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Objective Functions

• “Best” line depends on the objective (loss) function
• Objective function should represent our goal

• A loss function determines how much penalty should be assigned to 
an instance based on the error in the model’s predicted value

• Examples of objective (or loss) functions:
• 𝜆 𝑦; 𝑥 = 𝑦 − 𝑓(𝑥)

• 𝜆 𝑦; 𝑥 = 𝑦 − 𝑓 𝑥 * [convenient mathematically – linear regression]

• 𝜆 𝑦; 𝑥 = 𝐼 𝑦 ≠ 𝑓(𝑥)

• Linear regression, logistic regression, and support vector 
machines are all very similar instances of our basic fundamental 
technique:

• The key difference is that each uses a different objective function
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Support Vector Machines (SVMs)
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Support Vector Machines (SVMs)

• Linear Discriminants

• Effective

• Use “hinge loss”

• Also, non-linear SVMs
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Hinge Loss functions

• Support vector machines use hinge loss

• Hinge loss incurs no penalty for an example that is not on the wrong 
side of the margin

• The hinge loss only becomes positive when an example is on the 
wrong side of the boundary and beyond the margin

• Loss then increases linearly with the example’s distance from the margin 
• Penalizes points more the farther they are from the separating boundary
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Loss Functions

• Zero-one loss assigns a loss of zero for a correct decision and one 
for an incorrect decision

• Squared error specifies a loss proportional to the square of the 
distance from the boundary

• Squared error loss usually is used for numeric value prediction 
(regression), rather than classification

• The squaring of the error has the effect of greatly penalizing predictions 
that are grossly wrong
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Non-linear Functions

• Linear functions can actually represent nonlinear models, if we 
include more complex features in the functions
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Non-linear Functions

• Using “higher order” features is just a “trick”

• Common techniques based on fitting the parameters of complex, 
nonlinear functions:

• Non-linear support vector machines and neural networks

• Nonlinear support vector machine with a “polynomial kernel” 
consider “higher-order” combinations of the original features 

• Squared features, products of features, etc.

• Think of a neural network as a “stack” of models
• On the bottom of the stack are the original features
• Each layer in the stack applies a simple model to the outputs of the 

previous layer

• Might fit data too well (..to be continued)
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Example: Classifying Flowers
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Avoiding Over-fitting

Tree Induction:

• Post-pruning
• takes a fully-grown decision tree and discards unreliable parts 

• Pre-pruning
• stops growing a branch when information becomes unreliable 

Linear Models:

• Feature Selection

• Regularization
• Optimize some combination of fit and simplicity
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Regularization

Regularized linear model:

argmax
𝑾

[fit 𝒙, 𝒘 − 𝜆 ∗ penalty(𝒘)]

• “L2-norm”
• The sum of the squares of the weights
• L2-norm + standard least-squares linear regression = ridge regression

• “L1-norm”
• The sum of the absolute values of the weights
• L1-norm + standard least-squares linear regression = lasso
• Automatic feature selection


