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Transfer of Learning
A psychological point of view

* The study of dependency of human conduct,
learning or performance on prior experience.

— [Thorndike and Woodworth, 1901] explored how individuals
would transfer in one context to another context that share smilar
characteristics.

» C++ - Java
» Maths/Physics - Computer Science/Economics
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Transfer Learning

In the machine learning community

* The ability of a system to recognize and apply
knowledge and skills learned in previous
domains/tasks to novel tasks/domains, which share
some commonality.

» Given atarget domain/task, how to identify the
commonality between the domain/task and
previous domains/tasks, and transfer knowledge
from the previous domains/tasks to the target onﬁz
> 2R
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Transfer Learning

Traditional Machine Learning Transfer Learning
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Transfer Learning
Different fields

e Transfer learning for e Transfer learning for
reinforcement learning.|| classification, and
regression problems.

[Taylor and Stone, Transfer [Pan and Yang, A Survey on
Learning for Reinforcement Transfer Learning, IEEE TKDE
Learning Domains: A Survey, 2010]

JMLR 2009]
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Motivating Example I:
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Indoor WIiFI Localization (cont.)

Average Error
— Distance
Training Test
5=(-37dbm, .., -77dbm), L=(1, 3) Localization 5=(-37dbm, .., -77dbm) F 1.5 meters
S=(-41dbm, .., -83dbm), L=(1, 4) S=(-41dbm, .., -83dbm) |
model
S=(-49dbm, .., -34dbm), L=(9, 10) S=(-49dbm, .., -34dbm)
S=(-61dbm, .., -28dbm), L=(15,22) S=(-61dbm, .., -28dbm)
\/
Device A @ Device A @

\ > >

Test
S=(-37dbm, .., -77dbm)
‘ ‘ S=(-41dbm, .., -83dbm) F_lo meters
;=(-49dbm, .., -34dbm)
S=(-61dbm, .., -28dbm)

Device A \j@ i
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Difference between Domains

Time Period A Time Period B

Device A

Device B




Motivating Example I1I:
Sentiment classification

10 hours ago
Edward Priz + replied:

You know, this isntthe first time that "States Rights™ has been
used as a cover for racist policies. In fact, the whole "States
Rights™ thing has become a sort of code for heavy-handed
racist policies hasnt id? And it does pnrovide 3 soi of coptedyal

10 hourz ago =
RICH HIRTH * replied: [ —
Vo com bead o The issue here is probable cause. A police officer can question
% if he has probable cause, and he can document it. This law can
ot be abused if being Latino is probable cause. That is license to
haracc forth e malies A lmm sy s e e je ame s fairly th e
2 hours ago
Julia Gomez replied:
FER  The Arizona law is so clearly unconstitutional that | do not think O
it will ever reach the point of being enforced. The article did not

say 50, but the Republican governor is afraid of a GOP primary
electarate that is even more reactionary than usual. Thatis why

she signed the hill, not because she thinks it is legally
defensible.

I2R
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Sentiment Classification (cont.)

Classification
Accuracy

Training Test
Sentiment

~84.6%

Edward Priz

e ol Youknow, his isnt e frst ime hat “States Righls” has been
‘ aSS I I e r used & a cover for racisipolicies. In fack the whele "Clales
ights" thing has herome a sort of rode &

1 -
=1
e , Goesal it Than 1 Ve Sk and Litfe Roct, doesnil? Thanks fo making bl
ik exgicl livk enplcl,

¥ ng i ng (<]
Electronics |-* El ics |-® Bl &
B ectronics A
[ Y [ Y

Test

used & a cover for racisipokicies. Infack the v
it o e o

Edward Priz replizs 0
l You know, his isnlt e frstime that “States Rishis” has been —~ 7 2 6 5 /0
L]

(P
Electronics |- Bl ¢
S AN Y

m= ¢ a9 10
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Difference between Domains

Electronics

Video Games

(1) Compact; easy to operate;
very good picture quality;
looks sharp!

(2) A very good game! Itis
action packed and full of
excitement. | am very much
hooked on this game.

(3) | purchased this unit from
Circuit City and | wasvery
excited about the quality of the
picture. It isreally nice and
sharp.

(4) Very realistic shooting
action and good plots. We
played this and were hooked.

(5) Itisaso quite blurry in
very dark settings. | will never
buy HP again.

(6) The gameis so boring. |
am extremely unhappy and will
probably never buy UbiSoft

agan.
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A Major Assumption In
Traditional Machine Learning

» Training and future (test) data come from
the same domain, which implies

1 Represented in the same feature spaces.

] Follow the same data distribution.

12 a 2R
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In Real-world Applications

 Training and testing data may come from
different domains, which have:

Different marginal distributions, or different
feature spaces.

XS # Xj‘. or PE{H 75 PT{I]
Different predictive distributions, or different
|abel spaces:

Vs # Vr, or fs # fr (Ps(y|z) # Pr(y|z))

13 a 2R
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How to Build Systems on Each
Domain of Interest

» Build every system from scratch?
 Time consuming and expensive!

» Reuse common knowledge extracted from
existing systems?
1 More practical!

ArE



The Goal of Transfer Learning

Transfer Learning Predictive
Algorithms Models
Time Period
Ta_rget Target
Device A & Domain Data Domain Data

Unlabeled data/a few labeled Testing
data for adaptation

Labeled Training

Electronics

Time Period B




Transfer Learning Settings

Heterogeneous

Transfer Learning

I— _— -_ 4 N\

| Heterogeneous |
—I \_ Y
Transfer Feature ( )
Learning Space L )
J 4 N

— A1 _

I io@ge”eﬂus_! . J

Homogeneous
Transfer Learning




Transfer Learning Approaches

Instance-based Feature-based
Approaches Approaches

+

Parameter-based Relational
Approaches Approaches

AvETAR



Instance-based Transfer
earning Approaches

XS XT

N 4

General Assumption

Source and target domains
have alot of overlapping
features (domains share
the same/similar support)




Instance-based Transfer
earning Approaches

Case |

Problem Setting ‘

Given DS = {;1.’5'?:. y&'ﬁ}?ﬁl* D_T = {IT?:}?EI,

Learn fr.s.t. Z e(fr(xr,),yr,) 1s small,

where yz, 1S unknown.

e Vo= Yr,and P(Ys|Xg) = P(Yr|Xr),
°® Xg ~ XT,

e P(Xs)# P(Xr).

Case I

Problem Setting ‘

Given Dg = {rg,, Efgi};flf
DT — {‘I:T1 yTl}?i-]_* nr < ns.
Learn fr,s.t. €( fr(zT, ). yr,) 1s small, and

Jr has good generalization on unseen 7.

e Vs =Dr.
but fs # fr (Ps(y|lr) # Pry|x)).

19 |
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Instance-based Approaches

Casel
Given atarget task,
0* = argminEq op (2,7, 0)]

s(x, 7y

— aro ] E T ~— f’ H
wg min K, yop, [ " (z, vy, )]
Y)
= Pr( [ ) | dxd
\rg 111111// r(x,y) (Pq z.2) (7,9, )) dxdy

= arg 111111//P5 (r,vy) (P uig’[ -y_{é')) dxdy
s(r,y

= arg minE, ,ypq [ fl(i"-y-a,)]

Pr(z,y)
20 ﬂ 2R

Ps(x,y)
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Instance-based Approaches
Case | (cont.)

If Ps(r.y) = Pr(z,y)

0" =argminE.,., ) ~p.[l(z7,y7.0)]

¢

0" = arg min B, yo)~rs|l(zs, ys, 0)]

&

nS

f0* = arg min Z l(zs,,ys,, 0) + AQ(0)
i=1

A*STAR



Instance-based Approaches

Case | (cont.)

Assumption; { Ps(z

) # Pr(z), Ps(y|r) = Pr(y|lz)} = Ps(x,y) # Pr

(z,y)

0" =

Denote (x) =

. [ P

arg min K., ,)ps T(l U)} T, y.@)}
* | Ps(z,y

R —PT(I)PT(H\I)

arg min K¢ )~ pg Po(z)Ps(y|7)

P |

arg min K, ,y~pg PT(U ; l(x,y, 9)}
) e

Pr(x)

Ps(x)

arg min Z Blxs, ) (s, ys.. 0) + AQ(0)

i=1

22
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Instance-based Approaches
Case | (cont.)

: - Prlx
How to estimate (x) = r(r) ?
Ps(x)

A simple solution is to first estimate Pr(x), Ps(x), respectively,

Pr(x
and calculate l ).
Ps(x)
. o + Pr(z) .
An alterative solution 1s to estimate Ps(z) directly.
sl

Correcting Sample Selection Bias/ Covariate Shift
[Quionero-Candela, etal, Data Shift in Machine Learning, MIT Press 2009]

A*STAR
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Instance-based Approaches
Correcting sample selection bias

e Imagine arejection sampling process, and
view the source domain as samples from the

target domain
Target—0—0-900—0-0—0- 00—
o |
Source —0-0@® *o—0o©

Assumption: sample selection bias Is caused by

the data generation process 24
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Instance-based Approaches
Correcting sample selection bias (cont.)

e Thedistribution of the selector variable
maps the target onto the source distribution

Ps(x) o< Pr(z)P(s = 1|z)

/ [Zadrozny, ICML-04]

» Label instances from the source domain with label 1
» Label instances from the target domain with label O
» Train abinary classifier

25 a 2R
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Instance-based Approaches
Kernel mean matching (KM M)

Maximum Mean Discrepancy (MMD)

Given Xg = {zg. }.5,, Xp = {xp}T,, drown from Ps(x) and Pr(z),

respectively,

1 & 1 —
Dist(P(Xs), P(Xr)) = || — Y D(xs,) — — Y O(xry)

S 3 T N

[Alex Smola, Arthur Gretton and Kenji Kukumizu, ICML-08 tutorial]

26 a 2R
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Instance-based Approaches
Kernel mean matching (KMM) (cont.)

[Huang etal., NIPS-06]

s _ nT

. 1 . 1 |
arg min ||— E Blzg,)P(xs,) — — E O(xr,)
3 ns 1 nr =1
t Bles) €0, Bland |= 3 dlas) — 1] <
S. B(xs. and |— B(rg. ) — €.
P, ns 2 S; =

A*STAR



Instance-based Approaches
Direct density ratio estimation

[Sugiyamaetal., NIPS-07, Kanamori etal., IMLR-09]

Recall g(z) =

Let f Z aye(x), and denote ﬁp(;r.} = 5(;1‘)P5(;1‘-)

KL divergence loss ﬁ % Least squared loss

arg min KL|[Pp(z HPT )] arg 1min / (7)( ) — Bz )) Ps(x)dx
{ﬂf}g ) {ar}t_, JXsUXr
[Sugiyama etal., NIPS-07] [Kanamori etal., IMLR-09]

28 a 2R
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Instance-based Approaches
Casell

e Vs =Dr.
but fg # fr (Ps(y|r) # Pr(y|x))

Intuition: Part of the |labeled datain the
source domain can be reused in the target
domain after re-weighting

29 a 2R
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Instance-based Approaches
Case |l (cont.)

» TrAdaBoost [Dal etal ICML-07]

— For each boosting iteration,

 Use the same strategy as AdaBoost to
update the weights of target domain data.

] Use a new mechanism to decrease the
weights of misclassified source domain data.

30 a 2R
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Feature-based Transfer

_earning Approaches
Xs

When source and target
domains only have some
overlapping features. (lots
of features only have
support in either the source
or the target domain)




Feature-based Transfer
_earning Approaches (cont.)

How tolearn ¥ ?

» Solution 1: Encode application-specific
knowledge to learn the transformation.

» Solution 2: General approachesto learning
the transformation.

32 a 2R
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Feature-based Approaches
Encode application-specific knowledge

Electronics Video Games
(1) Compact; easy to operate; |(2) A very good game! Itis
very good picture quality; action packed and full of
looks sharp! excitement. | am very much

hooked on this game.

(3) | purchased thisunit from |(4) Very realistic shooting
Circuit City and | was very action and good plots. We
excited about the quality of the | played this and were hooked.
picture. It isreally nice and

sharp.
(5) Itisaso quite blurry in (6) The gameisso boring. |
@ very dark settings. | will am extremely unhappy and will

agan.

never _buy HP again. probably never buy UbiSoft

33
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Feature-based Approaches
Encode application-specific knowledge (cont.)

Electronics

compact sharp blurry hooked realistic boring

L 1 1 0 0 0 0
de 0 1 0 0 0
@ 0 0 0 0 0
Training
y=f(x)=sgn(w-x"), w=[11-10,0,0]
Q Prediction

compact sharp blurry hooked realistic boring

S 0 0 0 1 0 0
& 0 0 0 1 1 0
@ 0 0 0 0 0 1 4 R



Feature-based Approaches
Encode application-specific knowledge (cont.)

Elec ICS iIdeo Games
(1) Compact; easy to operate; |(2) A very(goodgame! Itis

vengoodpicture quality; action packed and full of
looks shaxgal : > | am very much

hooked on this game.

(3) | purc thisunit fro 4) Very realistic shooting
CircyitCity and | wasvery  |action andgoodplots. We
xciteddabout the quality of the|played this and were hooked.

picture. It is reallyQicdand
sharp.

(5) Itisaso quite blurry in (6) The gameisso boring. |
very dark settings. | will am extremely unhappy and
ever_bup HP again. will probably

E ____|Ubiseftagain.
T % ﬂ R
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Feature-based Approaches
Encode application-specific knowledge (cont.)

» Three different types of features
» Source domain (Electronics) specific features, e.q.,
compact, sharp, blurry
» Target domain (Video Game) specific features, e.g.,
hooked, realistic, boring
» Domain independent features (pivot features), e.q.,
good, excited, nice, never_buy

36 a 2R
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Feature-based Approaches
Encode application-specific knowledge (cont.)

» How to identify pivot features?
» Term frequency on both domains
» Mutual information between features and labels (source domain)
» Mutual information on between features and domains

» How to utilize pivotsto align features across domains?

» Structural Correspondence Learning (SCL) [Biltzer etal.
EMNL P-06]

» Spectral Feature Alignment (SFA) [Pan etal. WWW-10]

37 a 2R
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Feature-based Approaches
Structural Correspondence Learning (SCL)

> Intuition

1 Use pivot features to construct pseudo tasks that
related to target classification task

J Model correlations between pivot features and
other features using multi-task learning techniques

1 Discover new shared features by exploiting the
feature correlations
3 a R
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Structural Correspondence Learning
Algorithm

» |dentify P pivot features

» Build P classifiers to predict the pivot features
from remaining features

» Discover shared feature subspace
dCompute top K eigenvectors

Project original features into eigenvectorsto
derive new shared features

» Train classifiers on the source using augmented
features (original features + new features) a
> 2R
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Feature-based Approaches
Spectral Feature Alignment (SFA)

> Intuition

1 Use abipartite graph to model the correlations
between pivot features and other features

1 Discover new shared features by applying
spectral clustering technigues on the graph

40 a 2R
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Spectral Feature Alignment (SFA)

High level idea

Domain-specific features

realistic

Electronics
.
exciting < l compact ‘V
'\

Pivot features

"
hookg#

good

never_buy

/
\T\Jisharp
- —Dblurry ' Video Game

A

boring

» |f two domain-specific words have connections to more common pivot wordsin
the graph, they tend to be aligned or clustered together with a higher probability.

» |f two pivot words have connections to more common domain-specific wordsin
the graph, they tend to be aligned together with a higher probability. s

I I2R




Derive new features Domain-specific features

realistic

Plvot features Electronics
.
exciting l compact ‘
“-.‘ G
|>’ :
/ 2 hookge
good %

never_buy

\?\-&sharp \
S —Dblurry ’ Video Game

Video Game compact Electronics

boring ot

blurry realis
Electronics e Video Game
P
hooked

; = 42 IER

Electronics Video Game
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Spectral Feature Alignment (SFA)

Derive new features (cont.)

Electronics

sharp/hooked | compact/realistic| blurry/boring
K: 1 1 0
& 1 0 0
@ 0 0 1
‘ Training
y=f(x)=sgn(w-x"), w=[11-1]
‘ Prediction
B sharp/hooked | compact/realistic | blurry/boring
& 1 0 0
iz 1 1 0
K& 0 0 1

r
23 'R
TARK
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Spectral Feature Alignment (SFA)
Algorithm

» |dentify P pivot features

» Construct a bipartite graph between the pivot and
remaining features.

> Apply spectral clustering on the graph to derive
new features

» Train classifiers on the source using augmented
features (original features + new features)
“ a 2R
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Feature-based Approaches
Develop general approaches

Time Period A

Device A °

Device B *



Feature-based Approaches
General approaches

» Learning features by minimizing distance
between distributions

» Learning features inspired by multi-task
learning

» Learning features inspired by self-taught
learning

46 a 2R
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Feature-based Approaches
Transfer Component Analysi Sipanetal., 1JCAI-09, TNN-11]

I COMCD

Latent factors /

SO ODDODOOD

\_

Temperature Signal Power of APs Building
properties structure { R
5 TAR

A



Transfer Component Analysis (cont.)

ol

4
. ®o®

| |
Temperature | |Signal Power of APs | |Building

W structure

Cause the data distributions between domains different 48 a
I2R

Latent factors -
-

A*STAR



Transfer Component Analysis (cont.)

Noisy
component

NG

L

Signal
properties

Building

structure
Principal components
49 IER
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Transfer Component Analysis (cont.)

Learning ¢ by only minimizing distance between
distributions may map the data onto noisy factors.

3 . . : : :
; : ; # Pos. source domain data
25k e b . & Neg. source domain data ||
: § : o Pos. target domain data
b L S o o Neg. target domain data ||




Transfer Component Analysis (cont.)

Main idea: the learned ¥ should map the source and
target domain datato the latent space spanned by the
factors which can reduce domain difference and
preserve original data structure.

High level optimization problem

min Dist(p(Xs), o(X71)) + A2 (p)

\rr"

s.t.  constraints on ¢(Xg) and (X7)

o1 a 2R
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Transfer Component Analysis (cont.)

Recall: Maximum Mean Discrepancy (MMD)

Given Xg = {zg,}.5,., Xy = {x}.L,, drown from Ps(x) and Pr(x),

respectively,
1 & 1 —
Dist(P(Xs). P(X7)) = | -— ) ®(rs) = —» P(ar)
S T

o2 a 2R
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Transfer Component Analysis (cont.)

Dist(¢(Xs), ¢(X7)) = ||Eanpr@)[@(9(2))] — Eonpsa)[@(o(2))]
1 & R et |
~ ﬂg;ﬁmismm_;mmm)'

Assume ¥ = ® o p a RKHS, with kernel k(z;. z;) = ¥(x ) W(x;)

Dist((Xs), ¢(Xr)) = tr(KL)

( 1 . . 7
% if.ij E‘XS.
K — I15'5' IH‘ST R nD—|—nT1><(nD—|—nT‘.I L.. = ¢ —lg— T;, Ty € :{T-
TR K C v T, ’
r.s Brr ——L otherwise.
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Transfer Component Analysis (cont.)

min Dist(p(Xs), o(X71)) + A (p)

\r-"

s.t.  constraints on ¢(Xg) and p(X)

¥

min tr(K L) + AQ(p)

'\-r-’

s.t.  constraints on ¢(Xg) and ¢(X7)

> The kernel function can be a highly nonlinear function of ¥
» A direct optimization of minimizing the quantity w.r.t. &2 can get

stuck in poor local minima
> a 2R
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Transfer Component Analysis (cont.)

Learning o = (1)learning K [Pan etal., AAAI-08]

To hinimize the distance (2) low-dimensional reconstructions of X ¢ and X

between domains based on K To maximize the

data variance
Learning A = min @ —
' K0

L K+ K. —2K,, =d% V(i,j) eN
preservethelocalﬁ JJ J j» V(2,]) )

o
gedmetric structure K1=0, K > 0.

Low-dimensional constructions of Xg, X7 = PCA on K

» Itisa SDP problem, expensive!
» |tistransductive, cannot generalize on unseen instances!
» PCA is post-processed on the learned kernel matrix, which may I

55 IER

potentially discard useful information.

A*STAR



Transfer Component Analysis (cont.)

{ — E’H’H-M& W e R™s+tn1)X™ and m < ng + nr.

Parametric kernel

Learning ' = learning a low-rank matrix W
R ularization term

Minlimize distance

between domains
H'THHKHE\

.’ M aximize data variance

W™ & m leading eigenvectors of (KLK +\)"'KHK
ﬂ I2R

56
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Transfer Component Analysis (cont.)

An illustrative example

Latent features learned by PCA and TCA

+ Pos. source domain data f\

" New. sounce domain daal T S £ W S
©  Pos. target domain data
o Neg. target domain data

............................................................................

PDF
PDF

- : — - | Souirce domain data | e
| Source domain data : | ———————— - *
2 ; ; i i i 1D fatent space ; ; i
2ot 2 s 4 s 6T 89 150 100 50 0 50 100 150
1 X

i

Original feature space PCA




Feature-based Approaches
Multi-task Feature Learning

General Multi-task Learning Setting
Given Ds = {7s,,ys, };21, Dr = {1, yr. }.21.

where ng and np are small,

Learn fg. f7. s.t Z Zf(ft(;rh).yh) 1s small.

te{S, T} 1

» Assumption: If tasks are related, they should
share some good common features.

» Goal: Learn alow-dimensional representation
shared across related tasks. a
> 2R
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Feature-based Approaches
Multi-task Feature Learning (cont.)

Assume f(x) = (0, (U'z)) =0"(U'xz), where § € R*, x € R™, U € R™**

{0, U} =

S.L

T

arg min Z Z J(L-‘TT;Etﬁyti._ ;) + )\15‘@

te{S.T} i=1

constraints on U,

)
O = [95 HT] = RF*2

\_

C|: {7 is full rank (7 € R™** L = m), O is sparse. [Argyriou etal., NIPS-07]

U is low rank (U € R™** L <« m). [Andoand Zhang, IMLR-05]

[Ji etal, KDD-08]




Feature-based Approaches
Self-taught Feature Learning

» Intuition: There exist some higher-level features that
can help the target learning task even only afew labeled

data are given.

»> Steps:
1) Learnhigher-level featuresfrom alot of unlabeled data

2) Usethelearned higher-level features to represent the data
of the target task.

3) Training models from the new representations of the
target task with corresponding labels.
*0 a 2R
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Feature-based Approaches
Self-taught Feature Learning

» How to learn higher-level features
 Sparse Coding [Rainaetal ., 2007]
1 Deep learning [Glorot etal., 2011]

A*STAR



Parameter-based Transfer
_earning Approaches

T
Assume f(z) = (0, z) = O r = Z @;x;. where 6,z € R™.

1=1

ng N\ Tasks are |earned
05 = argmin ) _I(zs,,ys,,05) + AQ(0s) Independently

1=1 | /
oy
05 = arg min Z lzp,, yp., 0p) + AQ2(0p)
8 y

Motivation: A well-trained model ¢5 haslearned a

lot of structure. If two tasks are related, this
structure can be transferred to learn 07 .

A 2R
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Parameter-based Approaches
Multi-task Parameter Learning

Assumption:

If tasks are related, they may share similar parameter vectors.
For example, [Evgeniou and Pontil, KDD-04]

Common part

=one \
> Specific part for individual task
6 =\ 6, @

{05, 07} = arg min Z Z (s, yp,, 00) + AQ2(Op, vg, vT)
\_ te{S,T} i=1 -

63 ﬂ 2R
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Parameter-based Approaches
Multi-task Parameter Learning (cont.)

A general framework: | 2
O) = b, — — 6.,
Denote © = [fg, 07|, /(©) Z L9 Z

te{S.T} T se{ST}

OF = arg min Z Z Uy, Yy, Of) + A @ + )\
te{S.T) i=1
> e’

te{S.T}
/[Zhang and Yeung, UAI-10]\ /[Agarwal etal, NIPS-10] )
f(®)=w(O's1O) fe) =3 |6 —ar ’
s.t. X > 0andtr(X) = 1. te{S.T'}
- J \- /64 R
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Relational Transfer Learning
Approaches

» Motivation: If two relational domains (data
IS non-i.1.d) are related, they may share
some similar relations among objects. These
relations can be used for knowledge transfer
across domains.

65 a 2R
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Relational Transfer Learning
Approaches (cont.)

[Mihalkovaetal., AAAI-07, Davis and Domingos, ICML-09]
Academic domain (source) Movie domain (target)

Student (B) Professor (A)
Pubi®sg fcation MovieMember MawtMember
Paper (T)

WorkedFor
mmmmeee 4 Director(B)

AdvisedBYy (B, A) A Publication (B, T) WorkedFor (A, B) A MovieMember (A, M)
=> Publication (A, T) => MovieMember (B, M)

P1(x,y) A P2 (x,z) =>P2(y, z) o6 a I2R
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Relational Approaches
Relational Adaptive bootstraPping [Li etal., ACL-12]

Task: sentiment summarization
» What is the opinion expressed on?

» To construct lexicon of topic or target words
» How Isthe opinion expressed?

» To construct lexicon of sentiment words

Sentiment lexicon (camera) Topic lexicon (camera)

great, amazing, light camera, product, screen,
recommend, excellent, etc. | [ photo, size, weight, quality,
artifacts, noise, never but, | | price, memory, etc.

boring, etc. a
67 IER
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Relational Approaches
Relational Adaptive bootstraPping (RAP) (cont.)

Reviews on cameras

The camera isgreat.

It isavery amazing product.

| highly recommend thiscamera.
Photos had some artifacts and noise.

Reviews on movies

Thismovie has good script, great casting, excellent acting.
Thismovie is so boring.
The Godfather was the most amazing movie.

The movie 1s excellent. - a
I2R

AvETAR




Relational Approaches
RAP (cont.)

» Bridge between cross-domain sentiment words
— Domain independent (general) sentiment words

» Bridge between cross-domain topic words

y;

—_—

69 a 2R
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Relational Approaches
RAP (cont.)

» Bridge between cross-domain topic words

— Syntactic structure between topic and sentiment
WO rdS Sentiment words

'(}.Tf{‘.hrf'ﬂ ;\ )

—

~-Cop
S
N
Topic word /
(b) Movie domain. (a) Camera domain.

Common syntactic pattern: “topic word™ — nsubj — “ sentiment word” | 2R

AvETAR



Summary

Heterogeneous
Transfer Learning

[

Transfer
Learning

Supervised Transfer
Learning

Semi-Supervised
Transfer Learning

Unsupervised

Transfer Learning

Homogeneous
Transfer Learning

|Indata|eve||
\

Instance-based
Approaches

Feature-based
Approaches

Relational
Approaches j

Parameter-based
Approaches

|Inmode||eve|| 71 HIER
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Some Advanced Research
Issues In Transfer Learning

» How to transfer knowledge across heterogeneous
feature spaces

» Active learning meets transfer learning

» Transfer learning from multiple sources

rd
I2R
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Part I. Cross Domain Transfer Learning
for Activity Recognition

* Vincent W. Zheng, Derek H. Hu and Qiang Yang. Cross-Domain Activity
Recognition. In Proceedings of the 11th International Conference on
Ubiquitous Computing (Ubicomp-09), Orlando, Florida, USA, Sept.30-
Oct.3, 2009.

e Derek Hao Hu, Qiang Yang. Transfer Learning for Activity Recognition via
Sensor Mapping. In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (1JCAI-11), Barcelona, Spain, July 2011




Demo

e Annotation




eHealth Demo

LT T

Your IP Address : 175.159.119.144

Your GPS Address : Hong Kong

Longitude : 114.26560163497925

Latitude : 22.335344552993774
lerometer :

Annotate activity

Turn on aute-logging | Turn off auto-logging

CAERERTERGNE One recent day  w

Generate Activity Profiling

"lf"r.luuz P ﬁh!ndir 55 | 175.159.119.144
Your GRS Address @ Hong Kong
Langitude : 114.26560163497925

Latitude : 22.335344552993774
Accelerometer @ X 6.25, Y: -10.75, Z: 174375
Wik Signal : sMabileMet 69 dEBm {...)

Sensor data



Your IP Address : 175.159.119.144

Your GPS Address : Hong Kong

Longitude : 114.26560163497925
Latitude : 22.335344552993774
MAccelerometer: X 6.25, Y: -10.75, Z: 17.4375
WiFi Signal : sMaobileNet -69 dBm (...)

Your activity :

R ERTGREOE Cne recent day

eHealth demc

Wﬁi‘king

Taking Rest

Doing Exercise

'_1:Dth"e'rs

ate activity

Ao

Activity annotation



Your IP Address : 175.159.119.144

Your GPS Address : Hong Kong

Longitude : 114.26560163497925
Latitude : 22.335344552993774
Accelerometer:  X: 6.25, Y: -10.75, Z: 17.4375
WiFi Signal : sMaobileNet -69 dBm (...)

Your activity :

CAERERTERGNE One recent day  w

Generate Activity Profiling

eHealth demo

Turn on aute-logeing § Turn off auto-loggIng

Auto logging / activity recognition
(service in background)
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e Recognition




Your IP Address : 175.159.119.144
Your GPS Address : Hong Kong

Longitude : 114.26560163497925
Latitude : 22.335344552993774

Accelerometer:  X: 6.25, Y: -10.75, Z: 17.4375
WiFi Signal : sMaobileNet -69 dBm (...)

Your activity :

CAERERTERGNE One recent day  w

Generate Activity Profiling

eHealth demo

W

Real-time activity recognition
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eHealth demo

Your IP Address 1 175.159.119.144
Your GPS Address : Hong Kong

Longitude : 114.26560163497925
Latitude : 22.335344552993774
MAccelerometer: X 6.25, Y: -10.75, Z: 17.4375
WiFi Signal : sMaobileNet -69 dBm (...)

Your activity :

Activity profiling
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Your IP Address : 175.159.119.144

Your GPS Address : Hong Kong

Longitude : 114.26560163497925
Latitude : 22.335344552993774
Accelerometer:  X: 6.25, Y: -10.75, Z: 17.4375
WiFi Signal : sMaobileNet -69 dBm (...)

Your activity :

PACRERTGIRGOE O ne recent day  w

Generate Activity Profiling

Activity profiling for health management
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Key Problem: Recognizing Actions and
Context (Locations)

Inferred through AR

AR: Activity Recognition via Sensors

Sightseeing
Walking? Buying Ticket? Open Door?

4 N

v

GPS and Other
Sensors Sensors
Sensors

o / 1)




1. Cross-Domain Activity Recognition
[Zheng, Hu, Yang: UbiComp-2009, PCM-2011]

« Challenge:
— Some activities without data (partially labeled)

e Cross-domain activity recognition
— Use other activities with available labeled data

* Happen in kitchen 3§ \ W
 Use cup, pot J= \

Making coffee Making tea =



'8 =

Mopping [PWEERINE 1
. Vacuuming
Cleaning Dusting
Maklng—th:—hed] & o
FBamIEl
SDUT’E? Indoor Putting-things-away i
Domain
Disposing-Garbage :
Talingraut-rash :l Dealing-with-Garbage
| ing-
g :::E::I Cleaning-a-surface
Cleaning miscellaneous —  Cleaning-miscellaneous
Cleaning-background — Cleaning-backgroups” —
Gardenin
1l -
> S Gardening
Domain 1 Yardwork-miscellaneous — Yardwork-miscellaneoes —
g Washing laundry — T R
LaUNry "y ] tosamovi
i
| Washing-laundry-background i
1 . .
Washing/D laundry-back d |
: Drying-laundry-background :I i/ g el bl s :
: Folding-laundry = :
: Putting-away-laundry Dealing-with-clothes
l Ironing — :
L]
N i i o b e s P P.“E‘l"t!"i‘_“_“i“_“_”.‘—"—
P R e e ey -
Drying-dishes | Dealing-with-dishes <+
Target Putting-away-dishes -~ :
Domaln 2 Loading-dishwasher

Uhlaeding: dl:.hmsher] Loading/unload ing-dishwasher

-----------------------------------------------------------

Dishwashing

Cleaning Indoar

Activiry
Transfer
Yardwark

Laundry

Dishwashing



System Workflow

Example:
sim(“Make Coffee”,
“Make Tea”) = 0.6
<Sensor Reading,
Activity Name>
Example: <SS, “Make

Example: Pseudo
Training Data: <SS,

. Similarity
Coffee™> Measure “Make Tea”, 0.6>
/ Target Domain
Source Domain THE WEB Pseudo Labeled
Labeled Data Data

Weighted SVM
Classifier

15




Calculating Activity Similarities

e How similar are two
activities?
o Use Web search
results

o TFIDF: Traditional IR
similarity metrics
(cosine similarity)

o Example

« Mined similarity between
the activity “sweeping”
and “vacuuming”, “making
the bed”, “gardening”

Calculated Similarity
with the activity
"Sweeping"

—
.

16



Datasets: MIT PlacelLab

http://architecture.mit.edu/house_n/placelab.html

e MIT PlacelLab Dataset (PLIA2) [Intille et al.
Pervasive 2005]

e Activities: Common household activities

17


http://architecture.mit.edu/house_n/placelab.html�

Datasets: Intel Research Lab

PY |nte| Resea rCh La b ] Using the bathroom
2 | Making oatmeal
[Patte rson, Fox, 3 | Making soft-boiled eggs
e 4 | Preparing orange juice
Ka utz, PhlllpOse, 5 | Making coffee
6 | Making tea
ISWCZOOS] 7 | Making or answering a phone call
. el 8 | Taking out the trash
— Activities Performed: 9 | Setting the table
11 activities 10 | Eating breakfast
11 | Clearing the table

— Sensors
* RFID Readers & Tags

— Length:

* 10 mornings l !o .A’

Picture excerpted from [Patterson, Fox,
Kautz, Philipose, ISWC2005]. 18




Cross-Domain AR: Performance

Accuracy # Activities | # Activities | Baseline Supervised
with Cross (Source (Target (Random (Upper
Domain Domain) Domain) Guess) bound)
Transfer
Intel
Research 63.2% 5 6 16.7%  78.3%
Lab Dataset
Amsterdam
0) 0) 0)
Ao 65.8% 4 3 33.3%  72.3%
MIT Dataset
(Cleaning to 58.9% 13 8 12.5% -
Laundry)
MIT Dataset
(Cleaning to 53.2% 13 7 14.3% -

Dishwashing)

» Activities in the source domain and the target domain are generated
from ten random trials, mean accuracies are reported. 19



Derek Hao Hu and Qiang Yang, [JCAI
2011

Transferring
Across
Feature

Space

Transfer from
Source Domain to
Target Domain

) p(yt |C)

Transferring
Across
Label Space




Proposed Approach

* Final goal: EstiPate:)
— We h.c. p(yelxe) = Z ple|xe) - p(yi|e)

clier,

— p(ye|xt) = p(c|xt) - p(yile) (c=arg igaﬂxp(ﬂlxt)) e:

[ Feature Trﬁ {ﬁl Transfer }




Experiments

Datasets

— UvA dataset [van Kasteren et al. Ubicomp 2008]

— MIT Placelab (PLIA1) dataset [Intille et al. Ubicomp 2006]

— Intel Research Lab dataset [Patterson et al. ISWC 2005]
Baseline

— Unsupervised Activity Recognition Algorithm [Wyatt et al. 2005]

Different sensors for different datasets

RFID sensor for Intel
A series of different wired Research Lab

sensors for MIT dataset Dataset

State-based sensors
for UvA dataset

| W M ]|

69 53 59
Il s2

51 68 | 63

i N
54 61

W 7l

52 |55
67 rrrrrr t

192.168.2.xx |




Experiments:
Different Feature & Label Spaces

K MIT — UvA Acc(Var)
K=5 59.8% (4.2%)
K=10 57.5% (4.1%)
K=15 51.0% (4.8%)
K=20 41.0% (4.1%)

Unsupervised 47.3%(4.1%)

Table 3: Algorithm performance of transferring knowledge

from MIT PLIA1 to UvA dataset

MIT — Intel Acc(Var)

060.5% (4.2%)

61.2% (3.8%)

53.2% (4.1%)

42.0% (2.5%)

Unsupervised

42.8%(3.8%)

Table 4: Algorithm performance of transferring knowledge

from MIT PLIA1 to Intel dataset

 Source: MIT
PLIA1 dataset
Target: UVA
(Intel) datasets



Part |

e Source Free Transfer Learning

e Evan Wei Xiang, Sinno Jialin Pan, Weike Pan, Jian Su and Qiang
Yang. Source-Selection-Free Transfer Learning. In Proceedings
of the 22nd International Joint Conference on Artificial
Intelligence (1JCAI-11), Barcelona, Spain, July 2011.




Source-Selection @&Z
Transfer Learning

Evan Xiang, Sinno Pan, Weike Pan,
Jian Su, Qiang Yang

HKUST - 1JCAI 2011
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Transfer Learning

o o .
Supervised
Learning @
?
Lack of labeled m
training data ?
always happens
>
O
“w 070 o
S~ O 0
Transfer “~~~ o 0
Learning M ORI O
\\~
2} SS
When we have L m 2] n \x\\
some related i) Ss
domains oA 0 o
->

HKUST - lJCAI 2011 26



Where are the “right” source data?

We may have an
choices of potential sources to use.

large number of
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Qutline of Source-Selection-Free
Transfer Learning (SSFTL)

«* Stage 1: Building base models
** Stage 2: Label Bridging via Laplacian Graph Embedding

** Stage 3: Mapping the target instance using the base
classifiers & the projection matrix

** Stage 4: Learning a matrix W to directly project the
target instance to the latent space

** Stage 5: Making predictions for the incoming test data
using W



SSFTL - Building base models

From the taxonomy of the online information source, we can

I

”a lot of base classification models

HKUST - [JCAI 2011
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SSFTL - Label Bridging via Laplacian
Graph Embedding

Problem . s Since the label names
Neighborhood matrix -. delicious are usually short and
However, the for label graph Bob &4-------;>AHistory sparse, , in order to
of the based classification AVAYOXe ] H uncover the intrinsic
models and the target A om 2 relationships between
task can be A the target and source
(@) M g labels, we turn to
O some
O such as Delicious,

which can help to
bridge different label
sets together.

q
Laplacian Eigenmap
[Belkin & Niyogi,2003]

Projection matrix

m-dimensiona
latent space

LA

OooBbb

The between labels, e.qg., similar or dissimilar, can be

represented by the between their corresponding prototypes in
the latent space, e.g., close to or far away from each other.

HKUST - [JCAI 2011 30



SSFTL - Mapping the target instance using
the base classifiers & the projection matrix V

Target Instance

‘ Avs. @ 0.1:.0.9

“Ipad2 is For each target instance, we can
‘ vs. m 0.6:04 released in obtain a

March, ...” via aggregating the predictions
. vs.® 0.7:.0.3

from all the base classifiers
Then we can use the

to transform such combined results from

.VS e 0.3.0.7
Avys. A 0208

the space to a space

A
- Tech
= Projection matrix
3
Q
N
Q

History

A QA Oo O ¢

Label space

However, do we need to recall the base classifiers during the

The answeris !

HKUST - [JCAI 2011 31



SSFTL - Learning a matrix W to directly
project the target instance to the latent space

Target Domain Projection matrix
l A
l Vs. @ N .

For each target instance, we first aggregate A '
its prediction on the base label space, and V'FL =V Z e FY
then project it onto the latent space i=1
b 4
l Q.

N
1
Loss on unlabeled data Opu (W)= — ||W X" — V'F'}‘}Hi x X<y
* x  x
1 ‘ A >
! T
Loss on labeled data  [Eeta el ”W X — VoY })HF Learned Projection matrix
l v
Our regression model 11‘1%11 pe (W) + Ay IW|F + A2 Qpu (W)

Labeled &

Unlabeled
Data

m




SSFTL - Making predictions for the
Incoming test data

Tar get Domain Learned Projection matrix

The learned projection matrix W can be used
to transform any target instance
from the space to the space

Incoming
Test Data

Therefore, we can make
prediction for any

incoming test data based on the
distance to the label prototypes,

HKUST - [JCAI 2011 33



Experiments - Datasets

*»* Building Source Classifiers with Wikipedia
**3M articles, 500K categories (mirror of Aug 2009)
50, 000 pairs of categories are sampled for source models
¢ Building Label Graph with Delicious
*»*800-day historical tagging log (Jan 2005 ~ March 2007)
*+*50M tagging logs of 200K tags on 5M Web pages
** Benchmark Target Tasks
+**20 Newsgroups (190 tasks)
*** Google Snippets (28 tasks)
** AOL Web queries (126 tasks)
** AG Reuters corpus (10 tasks)



SSFTL - Building base classifiers
Parallelly using MapReduce

O PPDPD

ml-J:-4 .4 2

If we need to build 50,000
base classifiers, it would take
about if we run the
training process on

Therefore, we distributed the
training process to a cluster
with using
MapReduce, and finished the
training within

c PPDPBDD

The training data are replicated
and assigned to different bins

Reduce

B

> 3

n In each bin, the training data
are paired for building binary
base classifiers

These pre-trained source base classifiers are

and for different incoming target tasks.

HKUST - lJCAI 2011
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Experiments - Results

Table 1: Comparison results under varying numbers of labeled data in the target task (accuracy in %).

0 5
Dataset o= TSSETL || SVM [ TSVMI[SSETL 'Tls FTL
20NG | 50.0/] 803 | 69.8 | 75.7 84.5 |
Google | 500/ 72.5 | 62.1 | 69.7 | 734 80.3
AOL | 500| 71.0 | 721 | 74.1 || 743 80.7
Reuters| 50.0/ 72.7 | 69.7 | 633 || 743 80.1

-Parameter setttings-

Source models:
Our regression model RO YRA A1 IALY @ + X2 Qpu (W) Unlabeled target data:
w T lambda_2:

HKUST - [JCAI 2011 36



Experiments - Results

Table 2: Comparison results on varying numbers of source
classifiers (accuracy in %).

Diataset Number of source classifiers for SSFTL

250 | 500 1K 2K 5K | 10K | 20K
20NG | 76.3 | 78.2 | 80.3 | 82.5| 84.5 | 85.1 | 85.6
Google | 70.6 | 73.1 | 76.6 | 78.5 | 80.3 80.4 | 80.2
AOL 67.6 | 76.6 | 78.0 | 78.8 /| 80.7 | 81.2 | 79.1
Reuters| 72.2 | 74.0 | 76.7 | 78.0 | 80.1 | 79.6 | 78.1

For each target instance, we first aggregate

its prediction on the base label space, and

k
ron V'FL =V'> eFY
then project it onto the latent space

i=1

-Parameter setttings-
7 Mode:

Labeled target data:
Unlabeled target data:
lambda_2:

2
Qpu (W) = IW'X" - V'F

- n—/{

Loss on unlabeled data
1%11 QD%‘ (W) + A1||W||?— + A2 Qpu (W)

HKUST - [JCAI 2011 37




Experiments - Results

Table 3: Comparison results on varying size of unlabeled data
1n the target task (accuracy in %).

Bt Unlabeled data involved in SSFTT.
20% | 40% | 60% | 80% || 100%

20NG | 80.5 | 80.9 | 81.8 | 84.0 | 845
Google | 745 | 749 | 764 | 779 | 80.3
AQOL 734 | 75.7 | 77.1 | 78.2 || 80.7
Reuters | 75.5 | 77.7 | 77.8 | 78.7 || 80.1

-Parameter setttings-

Mode:

Our regression model EETTHEVFNEAVAESSYIALY ﬁ_ + Xolpu (W) Labeled target data:
W T r Source models:

lambda_2:

HKUST - lJCAI 2011 38



Experiments - Results

Table 4: Overall performance of SSFTL under varying values
of Ag (accuracy in %).

Dataset

Xo of SSFTL

0

0.001

0.01

0.1

1

10

100

20NG

83.2

84.1

84.5

85.3

84.8

83.3

9.3

Google

76.6

79.1

80.3

18.7

78.2

77.4

74.3

AOL

78.3

[ i e

80.7

79.1

78.8

76.3

73.4

Reuters

[t

78.2

80.1

78.5

76.0

21

68.5

-Parameter setttings-
Labeled target data:

HKUST - [JCAI 2011 39

Unlabeled target data:
Source models:




Experiments - Results

Table 5: Analysis on weighted and uniform SSFTL under
varying number of labeled data (accuracy in %).

Paans Uniform SSFTL Weighted SSFTL
) 10 | 20 | 30 | 5 10 | 20 | 30
20NG | 72.8| 80.7|81.2|81.9|80.6| 81.6| 84.5| 85.9
Google | 64.1| 67.0|70.8| 77.2|73.4|75.7| 80.3| 81.1
AOL 69.8|71.7|72.174.8|74.3|77.7| 80.7| 82.5
Reuters | 69.7 | 70.3| 75.5|78.8| 74.3|76.9| 80.1| 82.6
For each target instance, we first aggregate ) :
o enrojecttonto e et soce. IS o' "

v ) Labeled target data:
[W'X* = VF[

Source models:
Unlabeled target data:
lambda_2:

Qps (W) =

n—/{

Loss on unlabeled data
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Related Works

Table 6: Summary of some related transfer learning works.

Transfer learning methods Scalability | Diff. label
RSP [Shi et al., 2009] 3 V4
EigenTransfer [Dai et al., 2009] X v
MTL-MI [Quadrianto et al., 2010] X v
DAM [Duan et al., 2009. v X
LWE [Gao et al.. 2008 \/ X
SSFTL v Vv

HKUST - 1JCAI 2011
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Conclusion

*** Source-Selection-Free Transfer Learning

** When the potential auxiliary data is embedded in very
large online information sources

** No need for task-specific source-domain data

** We compile the label sets into a graph Laplacian for
automatic label bridging

** SSFTL is highly scalable

*¢* Processing of the online information source can be done
offline and reused for different tasks.
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Advance Research Topics
In Transfer Learning

Wa Fan

Huawel Noah's Ark Research Lab, Hong Kong



Predictive Modeling
with Heterogeneous Sources

Xiaoxiao Shi Qi Liu Wel Fan
Qiang Yang Philip S. Yu



Why learning
with heter ogeneous sour ces?

Standard Supervised L earning

Training Test
(labeled) (unlabeled)

jl> Classifier jl> 85.5%
/ s
7

New York Times New York Times

1/18



Why heter ogeneous sour ces?

N Reallty . How to improve
9 , the performance?
e_ O
. . (o‘o S
Training Test
(labeled) % (unlabeled)
_________________________ |
_________________________ i |
7
7
_7_7
Labeled data are 7 47.3%

insufficient! New York Times ,s



Why heter ogeneous sour ces?

Labeled data from Target domain
other sources test (unlabeled)

]
.-' > 47 3%
, Y

New York Times
I

Reuters
N~

—

1. Different distributions
2. Different outputs

3. Different feature spaces

3/18



Real world examples

e Social Network:
— Can various bookmarking systems help predict social tags for a

new system given that their outputs (social tags) and data
(documents) are different?

Wikipedia

ODP

Backflip

Blink

\\ //

?

4/18



Real world examples

* Applied Sociology:

— Can the suburban housing price census data help predict the
downtown housing prices?

#rooms #bathrooms #windows price #rooms #bathrooms #windows price
5 2 12 XXX 2 1 4 XXXXX

6 3 11 XXX 4 2 5 XXXXX
5/18



Other examples

« Bioinformatics
— Previous years’ flu data = new swine flu

— Drug efficacy data against breast cancer -
drug data against lung cancer

e |ntrusion detection

— Existing types of intrusions = unknown
types of intrusions

e Sentiment analysis
— Review from SDM—-> Review from KDD

6/18



L ear ning with
Heter ogeneous Sour ces

 The paper mainly attacks two sub-
problems:

— Heterogeneous data distributions

» Clustering based KL divergence and a
corresponding sampling technique

— Heterogeneous outputs (to regression
problem)
« Unifying outputs via preserving similarity.

7/18



L ear ning with
Heter ogeneous Sour ces

e General Framework
Unifying

data distributions
0/ \0
Target data e >,
Ve N\
,’ ‘N

AQ

............... » ( Target data

8/18

» Unifying outputs




Unifying Data Distributions

e Basic idea:

— Combine the source and target data and
perform clustering.

— Select the clusters in which the target and
source data are similarly distributed,
evaluated by KL divergence.

9/18



An Example

T

A A
A,

AAA

/

Adaptive ( s

Clustermg

D
KL, (T|/D) = mU+log|T‘
\THCP TN C|
|T|: 7 V= Z C| \DﬂC\)
DE 8
C
_1—,\ \TﬂCl|=4

W IDNCy|=5
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Unifying Outputs

e Basic idea:

— Generate Initial outputs according to the
regression model

— For the instances similar in the original output
space, make their new outputs closer.

11/18



Initial Outputs

Initial Outputs

26.5

21.25

16

12/18



Experiment

e Bioinformatics data set:

Table 1: Description of the data sets (#Feature =161)

Order | Type Size | Scale References
1 Regression 2431 | 0~99.99 | [8]

2 Regression 561 1~127.8 | [8]

3 Regression 601 0~100 (8]

4 Regression 290 | 2.1~98 [15]

5 Regression 344 | 0.2~98.5 | [15]

6 Classification | 7443 | 4 classes | [10]

7 Classification | 196 | 2 classes | [16]

Note: Some references, such as [8], refer to several data
sets from different research groups

13/18



RMSE

100

a0

50

RMSE

40

20

o 0.05

Baseling —¥—
HEGS -

Experiment

...B_..

RMSE

a1

Percentage of sample set

(a) Data set 1

a0

" Baseling ——
HEGS =8

a 0.1

0.2 0.3
Farcentage of sample set

(c¢) Data set 3

0.4

0.5

RMSE

100
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S0
50
40
30
20

0.1

0.2

" Baseling ——
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0.3 0.4

Parcentage of sample set

(b) Data set 2

Basalineg —»—
HEGS =~

e T

i ",

0 0.1

02 03 04 05 06
Percentage of sample set

(d) Data set 4

AMSE

Basaling —s—
HEGS =@

140

120 ¢

100 |

ao |

&0 |

f‘?"#ﬂéﬁ‘x

40 ©

i
20 -

0 0.1 0.2 0.3 0.4 0.5

Parcentage of sample sel

(e) Data set 5

0.6

0.7
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Experiment

* Applied sociology data set:

Table 2: Description of the data sets (#Feature =18)

Name Size | Scale
Newton 18 2.47~21.46
Boston Roxbury 19 12.03~36.98
Lynn 22 6.58~27.71
Boston Savin Hill | 23 15.17~34.02
Cambridge 30 1.73~29.53
Somerville 15 11.12~34.41
South Boston 10 3.53~18.46
Brookline 11 T.67T~18.66
Fast Boston 11 10.29~.19.01
Quincy 11 0.38~29.55

15/18



RMSE

14
14
12

10

2

RIMSE

Experiment

" Baszeline —»—
HEGS ==

w0

o]

[V

0.1 0120140168018 0.2 0.220.24 0.26 0.28 0.3
Percentage of sample set

RMSE

18 ’ "Baseline ——
HEGS =&

16

14 |

LAV S« ]

0.1 012014016 0.18 0.2 0.220.24 0.26 0.28 0.3
Percentage of sample set

(a) Newton (b) Boston Roxbury
. . . . — . o 18 . . . . - . — :
Baseling =—>&— Baseling —— Basealing =—é—
| HEGS =iSh= a HEGS =S HEGS ==dSh=
L L
ol ol
= =
T it
SR S
AU B G .
- 4 i i n i i I " a i i i A i i i 4
0.1 0.120.140.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.1 042 014 0416 018 0.2 022 0.24 01 0.120.140.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
Parcentage of sample set Percentage of sample set Parcentage of sample set
(c) Lynn (d) Boston Savin Hill (e) Cambridge
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Conclusions

* Problem: Learning with Heterogeneous
Sources:

 Heterogeneous data distributions
* Heterogeneous outputs
e Solution:

» Clustering based KL divergence help perform
sampling

o Similarity preserving output generation help
unify outputs

17/18



Transfer Learning on Heterogeneous
Feature Spaces via Spectral Transformatic

Xiaoxiao Shi, Qi Liu, Wel Fan,
Philip S. Yu, and Ruixin Zhu



Motivation

Standard Supervised L earning

raining documents Test documents
(labeled) Classifier (unlabeled)

I(}L‘rmun Alert Followed Namibian
PE—

Italy’s Political Houdini May Not

I(}crmun Alert Followed Namibian

German Alert Followed Namibian
Airport Scare

taly’s Political Houdini May Not
Escape This Time

N
se:

wibian authorities halted and
rehed a flight hound for Mun
Weelnesday morning after lnggage

h on

sereeners found an untagged laptop bag
containing batteries wired to a fuse and

clock, a discavery made just hours before
Germany issued a rare security alert,

 On Thursday, Air Berlin saidno und
e explosives were found in the bag the

Astatement by the Namibia
Airports Company said that “a
suspicious parcel” had been found
in a luggage sereening area in the
anrport at Windhoek, Namibia's
capital, at 8:50 a.m. local time
Wednesday, and that as a result Air

idini-like powers 1o escape
he trickiest political traps a
back when all adds were aga

But this time around, as a political crisis
teepens and looks poised to bring down the
sovernment within wooks, something is notably

Ehe New Jork imes Ehe New Hork Time

1/18



In Reality...

Training
(labeled)

Labeled data are
insufficient!

How to improve

o , the performance?
oo
(9,19 ‘
-y Huge set of unlabeled
documents

Ehe New orl 47.3%



Supervised Learning Unsupervised Learning Semi-supervised Learning
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Labeled data from Target domain
other sources

N~ -
—

Heterogeneous datasets:
1.Different data distributions: P(x,..;,) and P(x...,) are different
2.Different outputs: y,.,, and y,.. are different
3.Different feature spaces: x,,,;, and X, are different  ***




WiFI-based localization tracking [Pan et
al'08]

Collaborative Filtering [Pan et al'10]
Activity Recognition [Zheng et al'09]

Text Classification [Dal et al'07]
Sentiment Classification [Blitzer et al ‘07]
Image Categorization [Shi et al’'10]



Issues

- Different data distributions: P(x) and P(x..,)
are different

(ﬂﬂfﬂgﬂ @ribune focuses more on Chicago local news

tE

*

it REUTERS focuses more on global news
Ca g focuses more on scientific/objective documents

T

WIKIPEDIA
The Free Encvelopedia



Issues

« Different outputs: y,, and y,. are

different
Wikipedia

Wiktionary:Topics

This page contains lists of major topical categories on

Business
Culture
Geography
History
Language
Nature

People

ODP

[d][ml[ol[z] open directory project

ahoutdmoz |drozblog | suzzest UBL | help |link | editor login

In partnership with

Search.

Arts
I ovies, Television, Music...
Games

Video Games, RPGs, Gambling...

Kids and Teens
Arts, School Time, Teen Life. .

Reference

Maps, Education, Libraties. ..

Shopping
Clothing, Food, Gifts...

World

Business
Jobs, Real Estate, Investing ..

| search |advaned

Computers

Internet, Joftware, Hardware .

Health

Fitness, Medicine, Alternative...

News

Media, Hewspapers, Weather. .

Regional
U8, Canada, UK, Europe...

Society

People, Religion, Iesues..

Home

Family, Consumers, Cocking. ..

Recreation
Travel, Food, Cutdoors, Humor...

Science

Biology, Peychology, Physics...

Sports
Baseball ZBoceer, Bagkethall .

Catali, Dansk Deutsch, Espafiol, Francais, Italiano, HA495%, Mederlands, Polski Pyecradt, Svenska..

Yahoo!

YaHoO!

hy ahoo!

YAHOO! SITES

FErEHECEEOERO0EDE

i’

BE

£+ Edit
Mail

Autos

Dating

Deals

Finance (Do Jones 457
Games

Horoscopes

Hot.Johs

Lifestyle

Messenger

Movies

omg!

Shopping

Sports

Travel

Updates

Video



Issues

 Different feature spaces (the focus on the
paper)

— Drug efficacy tests:
 Physical properties
e« To " . roperties

— Image Classification
 Wavelet features
e Color histogram



Unify different feature spaces

» Different number of features; different meanings
of the features, no common feature, no

overlap.

* Projection-based approach HeMap

— Find a projected space where (1) the source and
target data are similar in distribution; (2) the original

(a) 3-D data

(b) 2-D data

- = =
e

(c) Projected space



Unify different feature spaces
via HeMap

Optimization objective of HeMap:

Bmiél E(BT?T) —|—€(BS? S) + 3 - D(BT?BS) (1)

((Br.T) = |B((Bs.S) = [D(Br, Bg) = (¢(Bt,S) +((Bs,T))

1
2

where Bt € R™** Bg € R9** are the projected matrices
of T and S respectively.



Unify different feature spaces
via HeMap

With some derivations, the objective can be reformulated as
(more details can be found in the paper):

Theorem I: The minimization problem in Eq. (4) is
equivalent to the following maximization problem:

min G = max tr(BTAB) (6)
B.I.BT:I._ B;._BSZI B'"B=I
where B A A
B T B 1 2
P
32 2 _ _
A, =2TT" + —SS'. Ay =5 TT' +2SS



Algorithm flow of HeMap

Construct matrix A = { A1 Ao ]

Az Ay

A, =2TT" + 78 T A= TTTT 19887

Calculate the top-k eigenvalues of A, and their
corresponding eigenvectors U = [uy, -+ , ug].

l

B is the first half rows of U; Bg is the
second half rows of U.



Generalized HeMap to handle heterogeneous data
(different distributions, outputs and feature spaces)

Labeled

A N
N A

Source
Dataset

N
A

Target

Dataset

\____/
Limited labeled data &

Unify Feature
Spaces

many unlabeled data
Transfer Learning

Unify Distributions via
Sample Selection;

Unify Output Spaces

7~ It the selected
source data are
limited (e.g., 1%),
claim “too risky
to use the source”

otherwise, apply

selected source data
as new training data

\.



Unify different distributions and outputs

« Unify different distributions

— Clustering based sample selection [Shi etc
al,09]

o Unify dlfferent outputs

g WS R - N S - DO
plylx) =) (p(v[x)p(ylv)) (1)

where x is the data to be predicted: y is the target label: and
v denotes the output from the source task.



Generalization bound

Theorem 4: Let 'H be a a hypothesis space. Let T be
unlabeled samples of size r. Let S be a labeled sample of
size ¢ generated by drawing /¢ points from target data and
(1 —v)q points from source data. If /» € H is the empirical
minimizer of the error on S and A" = ming,ecyy €(h) is the
target risk minimizer, then with probability at least 1 - 0
(over the choice of the samples),

a anyj are
domain-specific

parameters;
,\ . o2 (1—a)? [g(h)log(2q) —logé g(h) is ”_‘Odel
c(h) <e(h*)+ 2\/ 3 + 5 5 \/ 2 complexity
1 2g(h)log r + log 4
+2(1 — o(:)(id(T, S)+ 4\/ 9(n) gr 63 + 5)
Principle I: minimize the § = minyey er(h) + es(h)
difference between target Principle ll: minimize the combined
and source datasets expected error by maintaining the original

structure (minimize projection error)



Experiments

* Drug efficacy prediction

— The dataset is collected by the College of Life
Science and Biotechnology of Tongji
University, China. It is to predict the efficacy of
drug compounds against certain cell lines.

— The data are generated in two different
feature spaces

e general descriptors: refer to physical properties of
compounds

 drug-like index: refer to simple topological indices
of compounds.
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Experiments

* Image classification

Homer Simpson &
Cactus

3

Cartman & Bonsai

Superman & CD

&

Homer Simpson &
Coin
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(a) Target is Cartman and Bon- (b) Target is Homer Simpson
sai; source is Homer Simpson and Cactus; source is Cartman
and Bonsai

and Cactus

30

Error rate

Experiments

0.6 - 0.6 :
Baseline Baseline
HeMap = = | 0.55 + HeMap = e
0.5
@ 0
0.4 w
= 0.45
o I
0.3 LE 0.4 | A8y,
0.2 0.35 |
0.1 03"
5 10 15 20 25 30 5 10 15 20 25

Percentage of sample set (%) Percentage of sample set (%)

and CD

30

Error rate

‘Baseline
HeMap = e

5 10 15 20 25 30
Percentage of sample set (%)

(c) Target is Homer Simpson (d) Target is Superman and CD;
and Coin; source is Superman source is Homer Simpson and
Coin



Conclusions

o Extends the applicability of supervised
learning, semi-supervised learning and
transfer learning by using heterogeneous

data:
— Different data distributions
— Different outputs
— Different feature spaces
 Unify different feature spaces via linear
projection with two principles
— Maintain the original structure of the data

— Maximize the similarity of the two data in the
projected space



Cross Validation Framework to Choose Amongst
Models and Datasets for Transfer Learning

Erheng Zhong', Wei Fan*, Qiang YangT,
Olivier Verscheure*, Jiangtao Rent



Transfer Learning: What isit
Definition

“source-domains” to improve “target-domain”: short of
labeled information.

Supervised Learning Unsupervised Learning Semi-supervised Learning
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Application

Indoor WiFi localization tracking

15

Frequency

—
o

o

4

(

25
L
Ly) 20/
i 7)) hnster =
5'15-
3
1'1) m ® 10}
e — L
5-
0 -78 -76 -74 =72 =70 -68 —%O -78 =76 -74 -72 -70 -68
Signal strength (dBm) Signal strength (dBm)

a) WiFi signal at time period | (b) WiFi signal at time period 2

1e access poin. _.
(Lx, Ly) is the coordinate of location.



Application

Collaborative Filtering

R"" Book <User,Ttem Rating= Matrix R'” Music
Sl—=|=]|—=]|—|]|— =1 =1 =T == =
— == |=|=|= =l=|—|=|=
olo|les|les|—|= = =) P ey
Z|l=|=|— == === |=|=
SIS |—]|—|= — S| | = | —
=== |= =l |=]|—|=

MMovie
T I I I
I T O A
N G O O O O
TS5 75
TP 5 7|5
N I I O R

R (target)



Transfer Learning: HOw It WO pata selection

Limited Labled Data Lots of Labled Data
from Source-domain

from Target-domain

g

Model Selection
Algorithm and parameters *

E &
Predict @@@ M
g g8

Trained Model Unlabled Data
from Target-domain



Re-cast: Model and Data Selection

(1) How to select the right transfer learning algorithms?
(2) How to tune the optimal parameters?

(3) How to choose the most helpful source-domain from a
large pool of datasets?

T TN

(,/""'_ﬂ”/'l'rAdaboost‘“\_‘l

Algorithms J
5 a”dt  LWE | atentMap \)
arameters \ __
( CoCC KkMap ~
\ /
"“"\‘ ....... 4 o .
— . S \\\ \\
Source-domains }Hj Target-domain
_ /_"‘\ e — T /"_ _H"‘\/'/_ ﬁ\/— _H\\_
S Y ’ hY ________._.;—_-_-::‘_‘_"-'—_:————__ — 2 /""'_"“““"
/ RC1 _— “‘“‘;;L ( \
B! | — !
P _ / / A
( 20-Newsgroup \"| . Reuters-21578 |
\ / 7
[ TechTC  / ( I
\‘h_\ ....... o / \._\\ N . y
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Modda & Data Selection Traditional Methods

1. Analytical techniques: AIC, BIC, SRM, etc.

f=argmin~ 3~ |P.ylx) - P(yix. )| + 6

! XEXS

2. k-fold cross validation

f = argmm—z Z

J=1(x,y)€S;

y‘X (y‘X: fj)




Modd & Data Selection issuses
- F(X) = R(X)
The estimation is not consistelim,,_,. (f) # f*

|deal k . | B |
HypOthesisf — ars mfm Ex~p,x) | Pt (y|x) — P(ylx, f)| + Oy

= R(y|x) = R(y[x)

A model approximatingP.(y|x) is not necessarily close td(y|x)

The number of labeled data in target domain is limited and
thus the directly estimatiorfPqgy | x) IS not reliable.



Model & Data Selection vodel selection Example

Algorithm-1 Tran __, | |
Target
o0 | |
o0 o i i -~ & |7
Source °e | | A
o0 < :
oo o PR <
o0 o /
Algorithm-2 - ¢
Train o(® o
o

If we choose the wrong model.... ’%



Model & Data Selection pata selection Example

Source-1

o0 o _
o0 Train

Algorithm

Source-2

o0 »
o @ Train

o0
If we choose the wrong source-domain.... ’%



Transfer Cross-Validation (TrCV)

New criterion for transfer learning

Hard to
calculate
N practlce

. 1 P, .

f = argmin — 5 | P (y[x) — Pyl
fon Ps(x) How to calculate

this difference with

limited labeled

estin 4hd the true condltlor6| distribution.

O
Practical method: Transfer Gxoss-Validation (TrCV)

_argmm—z Z Pt Pt (y|x) — (yXf))

J=1(x,y)€S;
o

Density Ratio Weighting




Density Ratio Weighting
 The selected model is an unbiased estimator to th fideal

model r*

Lemma 1. fu(f} + l’_-)f = {*(f") + Of~, when n — oo and f* and f belong to
the same hypothesis class.

7*(f*) is the expected loss to approximate P (y|x)

=7 T B

xE

Pi(y|x) = P(y[x. f)

-©@5 is the model complexity

Important property to choose the right model even when P(x) and P(y|x) are
different

 We adopt an existing method KMM (Huang et al'07) for
density ratio weighting

* Reverse Validation to estimate P,(y|x) — P(y|x,f) (next slide)



Py (y|x) — P(ylx, f:)]

ation
S Build
ui
s (S ) X || X
o Prediction

Prediction

S,  The source-domain data in i-th fold

S, The remaining data

?; The predicted label of X, in i-th fold

?’; The predicted label of §; in i-th fold

Y ' Thetrue label of §; ini-th fold

Xu Xy The unlabeled and labeled target-domain data



Properties

e The selected model i1s an unbiased estimator to the
ideal one. [Lemma 1]

 The model selected by the proposed method has a
generalization bound over target-domain data. [Theorem 1]

 The value of reverse validatir(x) is related to the
difference between true conditional probability and
mod |P(y|z. fi) — P:(y[x)

e The confidence of TrCV has a bound.

I d Eﬂ(f)_g(f) —
P =< e <

=.(f) the accuracy estimated by TrCV
e(f) the true accuracy of f

2 (1+ \)/2-th quantile point of the standard normal distribution



Experiment pata set

* Wine Quality: two subsets related to red and white
variants of the Portuguese “Vinho Verde” wine.

Data Set ST | |T] Description
Red-White(RW) 1599|4998 |physicochemical
White-Red(WR) 4998(1599 variables

For algorithm and parameters selection




Experiment

Data Set

Reuters-21578:the primary benchmark of text

categorization formed by different news with a hierarchial

structure.

Data Set

S|

T

Description

orgs vs. people(ope)
orgs vs. places(opl)
people vs. places(pp)

1016
1079
1239

1046
1080
1210

Documents
from different
subcategories

For algorithm and parameters selection



Experiment pata set

o SyskillWebert: the standard dataset used to test web
page ratings, generated by the HTML source of web
pages plus the user rating. we randomly reserve

“Bands-recording artists” as source-domain and the
three others as target-domain data.

Data Set S| | |T] Description |
Sheep(Sp) 61 | 65 Web pages
Biomedical(Bl) 61 | 131 | with different
Goats(Gs) 61 | 70 contents

For algorithm and parameters selection



Experiment pata set

o 20-Newsgroup: primary benchmark of text categorization
similar to Reuters-21578

Data Set S T S| | |T|
comp |[windows vs. motorcycles| graphics [1596
VS. pc.hardware vs. baseball VS. 1969(1957
rec mac.hardware vs. hockey| autos 1954
sci crypt vs. guns electronics|1895
VS. med vs. misc VS. 17611924
talk space vs. religion mideast |[1612

For source-domain selection



Experiment Baseline methods

e SCV: standard k-fold CV on source-domain

 TCV: standard k-fold CV on labeled data from target-
domain

o STV: building a model on the source-domain data and
validating it on labeled target-domain data

 WCV: using density ratio weighting to reduce the
difference of marginal distribution between two domains,
but ignoring the difference in conditional probability.

F x
— ar ‘3’" IIllll — E E -
P x

'J 1 (x,y)ES;



Experiment other settings

e Algorithms:
— Naive Bayes(NB), SVM, C4.5, K-NN and NNge(NQg)
— TrAdaBoost(TA): instances weighting [Dai et al.'07]
— LatentMap(LM): feature transform [Xie et al.'09]
— LWE : model weighting ensemble [Gao et al.'08]

 Evaluation: if one criterion can select the better model In
the comparison, it gains a higher measure value.

corr = Cﬁﬂ — Z [(E(f) — E(g)) X (i(f} = -i:-(g)) < U:

f.geH

e(-) and v(-) The accuracy and value of criteria (e.g TrCV, SCV, etc)

I'} - -
CtHI The number of comparisions between models



Results Algorithm Selection

Method | RW|WR |opel|opl|pp|Sp|Bl|Gs
Algorithm Selection
SCV 18 | 17 | 13 |17 [13(19|16|17
TCV 17 | 18 | 14 |17 [10(15]|10|11
STV 16 15 13 115 14 1gm=="== Algorithm Selection
WCV 20 | 19 | 17 |19 [18|1§ =0 N TR
acv
TrCV 22| 23 22202220 N —
. B
g - [ Jwey
ﬁ ) B c.
=
: s
6 win and 2 lose! 2
e

3

4 5
Dataset




Results rarameter Tuning

Method | RW |WR|ope|opl|pp|Sp|Bl| Gs |[RW|WR|ope|opl|pp|Sp|Bl|Gs
Parameter Tuning (LatentMap)| Parameter Tuning (SVM)
SCV 4 3) 5 | 5| 8|44 6 1 7 5143|778
TCV 3 3 3|5 |54]1| 2 3) 4 [ 3[4 14]4]|5]|5
STV 2 5 | 4 14| 7[8]1] 6 = 7T 4| T38| T7T|5
WCV 1 3) 5 | 8 (8143 7 8 71616 |5|8|6|7
TrCV 53 7 8 |8 |8|5|3| 7 7 8 7T | 8|6 |8|8|8

Comelation Measure

13 win and 3 lose!

Parameters Tuning (LatentMap)

=]

e scv
“ITCy

i g

[N - R R -

B
Cwev

Comelation Measure

Parameters Tuning (SWM)




ResultS source-domain Selection

Method |[NB|SVM|C45|KNN|Ng||TA|LM|LWE|| Pr
SCV 3) 6 6 3) 4 (1 41 6 436
STV 2 3 2 6 21| 21 3 3) 371
TCV 6 3) 2 4 2|l 51 3 2 399
WCV 3) 6 6 4 31 41 3 6 442
TrCV 6 6 6 6 6| 5| 4 6 ||512

Source-domain Selection

No losel

Comelation Measure
%] (5] s Em [=3] =] [8x] [{=] [

1 2 3 4 5 G T g
Classifier



Results parameter Analysis

White-Red

Red-White

melation Measure
%] (%] [ %] (%]

Cormelation Measure
[ %] (%] [~}

18§ W o
# P |
! g 8 15§ R
16 3 N
L 18 R %o
P o . *
145 : 17 —e :
g 1 25 30 5 10 5 3

15 20 15 20
Mumber of Folds Mumber of Folds

(a) Different number of folds

TrCV achieves the highest correlation value under different
number of folds from 5 to 30 with step size 5.



Results parameter Analysis

White-Red

Cal
-

]
=

Correlation Measure

[
tn

- b
=] Ln

n

0

Ratio of Labeled Data in Target-Domain

< TCV
-7=-8SVT

-==TrCV| ]

0.2

0.4

0.6

0.8

Red-White

30
uh]
= 251
? .
% 20{} F-7 0 Cr
5 15t
I
— 1[}. J
S o TCV
G < ~-SVT ||
5 -
O -=-Trcv
S 0.4 0.6 0.8

Ratio of Labeled Data in Target-Domain

(b) Different number of labeled data in T

When only a few labeled data(< 0.4 X |T|) can be obtained
In the target-domain, the performance of TrCV is much better

than both SVT and TCV.



Conclusion

 Model and data selection when margin and conditional
distributions are different between two domains.
o Key points

— Point-1 Density weighting to reduce the difference
between marginal distributions of two domains;

— Point-2 Reverse validation to measure how well a
model approximates the true conditional distribution
of target-domain.

e Code and data available from the authors
— www.weifan.info






Thanks!
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