- overkill

• Dependent	on	rules	from	
ontology/expert

• Require	probabilistic	
semantics	- unavailable



Graph	Construction
Probabilistic	Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS
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Random	Walk	Overview
•Given:	a	query	of	an	entity	and relation

•Starting	at	the	entity,	randomly	walk	the	KG

•Random	walk	ends	when	reaching	an	appropriate	goal

•Learned	parameters	bias	choices	in	the	random	walk

•Output	relative	probabilities	of	goal	states



Random	Walk	Illustration
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Query:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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Query:	R(Lennon,	PlaysInstrument,	?)

albumArtist

hasInstrum
entplaysInstrument



Random	Walk	Illustration
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Query:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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Query	Q:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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Query	Q:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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Query	Q:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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Query	Q:	R(Lennon,	PlaysInstrument,	?)

P(Q|𝝿=<coworker,playsInstrument>)	W𝝿

Path Weight	of	path



Random	Walk	Illustration
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Query	Q:	R(Lennon,	PlaysInstrument,	?)

P(Q|𝝿=<coworker,playsInstrument>)	W𝝿



Random	Walk	Illustration
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P(Q|𝝿=<coworker,playsInstrument>)	W𝝿

Query	Q:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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Query	Q:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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P(Q|𝝿=<albumArtist,hasInstrument>)	W𝝿

Query	Q:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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P(Q|𝝿=<albumArtist,hasInstrument>)	W𝝿

Query	Q:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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Query:	R(Lennon,	PlaysInstrument,	?)



Recent	Random	Walk	Methods
PRA:	Path	Ranking	Algorithm
• Performs	random	walk	of	imperfect	knowledge	graph

• Estimates	transition	probabilities	using	KG

• For	each	relation,	learns	parameters	for	paths	through	the	KG

ProPPR:	Programming	with	Personalized	PageRank
• Constructs	proof	graph
• Nodes	are	partially-ground	clauses	with	one	or	more	facts
• Edges	are	proof-transformations

• Parameters are	learned	for	each	ground	entity	and	rule
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Recent	Random	Walk	Methods
PRA:	Path	Ranking	Algorithm
• Performs	random	walk	of	imperfect	knowledge	graph

• Estimates	transition	probabilities	using	KG

• For	each	relation,	learns	parameters	for	paths	through	the	KG

ProPPR:	Programming	with	Personalized	PageRank
• Constructs	proof	graph
• Nodes	are	partially-ground	clauses	with	one	or	more	facts
• Edges	are	proof-transformations

• Parameters are	learned	for	each	ground	entity	and	rule
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PRA	in	a	nutshell

63

score(q.s ! e; q) =
X

⇡i2⇧b

P (q.s ! e;⇡i)W⇡i

LAO+EMNLP11



PRA	in	a	nutshell

LAO+EMNLP11 64

score(q.s ! e; q) =
X

⇡i2⇧b

P (q.s ! e;⇡i)W⇡i

Filter	paths	based	on	HITS	and	accuracy



PRA	in	a	nutshell
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score(q.s ! e; q) =
X

⇡i2⇧b

P (q.s ! e;⇡i)W⇡i

Filter	paths	based	on	HITS	and	accuracy

Estimate	probabilities	efficiently	with	dynamic	programming

LAO+EMNLP11



PRA	in	a	nutshell

66

score(q.s ! e; q) =
X

⇡i2⇧b

P (q.s ! e;⇡i)W⇡i

Filter	paths	based	on	HITS	and	accuracy

Estimate	probabilities	efficiently	with	dynamic	programming

Path	weights	are	learned	with	logistic	regression

LAO+EMNLP11



Recent	Random	Walk	Methods
PRA:	Path	Ranking	Algorithm
• Performs	random	walk	of	imperfect	knowledge	graph

• Estimates	transition	probabilities	using	KG

• For	each	relation,	learns	parameters	for	paths	through	the	KG

ProPPR:	ProbLog +	Personalized	PageRank
• Constructs	proof	graph
• Nodes	are	partially-ground	clauses	with	one	or	more	facts
• Edges	are	proof-transformations

• Parameters are	learned	for	each	ground	entity	and	rule

67



ProPPR-ized PRA	example

68

Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

Unbound	variables	in	proof	tree!



ProPPR-ized PRA	example

69

Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

R(									,Coworker,								)
R(					,PlaysInstrument,Y)



ProPPR-ized PRA	example

70

Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

R(									,Coworker,								)
R(					,PlaysInstrument,Y)



ProPPR-ized PRA	example
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Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

R(									,Coworker,								)
R(					,PlaysInstrument,Y)



ProPPR-ized PRA	example
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Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

R(									,Coworker,								)
R(					,PlaysInstrument,Y)

R(									,Coworker,								)
R(					,PlaysInstrument,					)



ProPPR-ized PRA	example
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Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

R(									,Coworker,								)
R(					,PlaysInstrument,Y)

R(									,Coworker,								)
R(					,PlaysInstrument,					)

R(									,AlbumArtist,							)
R(							,HasInstrument,K)



ProPPR-ized PRA	example
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Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

R(									,Coworker,								)
R(					,PlaysInstrument,Y)

R(									,Coworker,								)
R(					,PlaysInstrument,					)

R(									,AlbumArtist,							)
R(							,HasInstrument,K)

R(									,AlbumArtist,							)
R(							,HasInstrument,					)



ProPPR-ized PRA	example
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Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

R(									,Coworker,								)
R(					,PlaysInstrument,Y)

R(									,Coworker,								)
R(					,PlaysInstrument,					)

R(									,AlbumArtist,							)
R(							,HasInstrument,K)

R(									,AlbumArtist,							)
R(							,HasInstrument,					)



ProPPR in	a	nutshell
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X
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• Input:	queries,	positive	answers,	negative	answers

• Goal: (page	rank	from	RW)

• Learn:	random	walk	weights

• Train	via	stochastic	gradient	descent

p⌫0 [u
k
+] � p⌫0 [u

k
�]

WANG+MLJ15



Results	from	PRA	and	ProPPR
• Task:	
• 1M	extractions	for	3	domains;
• ~100s	of	training	queries
• ~1000s	of	test	queries
• AUC	of	extractions	alone	is	0.7

77

0.92

0.93

0.94

0.95

0.96

Google Beatles Baseball

Relation	Prediction	AUC

PRA	(1M) 
ProPPR	(1M)

WANG+MLJ15



Random	Walks:	Pros/Cons
BENEFITS
• KG	query	estimation	
independent	of	KG	size

•Model	training	produces	
interpretable,	logical	rules

• Robust	to	noisy	extractions	
through	probabilistic	form

DRAWBACKS

78

• Full	KG	completion	task	
inefficient

• Training	data	difficult	to	
obtain	at	scale

• Input	must	follow	
probabilistic	semantics



Two	classes	of	Probabilistic	Models

GRAPHICAL	MODELS

◦ Possible	facts	in	KG	are	
variables

◦ Logical	rules	relate	facts

◦ Probability							satisfied	
rules

◦ Universally-quantified

RANDOM	WALK	METHODS

◦ Possible	facts	posed	as	
queries

◦ Random	walks	of	the	KG	
constitute	“proofs”

◦ Probability							path	
lengths/transitions

◦ Locally	grounded
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