Choosing the "best" line

Objective Functions

- "Best" line depends on the **objective (loss) function**
 - Objective function should represent our goal
- A loss function determines how much penalty should be assigned to an instance based on the error in the model's predicted value
- Examples of objective (or loss) functions:
 - $\lambda(y; x) = |y f(x)|$
 - $\lambda(y; x) = (y f(x))^2$ [convenient mathematically linear regression]
 - $\lambda(y; x) = I(y \neq f(x))$
- Linear regression, logistic regression, and support vector machines are all very similar instances of our basic fundamental technique:
 - The key difference is that each uses a different objective function

Classifying Flowers

Choosing the "best" line

Support Vector Machines (SVMs)

Balance

Support Vector Machines (SVMs)

- Linear Discriminants
- Effective
- Use "hinge loss"
- Also, non-linear SVMs

Hinge Loss functions

- Support vector machines use hinge loss
- Hinge loss incurs no penalty for an example that is <u>not</u> on the wrong side of the margin
- The hinge loss only becomes positive when an example is on the wrong side of the boundary and beyond the margin
 - Loss then increases linearly with the example's distance from the margin
 - Penalizes points more the farther they are from the separating boundary

- Zero-one loss assigns a loss of zero for a correct decision and one for an incorrect decision
- **Squared error** specifies a loss proportional to the square of the distance from the boundary
 - Squared error loss usually is used for numeric value prediction (regression), rather than classification
 - The squaring of the error has the effect of greatly penalizing predictions that are grossly wrong

Non-linear Functions

• Linear functions can actually represent nonlinear models, if we include more complex features in the functions

Non-linear Functions

- Using "higher order" features is just a "trick"
- Common techniques based on fitting the parameters of complex, nonlinear functions:
 - Non-linear support vector machines and neural networks
- Nonlinear support vector machine with a "polynomial kernel" consider "higher-order" combinations of the original features
 - Squared features, products of features, etc.
- Think of a **neural network** as a "stack" of models
 - On the bottom of the stack are the original features
 - Each layer in the stack applies a simple model to the outputs of the previous layer
- Might fit data too well (..to be continued)

Example: Classifying Flowers

Example: Classifying Flowers

Example: Classifying Flowers

Tree Induction:

- Post-pruning
 - takes a fully-grown decision tree and discards unreliable parts
- Pre-pruning
 - stops growing a branch when information becomes unreliable

Linear Models:

- Feature Selection
- Regularization
 - Optimize some combination of fit and simplicity

Regularization

Regularized linear model:

```
\underset{W}{\operatorname{argmax}}[\operatorname{fit}(\boldsymbol{x}, \boldsymbol{w}) - \lambda * \operatorname{penalty}(\boldsymbol{w})]
```

- "L2-norm"
 - The sum of the squares of the weights
 - L2-norm + standard least-squares linear regression = ridge regression
- "L1-norm"
 - The sum of the *absolute values* of the weights
 - L1-norm + standard least-squares linear regression = lasso
 - Automatic feature selection

