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What is Model Selection

Given a set of models M = {M1,M2, . . . ,MR}, choose the model that is expected
to do the best on the test data. M may consist of:
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What is Model Selection

Given a set of models M = {M1,M2, . . . ,MR}, choose the model that is expected
to do the best on the test data. M may consist of:

Same learning model with different complexities or hyperparameters

Nonlinear Regression: Polynomials with different degrees

K -Nearest Neighbors: Different choices of K

Decision Trees: Different choices of the number of levels/leaves

SVM: Different choices of the misclassification penalty hyperparameter C

Regularized Models: Different choices of the regularization parameter

Kernel based Methods: Different choices of kernels

.. and almost any learning problem

Different learning models (e.g., SVM, KNN, DT, etc.)

Note: Usually considered in supervised learning contexts but unsupervised
learning too faces this issue (e.g., “how many clusters” when doing clustering)
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Held-out Data

Set aside a fraction (say 10%-20%) of the training data
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Held-out Data

Set aside a fraction (say 10%-20%) of the training data

This part becomes our held-out data
Other names: validation/development data

Remember: Held-out data is NOT the test data

Train each model using the remaining training data

Evaluate error on the held-out data

Choose the model with the smallest held-out error

Problems:
Wastes training data, so typically used when we have plenty of training data

Held-out data may not be good if there was an unfortunate split
Can ameliorate unfortunate splits by repeated random subsampling
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Cross-Validation

K -fold Cross-Validation

Create K equal sized partitions of the training data
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Cross-Validation

K -fold Cross-Validation

Create K equal sized partitions of the training data

Each partition has N/K examples

Train using K − 1 partitions, validate on the remaining partition

Repeat the same K times, each with a different validation partition

Finally, choose the model with smallest average validation error

Usually K is chosen as 10
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Leave-One-Out (LOO) Cross-Validation

Special case of K -fold CV when K = N (number of training examples)
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Leave-One-Out (LOO) Cross-Validation

Special case of K -fold CV when K = N (number of training examples)

Each partition is now an example

Train using N − 1 examples, validate on the remaining example

Repeat the same N times, each with a different validation example

Finally, choose the model with smallest average validation error

Can be expensive for large N. Typically used when N is small

(CS5350/6350) Model Selection and Feature Selection September 22, 2011 5 / 14



Random Subsampling Cross-Validation

Randomly subsample a fixed fraction αN (0 < α < 1) of examples; call it the
validation set
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Random Subsampling Cross-Validation

Randomly subsample a fixed fraction αN (0 < α < 1) of examples; call it the
validation set

Train using the rest of the examples, measure error on the validate set

Repeat K times, each with a different, randomly chosen validation set

Finally, choose the model with smallest average validation error

Usually α is chosen as 0.1, K as 10
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Bootstrapping

Given: a set of N examples

Idea: Sample N elements from this set with replacement

An already sampled element could be picked again
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Bootstrapping

Given: a set of N examples

Idea: Sample N elements from this set with replacement

An already sampled element could be picked again

Use this new sample as the training data

Use the set of examples not selected as the validation data

For large N, training data consists of about only 63% unique examples

Training data is inherently small ⇒ error estimate may be pessimistic

Use the following equation to compute the expected model error

e = 0.632× etest−examples + 0.368× etraining−examples

Note: the above estimate may still be bad if we overfit and have
etraining−examples = 0. Why?
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Information Criteria based methods

Akaike Information Criteria (AIC)

AIC = 2k − 2 log(L)

Bayesian Information Criteria (BIC)

BIC = k log(N)− 2 log(L)

k : # of model parameters

L: maximum value of the model likelihood function
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Information Criteria based methods

Akaike Information Criteria (AIC)

AIC = 2k − 2 log(L)

Bayesian Information Criteria (BIC)

BIC = k log(N)− 2 log(L)

k : # of model parameters

L: maximum value of the model likelihood function

Applicable for probabilistic models (when likelihood is defined)

AIC/BIC penalize model complexity
.. as measured by the number of model parameters
BIC penalizes the number of parameters more than AIC

Model with the lowest AIC/BIC will be chosen

Can be used even for model selection in unsupervised learning
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Minimum Description Length (MDL)

MDL measures the number of bits to encode a probability distribution

MDL = −log2P(z)
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Minimum Description Length (MDL)

MDL measures the number of bits to encode a probability distribution

MDL = −log2P(z)

Minimum Description Length for a model M

Length(M) = − logP(Y | X,w,M)− logP(w | M)

Note: it’s just the MDL for model’s posterior distribution

P(w | X,Y,M) ∝ P(w | M)× P(Y | X,w,M)

Complex posterior distribution ⇒ Complex model

Choose the model with the lowest MDL

Note: MDL criteria is kind of equivalent to preferring the best regularized
model
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Feature Selection

Selecting a useful subset from all the features
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Feature Selection

Selecting a useful subset from all the features

Why Feature Selection?

Some algorithms scale (computationally) poorly with increased dimension

Irrelevant features can confuse some algorithms

Redundant features adversely affect regularization

Removal of features can increase (relative) margin (and generalization)

Reduces data set and resulting model size

Note: Feature Selection is different from Feature Extraction
The latter transforms original features to get a small set of new features

More on feature extraction when we cover Dimensionality Reduction
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Feature Selection Methods

Methods agnostic to the learning algorithm
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Feature Selection Methods

Methods agnostic to the learning algorithm

Preprocessing based methods
E.g., remove a binary feature if it’s ON in very few or most examples

Filter Feature Selection methods

Use some ranking criteria to rank features

Select the top ranking features

Wrapper Methods (keep the learning algorithm in the loop)

Requires repeated runs of the learning algorithm with different set of features

Can be computationally expensive

(CS5350/6350) Model Selection and Feature Selection September 22, 2011 11 / 14



Filter Feature Selection

Uses heuristics but is much faster than wrapper methods
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Filter Feature Selection

Uses heuristics but is much faster than wrapper methods

Correlation Critera: Rank features in order of their correlation with the
labels

R(Xd ,Y ) =
cov(Xd ,Y )

√

var(Xd )var(Y )
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Uses heuristics but is much faster than wrapper methods

Correlation Critera: Rank features in order of their correlation with the
labels

R(Xd ,Y ) =
cov(Xd ,Y )

√

var(Xd )var(Y )

Mutual Information Criteria:

MI (Xd ,Y ) =
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Xd∈{0,1}
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Filter Feature Selection

Uses heuristics but is much faster than wrapper methods

Correlation Critera: Rank features in order of their correlation with the
labels

R(Xd ,Y ) =
cov(Xd ,Y )

√

var(Xd )var(Y )

Mutual Information Criteria:

MI (Xd ,Y ) =
∑

Xd∈{0,1}

∑

Y∈{−1,+1}

P(Xd ,Y )
log P(Xd ,Y )

P(Xd )P(Y )

High mutual information mean high relevance of that feature
Note: These probabilities can be easily estimated from the data

(CS5350/6350) Model Selection and Feature Selection September 22, 2011 12 / 14



Wrapper Methods

Two types: Forward Search and Backward Search
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Forward Search

Start with no features

Greedily include the most relevant feature

Stop when selected the desired number of features
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Wrapper Methods

Two types: Forward Search and Backward Search

Forward Search

Start with no features

Greedily include the most relevant feature

Stop when selected the desired number of features

Backward Search

Start with all the features

Greedily remove the least relevant feature

Stop when selected the desired number of features

Inclusion/Removal criteria uses cross-validation
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Wrapper Methods

Forward Search

Let F = {}
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Wrapper Methods

Forward Search

Let F = {}

While not selected desired number of features

For each unused feature f :

Estimate model’s error on feature set F
⋃

f (using cross-validation)

Add f with lowest error to F

Backward Search

Let F = {all features}
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Wrapper Methods

Forward Search

Let F = {}

While not selected desired number of features

For each unused feature f :

Estimate model’s error on feature set F
⋃

f (using cross-validation)

Add f with lowest error to F

Backward Search

Let F = {all features}

While not reduced to desired number of features

For each feature f ∈ F :
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Wrapper Methods

Forward Search

Let F = {}

While not selected desired number of features

For each unused feature f :

Estimate model’s error on feature set F
⋃

f (using cross-validation)

Add f with lowest error to F

Backward Search

Let F = {all features}

While not reduced to desired number of features

For each feature f ∈ F :

Estimate model’s error on feature set F\f (using cross-validation)
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Wrapper Methods

Forward Search

Let F = {}

While not selected desired number of features

For each unused feature f :

Estimate model’s error on feature set F
⋃

f (using cross-validation)

Add f with lowest error to F

Backward Search

Let F = {all features}

While not reduced to desired number of features

For each feature f ∈ F :

Estimate model’s error on feature set F\f (using cross-validation)

Remove f with lowest error from F

(CS5350/6350) Model Selection and Feature Selection September 22, 2011 14 / 14



S
u

m
m

a
ry

: fe
a

tu
re

 e
n

g
in

e
e

rin
g

•
F

e
a

tu
re

 e
n

g
in

e
e

rin
g

 is
 o

fte
n

 c
ru

c
ia

l to
 g

e
t 

g
o

o
d

 re
s
u

lts

•
S

tra
te

g
y
: o

v
e

rs
h

o
o

t a
n

d
 re

g
u

la
riz

e

–
C

o
m

e
 u

p
 w

ith
 lo

ts
 o

f fe
a
tu

re
s
: b

e
tte

r to
 in

c
lu

d
e
 

irre
le

v
a
n
t fe

a
tu

re
s
 th

a
n
 to

 m
is

s
 im

p
o
rta

n
t 

fe
a
tu

re
s

–
U

s
e
 re

g
u
la

riz
a
tio

n
 o

r fe
a
tu

re
 s

e
le

c
tio

n
 to

 
p
re

v
e
n
t o

v
e
rfittin

g

–
E

v
a
lu

a
te

 y
o
u
r fe

a
tu

re
 e

n
g
in

e
e
rin

g
 o

n
 D

E
V

 s
e
t.  

T
h
e
n
, w

h
e
n
 th

e
 fe

a
tu

re
 s

e
t is

 fro
z
e
n
, e

v
a
lu

a
te

 
o
n
 T

E
S

T
 to

 g
e
t a

 fin
a
l e

v
a
lu

a
tio

n
 (D

a
n
ie

l w
ill 

s
a
y
 m

o
re

 o
n
 e

v
a
lu

a
tio

n
 n

e
x
t w

e
e
k
)



S
u

m
m

a
ry

: fe
a

tu
re

 s
e

le
c
tio

n
W

h
e

n
 s

h
o

u
ld

 y
o

u
 d

o
 it?

–
If th

e
 o

n
ly

 c
o
n
c
e
rn

 is
 a

c
c
u
ra

c
y, a

n
d
 th

e
 w

h
o
le

 
d
a
ta

s
e
t c

a
n
 b

e
 p

ro
c
e
s
s
e
d
, fe

a
tu

re
 s

e
le

c
tio

n
 n

o
t 

n
e
e
d
e
d
 (a

s
 lo

n
g
 a

s
 th

e
re

 is
 re

g
u
la

riz
a
tio

n
)

–
If c

o
m

p
u
ta

tio
n
a
l c

o
m

p
le

x
ity

 is
 c

ritic
a
l 

(e
m

b
e
d
d
e
d
 d

e
v
ic

e
, w

e
b
-s

c
a
le

 d
a
ta

, fa
n
c
y
 

le
a
rn

in
g
 a

lg
o
rith

m
), c

o
n
s
id

e
r u

s
in

g
 fe

a
tu

re
 

s
e
le

c
tio

n

•
B

u
t th

e
re

 a
re

 a
lte

rn
a

tiv
e

s
: e

.g
. th

e
 H

a
s
h

 tric
k
, a

 
fa

s
t, n

o
n

-lin
e

a
r d

im
e

n
s
io

n
a

lity
 re

d
u
c
tio

n
 te

c
h

n
iq

u
e

 
[W

e
in

b
e
rg

e
r e

t a
l. 2

0
0

9
] 

–
W

h
e
n
 y

o
u
 c

a
re

 a
b
o
u
t th

e
 fe

a
tu

re
 th

e
m

s
e
lv

e
s

•
K

e
e

p
 in

 m
in

d
 th

e
 c

o
rre

la
tio

n
/c

a
u

s
a

tio
n

 is
s
u

e
s

•
S

e
e

 [G
u

y
o
n

 e
t a

l., C
a

u
s
a

l fe
a

tu
re

 s
e
le

c
tio

n
, 0

7
]



S
u
m

m
a
ry

: h
o
w

 to
 d

o
 fe

a
tu

re
 s

e
le

c
tio

n

•F
ilte

rin
g

• L
1  re

g
u
la

riz
a

tio
n

 

(e
m

b
e

d
d

e
d
 

m
e

th
o
d

s
)

•W
ra

p
p

e
rs

•F
o

rw
a

rd
 

s
e
le

c
tio

n

•B
a

c
k
w

a
rd

 
s
e
le

c
tio

n

•O
th

e
r s

e
a

rc
h

•E
x
h

a
u

s
tiv

e

Computational cost



•
G

o
o

d
 p

re
p

ro
c
e

s
s
in

g
 

s
te

p

•
F

a
ils

 to
 c

a
p

tu
re

 
re

la
tio

n
s
h

ip
 b

e
tw

e
e

n
 

fe
a

tu
re

s

•F
ilte
rin
g

• L
1  re

g
u
la

riz
a

tio
n

 

(e
m

b
e

d
d

e
d
 

m
e

th
o
d

s
)

•W
ra

p
p

e
rs

•F
o

rw
a

rd
 

s
e
le

c
tio

n

•B
a

c
k
w

a
rd

 
s
e
le

c
tio

n

•O
th

e
r s

e
a

rc
h

•E
x
h

a
u

s
tiv

e

Computational cost S
u
m

m
a
ry

: h
o
w

 to
 d

o
 fe

a
tu

re
 s

e
le

c
tio

n



•
F

a
irly

 e
ffic

ie
n
t

–
L

A
R

S
-ty

p
e

 a
lg

o
rith

m
s
 n

o
w

 
e

x
is

t fo
r m

a
n

y
 lin

e
a
r 

m
o

d
e

ls
.

•F
ilte

rin
g

• L
1  re

g
u
la

riz
a

tio
n

 

(e
m

b
e

d
d

e
d
 

m
e

th
o
d

s
)

•W
ra

p
p

e
rs

•F
o

rw
a

rd
 

s
e
le

c
tio

n

•B
a

c
k
w

a
rd

 
s
e
le

c
tio

n

•O
th

e
r s

e
a

rc
h

•E
x
h

a
u

s
tiv

e

Computational cost S
u
m

m
a
ry

: h
o
w

 to
 d

o
 fe

a
tu

re
 s

e
le

c
tio

n



•
M

o
s
t d

ire
c
tly

 o
p
tim

iz
e
 

p
re

d
ic

tio
n
 p

e
rfo

rm
a
n
c
e

•
C

a
n
 b

e
 v

e
ry

 e
x
p
e
n
s
iv

e
, 

e
v
e
n
 w

ith
 g

re
e
d
y
 s

e
a
rc

h
 

m
e
th

o
d
s

•
C

ro
s
s
-v

a
lid

a
tio

n
 is

 a
 

g
o
o
d
 o

b
je

c
tiv

e
 fu

n
c
tio

n
 to

 
s
ta

rt w
ith

•F
ilte

rin
g

• L
1  re

g
u
la

riz
a

tio
n

 

(e
m

b
e

d
d

e
d
 

m
e

th
o
d

s
)

•W
ra
p
p
e
rs

•F
o

rw
a

rd
 

s
e
le

c
tio

n

•B
a

c
k
w

a
rd

 
s
e
le

c
tio

n

•O
th

e
r s

e
a

rc
h

•E
x
h

a
u

s
tiv

e

Computational cost S
u
m

m
a
ry

: h
o
w

 to
 d

o
 fe

a
tu

re
 s

e
le

c
tio

n



•
T
o
o
 g

re
e
d
y
—

ig
n
o
re

 
re

la
tio

n
s
h
ip

s
 b

e
tw

e
e
n
 

fe
a
tu

re
s

•
E

a
s
y
 b

a
s
e
lin

e

•
C

a
n
 b

e
 g

e
n
e
ra

liz
e
d
 in

 
m

a
n
y
 in

te
re

s
tin

g
 w

a
y
s

–
S

ta
g

e
w

is
e

 fo
rw

a
rd

 
s
e

le
c
tio

n

–
F

o
rw

a
rd

-b
a

c
k
w

a
rd

 s
e

a
rc

h

–
B

o
o

s
tin

g

•F
ilte

rin
g

• L
1  re

g
u
la

riz
a

tio
n

 

(e
m

b
e

d
d

e
d
 

m
e

th
o
d

s
)

•W
ra

p
p

e
rs

•F
o

rw
a

rd
 

s
e
le

c
tio

n

•B
a

c
k
w

a
rd

 
s
e
le

c
tio

n

•O
th

e
r s

e
a

rc
h

•E
x
h

a
u

s
tiv

e

Computational cost S
u
m

m
a
ry

: h
o
w

 to
 d

o
 fe

a
tu

re
 s

e
le

c
tio

n



•
G

e
n
e
ra

lly
 m

o
re

 e
ffe

c
tiv

e
 

th
a
n
 g

re
e
d
y

•F
ilte

rin
g

• L
1  re

g
u
la

riz
a

tio
n

 

(e
m

b
e

d
d

e
d
 

m
e

th
o
d

s
)

•W
ra

p
p

e
rs

•F
o

rw
a

rd
 

s
e
le

c
tio

n

•B
a

c
k
w

a
rd

 
s
e
le

c
tio

n

•O
th

e
r s

e
a

rc
h

•E
x
h

a
u

s
tiv

e

Computational cost S
u
m

m
a
ry

: h
o
w

 to
 d

o
 fe

a
tu

re
 s

e
le

c
tio

n



•
T

h
e
 “id

e
a
l”

•
V

e
ry

 s
e
ld

o
m

 d
o
n
e
 in

 
p
ra

c
tic

e

•
W

ith
 c

ro
s
s
-v

a
lid

a
tio

n
 

o
b
je

c
tiv

e
, th

e
re

’s
 a

 
c
h
a
n
c
e
 o

f o
v
e
r-fittin

g

–
S

o
m

e
 s

u
b
s
e

t m
ig

h
t 

ra
n

d
o

m
ly

 p
e

rfo
rm

 q
u
ite

 
w

e
ll in

 c
ro

s
s
-v

a
lid

a
tio

n

•F
ilte

rin
g

• L
1  re

g
u
la

riz
a

tio
n

 

(e
m

b
e

d
d

e
d
 

m
e

th
o
d

s
)

•W
ra

p
p

e
rs

•F
o

rw
a

rd
 

s
e
le

c
tio

n

•B
a

c
k
w

a
rd

 
s
e
le

c
tio

n

•O
th

e
r s

e
a

rc
h

•E
x
h

a
u

s
tiv

e

Computational cost S
u
m

m
a
ry

: h
o
w

 to
 d

o
 fe

a
tu

re
 s

e
le

c
tio

n


