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Tutorial Outline

1. Knowledge Graph Primer Jay]
2. Knowledge Extraction Primer Jay
3. Knowledge Graph Construction

a. Probabilistic Models

Coffee Break —

b. Embedding Techniques Sameer]

4. Critical Overview and Conclusion [Sameer]
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Reminder: Basic problems

* Who are the entities
(nodes) in the graph?

* What are their attributes
and types (labels)?

* How are they related
(edges)?




Graph Construction Issues

Extracted knowledge is:

* ambiguous:
o Ex: Beetles, beetles, Beatles
o Ex: citizenOf, livedIn, bornin



Graph Construction Issues

Extracted knowledge is:

* ambiguous

* incomplete
o Ex: missing relationships
o Ex: missing labels
o Ex: missing entities




Graph Construction Issues

Extracted knowledge is:

* ambiguous

* incomplete

* inconsistent
° Ex: Cynthia Lennon, Yoko Ono
o Ex: exclusive labels (alive, dead)
° Ex: domain-range constraints




Graph Construction Issues

Extracted knowledge is:

* ambiguous

* incomplete

* inconsistent




Graph Construction approach

e Graph construction cleans and completes extraction graph

e Incorporate ontological constraints and relational patterns

e Discover statistical relationships within knowledge graph
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Beyond Pure Reasoning

e Classical Al approach to knowlede: reasoning

Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)




Beyond Pure Reasoning

e Classical Al approach to knowledge: reasoning
Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)

e Reasoning difficult when extracted knowledge has errors




.
e Sk

Beyond Pure Reasoning
L 7

e Classical Al aproach to knowled: reaoning
Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)
e Reasoning difficult when extracted knowledge has errors
e Solution: probabilistic models

P(Lbl(Socrates, Mortal) | Lbl(Socrates,Man)=0.9)
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Graphical Models: Overview

e Define joint probability distribution on knowledge graphs

e Each candidate fact in the knowledge graph is a variable

e Statistical signals, ontological knowledge and rules
parameterize the dependencies between variables

* Find most likely knowledge graph by optimization/sampling




Knowledge Graph Identification

Define a graphical model to
perform all three of these
tasks simultaneously!

* Who are the entities
(nodes) in the graph?

e What are their attributes
and types (labels)?

* How are they related
(edges)?

PUJARA+ISWC13




Knowledge Graph Identification

P(Who, What, How | Extractions)

—

(0’
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Probabilistic Models

* Use dependencies between facts in KG

* Probability defined jointly over facts

P=0.25

P=0.75




What determines probability?

e Statistical signals from text extractors and classifiers




What determines probability?

e Statistical signals from text extractors and classifiers
* P(R(John,Spouse,Yoko))=0.75; P(R(John,Spouse,Cynthia))=0.25
* LevenshteinSimilarity(Beatles, Beetles) = 0.9
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What determines probability?

e Statistical signals from text extractors and classifiers
* P(R(John,Spouse,Yoko))=0.75; P(R(John,Spouse,Cynthia))=0.25
* LevenshteinSimilarity(Beatles, Beetles) = 0.9

* Ontological knowledge about domain
e Functional(Spouse) & R(A,Spouse,B) -> IR(A,Spouse,C)
* Range(Spouse, Person) & R(A,Spouse,B) -> Type(B, Person)

* Rules and patterns mined from data
* R(A, Spouse, B) & R(A, Lives, L) -> R(B, Lives, L)
* R(A, Spouse, B) & R(A, Child, C) -> R(B, Child, C)




Example: The Fab Four

DEATLES

" AMAZING NEW
SUPER HEROES

W\, ~ OF SCIENCE




llustration of KG Identification

Uncertain Extractions:
.5: Lbl(Fab Four, novel)

.7: Lbl(Fab Four, musician)
.9: Lbl(Beatles, musician)

.8: Rel(Beatles,AlbumArtist,
Abbey Road)
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llustration of KG Identification

(Annotated) Extraction Graph

Uncertain Extractions:

.7: Lbl(Fab Four, musician) S

.9: Lbl(Beatles, musician) - .‘~.(b/ o\ “‘
e

.8: Rel(Beatles, AlbumArtist, ﬂ * \

Abbey Road) e
-
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Abbey Road
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llustration of KG Identification

Extraction Graph

Uncertain Extractions:

.5: Lbl(Fab Four, novel)
.7: Lbl(Fab Four, musician) ry .

.9: Lbl(Beatles, musician) 2

" n
5 . .(.b/ \/\%\“‘ - :,?_S’:
.8: Rel(Beatles,AlbumArtist, o '0. «* n 2
Abbey Road) ﬂ - Yaet A 2
Ontology: - 3
Dom(albumArtist, musician) . l:
Mut(novel, musician) 7
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llustration of KG Identification

(Annotated) Extraction Graph

Uncertain Extractions:
.5: Lbl(Fab Four, novel)

SameEnt
’
.7: Lbl(Fab Four, musician)

.9: Lbl(Beatles, musician)

*s

- " D

L} ] —

.8: Rel(Beatles,AlbumArtist, ﬂ = '0.. “" n 2

Abbey Road) - A 2

Ontology: o 3

Dom(albumArtist, musician) . - l:

Mut(novel, musician) : g

Entity Resolution: Abbey Road
SameEnt(Fab Four, Beatles)
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llustration of KG Identification

(Annotated) Extraction Graph

Uncertain Extractions:
.5: Lbl(Fab Four, novel)

SamekEnt
.7: Lbl(Fab Four, musician)

3 *
.9: Lbl(Beatles, musician) - .‘~.(.b/ \,‘O\‘“ - o
| § —~~
.8: Rel(Beatles,AlbumArtist, ﬂ : .0.. ““ n =
Abbey Road) - A 2
Ontology: o 3
Dom(albumArtist, musician) - - l:
Mut(novel, musician) : 7y
Entity Resolution: Abbey Road
SameEnt(Fab Four, Beatles)
After Knowledge Graph Identification
Beatles Rel(AlbumArtist)
m Abbey Road

Fab Four
PUJARA+ISWC13: PUJARA+AIMAG15




Probabilistic graphical model for KG

Rel(Beatles,
AlbumArtist,
Abbey Road)

Lbl(Beatles, novel)

Lbl(Beatles,
musician)

Lbl(Fab Four,
musician)

Rel(Fab Four,
AlbumArtist,

Abbey Road
— ey Road)

Lbl(Fab Four, novel)



Defining graphical models

* Many options for defining a graphical model

e We focus on two approaches, MLNs and PSL, that use rules

* MLNs treat facts as Boolean, use sampling for satisfaction

e PSL infers a “truth value” for each fact via optimization




Subsumes(L1,L2)
Exclusive(L1,L2)

Inverse(R1,R2)
Subsumes(R1,R2)
Exclusive(R1,R2)

Domain(R, L) &
Range(R, L) &

SameEntity(E1,E2) &
SameEntity(E1,E2) &

Label OBIE(E,L)
Label OpenIE(E,L)

Rules for KG Model

Label(E,L1)
Label(E,L1)

Relation(R1,E,0) ->
Relation(R1,E,0) ->
Relation(R1,E,0) ->

Relation(R,E,0) ->
Relation(R,E,0) ->

Label(E1,L) ->
Relation(R,E1,0) ->

Relation_ Pattern(R,E,Q)

Label(E,L2)
Label(E,L2)

Relation(R2,0,E)
Relation(R2,E,0Q)
Relation(R2,E,0Q)

Label(E,L)
Label(O, L)

Label(E2,L)
Relation(R,E2,0)

Label(E,L)
Label(E,L)
Relation(R,E,O)
Relation(R,E,0)
Label(E,L)

JIANG+ICDM12; PUJARA+ISWC13, PUJARA+AIMAG15




Rules to Distributions

*Rules are grounded by substituting literals into formulas
wy : SAMEENT(Fab Four, Beatles) A

LBL(Beatles, musician) = LBL(Fab Four, musician)

eEach ground
from the for

rule

1dS d

weighted|satisfaction

la’s truth V'E\Iue

derived

distribution over knowledge graph facts, conditioned on
the extractions

JIANG+ICDM12; PUJARA+ISWC13




Probability Distribution over KGs

PGIE)-—exp[-3,_ w, .(G)]

r N\
CANDLBLy(FabFour, novel) = LBL(FabFour,novel)
\< MuT(novel, musician) A LBL(Beatles,novel)

= —LBL(Beatles,musician)

SAMEENT(Beatles, FabFour) A LBL(Beatles,musician)

= LBL(FabFour,musician)

e



[¢1] CANDLBLgt uct (FabFour, novel)
= LBL(FabFour,novel)

(2] CANDREL,¢(Beatles, AlbumArtist, AbbeyRoad)
= REL(Beatles, AlbumArtist, AbbeyRoad)

[$3] SAMEENT(Beatles, FabFour)
A LBL(Beatles,musician)
= LBL(FabFour,musician)

[¢4] DOM(AlbumArtist, musician)
A REL(Beatles, AlbumArtist, AbbeyRoad)
= LBL(Beatles,musician)

(5] MUT(musician,novel)
A LBL(FabFour,musican)
= - LBL(FabFour, novel)

d)l\/\/
Lbl(Fab Four, Lbl(Beatles,
novel) novel)

\ \

s ¢

/ /

Lbl(Fab Four, Lbl(Beatles,
musician) musician)

Na

4

b \

Rel(Beatles,
o, albumArtist,
Abbey Road)
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How do we get a knowledge graph?

Have: P(KG) forall KGs Need: best KG
P ( . ) : j )
3 21 * / & .
GAl = A, * |

A, A,

MAP inference: optimizing over distribution to
find the best knowledge graph

1 —



Inference and KG optimization

*Finding the best KG satisfying weighed rules: NP Hard

*MLNs [discrete]: Monte Carlo sampling methods
e Solution quality dependent on burn-in time, iterations, etc.

*PSL [continuous]: optimize convex linear surrogate
* Fast optimization, %-optimal MAX SAT lower bound

1 —



Graphical Models Experiments

Data: ~1.5M extractions, ~70K ontological relations, ~500 relation/label types
Task: Collectively construct a KG and evaluate on 25K target facts

Comparisons:
Extract Average confidences of extractors for each fact in the NELL candidates

Rules Default, rule-based heuristic strategy used by the NELL project
MLN Jiang+, ICDM12 — estimates marginal probabilities with MC-SAT
PSL Pujara+, ISWC13 — convex optimization of continuous truth values with ADMM

Running Time: Inference completes in 10 seconds, values for 25K facts

AUC F1
Extract .873 .828
Rules .765 .673
MLN (Jiang, 12) .899 .836
PSL (Pujara, 13) .904 .853

JIANG+ICDM12; PUJARA+ISWC13



Graphical Models: Pros/Cons

BENEFITS DRAWBACKS

* Define probability * Requires optimization over
distribution over KGs all KG facts - overkill

* Easily specified via rules * Dependent on rules from

ontology/expert

* Fuse knowledge from many ° Require probabilistic
different sources semantics - unavailable




Graph Construction
Probabilistic Models

TOPICS:
OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS




Random Walk Overview

e Given: a query of an entity and relation

e Starting at the entity, randomly walk the KG

e Random walk ends when reaching an appropriate goal

e Learned parameters bias choices in the random walk

e Output relative probabilities of goal states




Random Walk Illustration

Query: R(Lennon, Playsinstrument, ?)




Random Walk Illustration

Query: R(Lennon, Playsinstrument, ?)

albumArtist :

luawinJlsujsey
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Query: R(Lennon, Playsinstrument, ?)
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Query Q: R(Lennon, Playsinstrument, ?)
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Random Walk Illustration

Query Q: R(Lennon, Playsinstrument, ?)




Random Walk Illustration

Query Q: R(Lennon, Playsinstrument, ?)

K Path Weight of path

P(Q|m=<coworker,playsinstrument>) W_




Random Walk Illustration

Query Q: R(Lennon, Playsinstrument, ?)




Random Walk Illustration

Query Q: R(Lennon, Playsinstrument, ?)
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Query Q: R(Lennon, Playsinstrument, ?)




Random Walk Illustration

Query Q: R(Lennon, Playsinstrument, ?)




Random Walk Illustration

Query: R(Lennon, Playsinstrument, ?)




Recent Random Walk Methods

PRA: Path Ranking Algorithm

e Performs random walk of imperfect knowledge graph
e Estimates transition probabilities using KG

* For each relation, learns parameters for paths through the KG

ProPPR: Programming with Personalized PageRank

» Constructs proof graph
* Nodes are partially-ground clauses with one or more facts
* Edges are proof-transformations

* Parameters are learned for each ground entity and rule

1 —



Recent Random Walk Methods

PRA: Path Ranking Algorithm

e Performs random walk of imperfect knowledge graph
e Estimates transition probabilities using KG

* For each relation, learns parameters for paths through the KG

[
[
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[
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PRA in a nutshell

score(q.s — e;q) = Zquﬁem)W
7'('161_[5

o
LAO+EMNLP11 63



PRA in a nutshell

score(q.s — e;q) = % P(q.s — e;m)) W,
U ‘@

Y

Filter paths based on HITS and accuracy

LAO+EMNLP11




PRA in a nutshell

score(q.s — e;q) = % @3 — e; T )W,
U ‘@

Filter paths based on HITS and accuracy

_—

Estimate probabilities efficiently with dynamic programming
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PRA in a nutshell

score(q.s — e;q) = % @S — @@\
5 ‘@

Filter paths based on HITS and accuracy

_—

Estimate probabilities efficiently with dynamic programming

Path weights are learned with logistic regression

LAO+EMNLP11




Recent Random Walk Methods

ProPPR: ProbLog + Personalized PageRank

» Constructs proof graph
* Nodes are partially-ground clauses with one or more facts

» Edges are proof-transformations

* Parameters are learned for each ground entity and rule

1 —



ProPPR-ized PRA example

Query Q: R(Lennon, Playsinstrument, ?)

_ 8 AlbumArtist,J)
R(J,HasInstrument,K)

_

Unbound variables in proof tree!




ProPPR-ized PRA example

Query Q: R(Lennon, Playsinstrument, ?)

_ & AlbumArtist,J)
R(J,HasInstrument,K)

'

R(&® Playsinstrument,Y)




ProPPR-ized PRA example

Query Q: R(Lennon, Playsinstrument, ?)

~1 R(BA#,Coworker,X) b 48, AlbumArtist,))
R(X,PlaysInstrument,Y) R(J,HasInstrument,K)
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ProPPR-ized PRA example

Query Q: R(Lennon, Playsinstrument, ?)

_ & AlbumArtist,J)
yslnstrument,Y)l R(J,HasInstrument,K)

L S8 | Beatues
R(&%,Playsinstrument,Y)

1 —



ProPPR-ized PRA example

Query Q: R(Lennon, Playsinstrument, ?)

i _ M AlbumArtist,))
R(X,PIaysInstrument,Y)l R(J,HasInstrument,K)

BeATLES
<

Coworker, :r,;.»@‘ )

R(,Playslnstrument, \/X
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ProPPR-ized PRA example

Query Q: R(Lennon, Playsinstrument, ?)

‘Coworker 2% BEAILES

4 2%V s
R0 ;_5": ey o
by e E S,
Sl AL
o R
iA i
f :

L€ ,Haslnstrument K)

R(EY, Playslnstrumn, \/X




ProPPR-ized PRA example

Query Q: R(Lennon, Playsinstrument, ?)

R( % AlbumArtist,J) \

R(J,HasInstrument,K)

BEATLES 3 @

= ,35’3“.@ ™
I Sl T
. _fi T
. SN
iA e %

R ,Haslnstrument K)




ProPPR-ized PRA example

Query Q: R(Lennon, Playsinstrument, ?)

B\ IbumATrtist,J)
strument,K)




ProPPR in a nutshell

 Learn: random walk weights

* Train via stochastic gradient descent

WANG+MLJ15




Results from PRA and ProPPR

e Task:
e 1M extractions for 3 domains;

e ~100s of training queries
e ~1000s of test queries
e AUC of extractions alone is 0.7

0.96 Relation Prediction AUC
0.95
094 —— | — " PRA(1M)
~ ProPPR (1M)
0.93 - —
0.92 -
Google Beatles Baseball

WANG+MLJ15




Random Walks: Pros/Cons

BENEFITS DRAWBACKS

* KG query estimation * Full KG completion task
independent of KG size inefficient

* Model training produces * Training data difficult to
interpretable, logical rules obtain at scale

* Robust to noisy extractions < [nput must follow
through probabilistic form probabilistic semantics




Two classes of Probabilistic Models

GRAPHICAL MODELS RANDOM WALK METHODS
> Possible facts in KG are > Possible facts posed as
variables qgueries
o Logical rules relate facts > Random walks of the KG

constitute “proofs”

> Probability o satisfied ° Probability o< path
rules lengths/transitions
o Universally-quantified o Locally grounded




