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® Integrate results of multiple learning approaches to

S C‘ '/ “Two heads are better than one.”

improve the performance

Ensemble learning
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1. Introduction to ensemble learning

Two concepts

® Strong learner: learning algorithm with high accuracy

® Weak learner: performance on any training set is
slightly better than chance prediction
error = 72 -y

Can we improve a weak learner to a strong learner?
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Introduction to ensemble learning

® INTUITION: Combining Predictions of an ensemble is more accurate than a
single classifier

® Justification: ( Several reasons)
® Easy to find quite correct “rules of thumb” however hard to find

single highly accurate prediction rule.

o [f the training examples are few and the hypothesis space is large

then there are several equally accurate classifiers.

® Hypothesis space does not contain the true function, but it has

several good approximations.

e Exhaustive global search in the hypothesis space is expensive so we

can combine the predictions of several locally accurate classifiers.

G introduction to machine learning: ensemble learning

Ensemble learning: basic idea

won’t perform well, but a weighted combination of them will.
e Each learner in the p_ool has its own weight
® When ask to predict the label for a new example

® Each expert makes its own prediction

® Then the master algorithm combine them using the weights for its own

prediction (i.e. the “official” one)

@ introduction to machine learning: ensemble learning

® Sometimes a single classifier (e.g. decision tree, neural network, ...
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2. Weighted Majority Algorithm
(IR Z2HEE)

4 N
Weighted majority algorithm —Prediction

pool
:l IIIIIII :
a, \&&‘ 9o = ;Wi y Pred=0
H E 1 2
i) q0>q; N
: Pred=1

Assume: binary
output {0,1}

@ introduction to machine lcarning: ensemble lcarning j
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Weighted majority algorithm - Training

a;is the i pred. algorithm in pool A,; each alg. is arbitrary function from X to {0,1}
w; is the weight associates with a;
e Vi, w& 1
e For each training example (or trail) <x,c(x)>

e Setq, € q, €0

e For each algorithm g

If a(x)=0, then q,€ g,tw;, else ¢, € q,+tw;
e If g,> g,, then predict c¢(x)=0, else predict c(x)=1
(case for g, =g, is arbitrary)
e Foreacha; €EA

If a(x)#c(x), then w;, & B w, (S €[0,1) is the penalty coefficient)
B =0 yields Halving algorithm over A

e introduction to machine learning: ensemble learning

a N
Weighted majority (WM) algorithm: mistake bound

e Let W,= sum of weights before trail t (W, =n, f =1/2)

* On trail # such that WM makes a mistake, the total weight of algorithms
with the mistake is:

W= Y w2 W2
aizt)Fc(xt)
o S0 Wyyy =W=W" /2 <3Wy/4

* After seeing all samples (sample set S), M = total number of mistakes
Wgp < Wi (3/4)M=n 3/4H)M

¢ Leta,, €A be the alg. that makes fewest error on arbitrary sequence S of
examples; kK = number of mistakes; then the final weight of a,, is (1/2)*

(1/2)k<n (3/4)M ,yielding |z; . ktlogan _
M< i loa3(3/2) <2.4(k+logan)

@ introduction to machine learning: ensemble learning
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Weighted majority (WM) algorithm:
mistake bound (cont.)

e For any arbitrary sequence of samples:

MS2 .4 (k + log,n)

e Other results:

Bounds hold for general values of 0<<1 ( Pls analyze by_yourse{ﬁ)

Better bounds hold for many sophisticate algorithms, but only better by a

constant value (worst case lower bound is Q(k+logn) )
Get bounds for real-valued labels and predicts
Can track shifting concept (where best alg. can suddenly change in )

Don’t make any weight too low (compared to other weights) (i.c. don’t over-

commit)

introduction to machine learning: ensemble learning

3. Bagging

If we have only one weak learner,

how to improve the performance by ensemble?
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Bagging: background

¢ Bagging = Bootstrap aggregating
® Bootstrap: proposed by Bradley Efron in 1993
® Professor of Statistics
® Stanford University
® Bootstrap, Biostatistics, Statistical methods in Astrophysics

® "] like working on applied and theoretical problems at the same time and one
thing nice about statistics is that you can be useful in a wide
variety of areas. So my current applications include biostatistics and also
astrophysical applications. The surprising thing is that the methods used are
similar in both areas. I gave a talk called Astrophysics and Biostatistics--

the odd couple at Penn State that made this point."

@ introduction to machine learning: ensemble learning

Bagging: background

® Bagging = Bootstrap aggregating

® Bootstrap: proposed by Bradley Efron in 1993
® Professor of Statistics
e Stanford University

® Bootstrap, Biostatistics, Statistical methods in Astrophysics

* Bootstrap sampling AR/ H 285K FE)

® GivenasetD containing m training examples

® Create D, by drawn m examples uniformly at random with replacement

from D ( drawn with replacement, H ik E))

® Expect D; to omit some examples from D

@ introduction to machine learning: ensemble learning
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Bagging: algorithm

® Bagging: proposed by Breiman in 1994
® Professor Emeritus of Statistics, Berkeley
® Member of American Academy of Science

® Bagging algorithrn

Leo Breiman

For t=1,2, ..., TDo

create boostrap sample D, from S
train a classifier H,on D,

Classify new instance x € X by majority vote of H,
(equal weights)

combining strategy on
your problem.

® Can predict continuous output

@ introduction to machine learning: ensemble learning

Bagging

» C* c*(x) = maxcnt; ¢(x)
< \
C! | |ey(X) C |lex)| ... C" |ler(x)
T train 1 train 1 train
S, S,

[Nl ST
\. Drawn with r;}{\cement .
S

@ introduction to machine learning: ensemble learning

You can also use different
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a Bagging application example N

Temperature
a0 a0

70

60

T T
0 50 100 150
Ozone

Data set: Rousseeuw and Leroy (1986), concerning ozone levels vs. temperature.

@ 100 boostrap samples. Gray lines: first 10 predictor; red line: mean

A\ /

4 N
How Many Bootstrap Samples?

Table 5.1
Bagged Missclassification Rates (%)
No. Bootstrap Replicates Missclassification Rate

10 21.8
25 19.5
50 19.4
100 19.4

Breiman “Bagging Predictors” Berkeley Statistics Department TR#421, 1994

e introduction to machine learning: ensemble learning
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Bagging: Results (cont.)

Given sample S of labeled data,
Breiman did the following 100

times and reported average:
Table 1 Missclassification Rates

Approach I: Data Set e B Diferes
1. Divide S randomly into test set ~ Waveform 29.0 194
T(10%) and training set D(90%) ‘eart 100 53
. breast cancer 6.0 4.2
2. Learn decision tree from D, let ¢, ;. osphere 1.2 8.6
be its error rate on T diabetes 23.4 18.8
soybean 14.5 10.6
Do 50 times: create bootstrap set D,,
learn decision tree, let e; be the Breiman “Bagging Predictors” Berkeley

. e Statistics Department TR#421, 1994
error of a majority vote of trees

on T, so ensemble size = 50)

@ introduction to machine learning: ensemble learning

4 N

Bagging: Results (cont.)

® Same experiment, but use a nearest neighbor classifier

(Euclidean distance)

® Results
Data Set es €p Decrease
waveform 261 261 0%
heart 63 6.3 0%

breastcancer 49 49 0%
ionosphere 35.7 357 0%
diabetes 164 164 0%
glass 164 164 0%

® What happened ?Why ?

@ introduction to machine learning: ensemble learning
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Bagging: special points

* Bagging helps when learner is “unstable 7

“ The vital element is the instability of the prediction method”

® E.g Decision tree, neural network

® Unstable: small change in training set cause large change in hypothesis
produced

o “If perturbing the learning set can cause significant changes in the
predictor constructed, then bagging can improve accuracy.” (Breiman

1996)

@ introduction to machine learning: ensemble learning
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Bagging: special points (cont.)

® Each base classifier is trained on less data

® Only about 63.2% of the data points are in any bootstrap

sample

® However the final model has seen all the data

® On average a point will be in > 50% of the bootstrap samples

@ introduction to machine learning: ensemble learning
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Recall

® Weighted majority algorithm
® Same data set, different learning algorithms

® Generate multiple models, and weighted combination

® Bagging
® One data set, one weak learner

® Generate multiple training samples to train multi-models, and ensemble

Is there an ensemble algorithm that takes

into account the differences of the data in learning?

-,

Boosting 27

)
@ introduction to machine learning: ensemble learning 4

4. Boosting

2014/5/16
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Boosting background

® Comes from PAC-Learning Model
(PAC-learning will be introduced in the next week)
® Valiant Leslie G. proposed PAC in 1984
Harvard University
Member of America Academy of Science
A world leader in theoretical computer science

2010 Turing Award

@ introduction to machine learning: ensemble learning

Boosting: basic idea

® “Learn from failures”

® Basicidea:
® Assign a weight to each example

* T iterations, increase weights of misclassified examples after each

. . A\Y n”
iteration — focus more on hard  ones

train classifier >

Set of
weighted

< Classifier Ct
instances adjust weights

@ introduction to machine learning: ensemble learning
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Boosting background

® [Kearns&Valiant’88]
Open problem of finding a boosting algorithm
® [Schapire’89], [Freund’90]
First polynomial-time boosting algorithms
® [Drucker, Schapire & Simard ’92]
First experiments using boosting
® [Freund & Schapire "95]
® Introduced AdaBoost algorithm
® Strong practical advantages over previous boosting algorithms

® Experiments using AdaBoost, continuing development of theory &

algorithms (using not-so-weak learners, etc)

@ introduction to machine learning: ensemble learning

P
AdaBoost

® Initially assign an equal weight 1/N to each example;
® Fort=1,2,...,T Do

® Generate a hypothesis C;

® Compute the error rate E, :

E, = sum of the weights of all misclassified samples;

o _111—5(
0_1—21'1 &

e Update the weight of cach example:
correctly classified: W, = W, e
misclassified: W, .= W, % e®

® Normalize weights (the sum of weights=1);

¢ Combine all C, with the voting weight of a,

@ introduction to machine learning: ensemble learning
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AdaBoost.M1

® Initially assign an equal weight 1/N to each example;

e Fort=1,2,....T Do

® Generate a hypothesis C,;

° Compute the error rate Et :

~

Vs. AdaBoost

E = sum of the weights of all misclassified samples;

ﬁt: Et/(l N E[)

Update the weight of each example:

a=1/21n ((1- E)/ E,)

misclassified: W

correctly classified: W,

new

ew: VVold>|< Bt
= Wau

® Normalize weights (the sum of weights=1);

= % o &
Wnew Wold e

= % o Qi
w Woa * e®

new

* Combine all C, with the voting weight of{log[1/f3]

@ introduction to machine learning: ensemble learning
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Boosting

AN

Cl

C*

¢;(X)

S,wi

c’(x) = argmaxcmz

log (1/B+)

ce(x)=c™

CZ

C,(X)

I trMA 1 train

S,w?

@ introduction to machine learning: ensemble learning

\ 1 train

\

C" | ler(¥)

S,wT
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AdaBoost example (1)

T1T2T3 T4

e e i

0

H O O KM= O

1

O OO M M= KM

P P, P, OOHKF~ B~

@)
o

ol eoleololoeoll JN .

/" AdaBoost example (1)

T = T = S S O

O -~ O~ +# O O

O OO0+ MM KM B =

T1T2T3 T4

1
1
1
0
0
1
1

1

Ob

O O o0 oo+ mFm» +—

Weight

—_—

-~

Size of —1

represents the degree of the weight.
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4 hypothesis N
T1T2T3 T4 Ob Weight if T1=1
then Ob=0
else Ob=1
1 0 1 1 1 i 0
1 0 1 1 1 o 0
1 1 1 1 1 T 0
1 1 1 0 0 = 0
1 0 1 O 0 san 0
1 1 0 1 0 Dty 0
1 0 0 1 0 o 0
1 1 0 1 0 o 0
\ Size of =™ represents the degree of the weight. J
4 hypothesis N
T1T2T3 T4 Ob Weight if T1=1 New
then Ob=0  Weight
else Ob=1
1 0 1 1 1 N 0 T
1 0 1 1 1 Uy 0 T
1 1 1 1 1 iy 0 o
1 1 1 0 0 o 0
1 0 1 0 0 o 0
1 1 0 1 0 T 0 -
1 0 0 1 0 iy 0
1 1 0 1 0 L 0 -
\ Size of =5 represents the degree of the weight. J

2014/5/16
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4 Another hypothesis N
T1T2T3T4 Ob Weight
1 0 1 1 1 o
1 0 1 1 1 —
1 1 1 1 1 —~
1 110 0o =
1 010 0
1 1 0 1 0
1 0 01 0
1 1 0 1 0o =
- /
4 Another hypothesis N
T1T2T3T4 Ob Weight if T3=1
then Ob=1
else Ob=0
1 0 1 1 1 = 1
1 0 1 1 1 = 1
1 1 1 1 1 - 1
1 110 0 1
1 010 0o 1
1 10 1 0o 0
1 00 1 0o 0
1 1 01 0 0
\ J
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4 Another hypothesis N

TL1T2T3T4 Ob Weight if T3=1 New
then Ob=1 Weight
else Ob=0

1 0 1 1 ] = 1 -

1 011 1 = 1 -

1 1 1 1 1 = 1

1 110 0o 1 B

1 010 0 1

1 101 0 0

1 0 0 1 0 0

1 1 0 1 0o 0

\ J

4 Another hypothesis N

TL1T2T3T4 Ob Weight

1 011 1

1 0 1 1 1

1 1 1 1 1

1 110 0 -

1 010 0 B

1 1 01 0

1 00 1 0

1 101 0

\ J
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4 Another hypothesis N

T1T2T3T4 Ob Weight if T4=1
then Ob=1
else Ob=0

1 0 1 1 1 - 1

1 0 1 1 1 - 1

1 1 1 1 1 - 1

1 110 0 0

1 010 0 0

1 101 0 1

1 0 0 1 0 1

1 1 01 0 1

-
\

4 Another hypothesis N
T1T2T3 T4 Ob  Weight if T4=1 New
then Ob=1 Weight
else Ob=0
1 0 1 1 1 . 1
1 0 1 1 1 1
1 1 1 1 1 1
1 1 1 0 0 a 0
1 0 1 O 0 a 0
1 1 0 1 0 1
1 0 0 1 0 1
1 1 0 1 0 1

-
-
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AdaBoost example (1)
Hypotheses
if T1=1 if T3=1 if T4=1 Simple
then Ob=0 then Ob=1 then Ob=1 | Majority
T1T2T3T4 Ob else Ob=1 else Ob=0 else Ob=0 | Voting
1011 1 0 1 1 1
1011 1 0 1 1 1
1111 1 0 1 1 1
1110 O 0 1 0 0
1010 O 0 1 0 0
1101 O 0 0 1 0
1001 O 0 0 1 0
1101 O 0 0 1 0
- /
4 N
AdaBoost example (2)
+
+ + T
D, + — _
+ —
Original Training set : Equal Weights to all training samples
-- from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

2014/5/16
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AdaBoost example (2)

ROUND 1
P
Cr e
b
_|_ .
h,

AdaBoost example (2)

ROUND 2

+++‘
S

v o)

2014/5/16
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AdaBoost example (2)

ROUND 3
_|_
n T
£3=0.14
o - ;=092
i .

AdaBoost example (2): final hypothesis

Hfinal=Slgn 0.42 +0.65 +0.92

2014/5/16
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Practical Advantages of AdaBoost

(quite) Fast

Simple + easy to program

Only a single parameter to tune (T')

* No prior knowledge

Flexible: can be combined with any classifier (neural net, C4.5, ...)

Provably effective (assuming weak learner)

e Shift in mind set: goal now is merely to find hypotheses that are

better than random guessing

@ introduction to machine learning: ensemble learning

AdaBoost caveats

® Performance depends on data & weak learner

® AdaBoost can fail if
® Weak hypothesis too complex (overfitting)

® Weak hypothesis too weak (&, —0 too quickly),
Underfitting

Low margins —> ovcrfitting

* Empirically, AdaBoost seems susceptible to noise

@ introduction to machine learning: ensemble learning
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5. Discussions

Bagging vs. Boosting

® Training set
® Bagging: Randomly selected samples, independent
® Boosting: Decided by the previous one, dependent
® Prediction function
® Bagging: no weights; easier to parallelize

® Boosting: weights grow exponentially; sequential production

@ introduction to machine lcarning: ensemble lcarning
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Bagging vs. Boosting (cont.)

¢ Performance
® In practice, bagging almost always helps.

® On average, boosting helps more than bagging, but it is also more

common for boosting to hurt performance

® Bagging doesn’t work so well with stable models. Boosting might
still help,

® Boosting might hurt performance on noisy datasets. Bagging

doesn’t have this problem

@ introduction to machine learning: ensemble learning

Reweighting vs. Resampling

* Example weights might be harder to deal with

* Some learning methods can’t use weights on examples

* Many common packages don’t support weighs on the train
® We can resample instead:

® Draw a bootstrap sample from the data with the probability of drawing each

example is proportional to it’s weight
* Reweighting usually works better but

resampling is easier to implement

@ introduction to machine learning: ensemble learning
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Bagging & boosting applications

Content filtering in the Internet

o Image recognition

Handwritten recognition

Speech recognition

Text categorization

6 introduction to machine learning: ensemble learning

-
A little bit more...

* Research topics
® A uniformed theoretical framework for bagging and boosting?
® Opverfitting analyses on boosting
¢ Other ensemble learning approaches?
* If you are interested in more details
® Mistake bounds of boosting

® Boosting and the largest margin

@ introduction to machine learning: ensemble learning
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@ introduction to machine learning: ensemble learning

Overview

® Introduction to ensemble learning
* Approaches

® Weighted majority algorithm

® Bagging

Boostrap sampling

® Boosting
¢ Further discussion

® Bagging vs. boosting

° Reweighting vs. resarnpling

-~

@ introduction to machine learning: ensemble learning
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