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a b s t r a c t

With the dramatic growth of online video services and video traffic, video service providers

and network operators have keen interest in improving viewer engagement. Viewer engage-

ment is mainly influenced by four aspects: service quality metrics (e.g., rebuffer time), net-

work quality metrics (e.g., physical-layer data rate), video content (e.g., video length) and

viewer demography. Previous works only partially consider some of these factors due to lim-

itation of the dataset. In this paper, we develop an experimental platform with more than

50 self-deployed routers in our university campus, collecting information regarding all four

aspects of engagement-related factors. Correlation and information gain analysis show that

different viewer groups and video content types have different engagement patterns. Further-

more, we analyze each factor’s significance in determining viewer engagement. Finally, we

propose to build personalized models to better predict viewer engagement, with bootstrap-

ping customized models for new viewers.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

It is estimated that the sum of all forms of videos (TV,

Video-on-Demand (VoD), Internet, and P2P) will be around

80 ∼ 90% of global consumer traffic by 2017 [1]. Video

streaming over the Internet, especially through mobile net-

work, is becoming more and more popular. Throughout the

world, Internet video traffic will be 69% of all consumer In-

ternet traffic by 2017 [1], and mobile video traffic will be

over one third of mobile data traffic by the end of 2018 [2].

The majority of video traffic to mobile is still Wi-Fi, not 3G or

4G [3].
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Video service is user-centric, therefore, it is better to eval-

uate video quality from the viewers’ perspective, known as

Quality-of-Experience (QoE). Traditionally, QoE is measured

by subjective test, which directly solicits viewers’ evaluation

scores under the laboratory environment. However, due to

its high cost, subjective tests are often conducted with lim-

ited viewers, video types and test conditions. Furthermore,

subjective test cannot be used for real-time monitoring.

With the availability of large-scale online video data,

data-driven approaches emerge for viewer satisfaction anal-

ysis. Instead of focusing on viewer experience, researchers

resort to viewer engagement, which can be measured by

quantifiable metrics (e.g., viewing time ratio, the number

of watched videos and the probability of return), and con-

forms with the business models of subscription-based or

advertisement-based video services. If a viewer is more en-

gaged with a video, it is more likely that he will subscribe

to the video service, and more ads can be displayed to
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him. In [4], the authors collect the data from the content

providers’ websites to study the influence of service qual-

ity metrics (e.g., rebuffer time) on viewer engagement, and

predict viewer engagement by linear regression. As an ex-

tension, in [5], the authors further study the impact of video

content on viewer engagement; and propose decision tree-

based prediction model to characterize non-linear and non-

monotonic relationship between viewer engagement and

other factors. In [6], the authors use the dataset from the net-

work operator to study how network quality metrics affect

viewer engagement, and predict viewer engagement with re-

gression tree models.

Different from the existing works, we develop a third-

party experimental platform consisting of more than 50 self-

deployed routers in the university campus. Having collected

the HTTP packets using TCPDUMP, we perform deep packet

inspection to extract all four aspects of engagement-related

factors1: service quality metrics, network quality metrics,

video content and viewer demography. We first use correla-

tion and information gain to analyze the influence of a cer-

tain factor on viewer engagement. We have the following

observations.

• Viewer group differentiation. Different viewer groups have

different sensitivities towards the same factor. For exam-

ple, video popularity has a more significant influence on

female viewers than male viewers.

• Importance of data rate variance. According to the analy-

sis, average data rate has little influence on the viewer

engagement, while data rate variance has relatively high

correlation with viewer engagement. The role of data rate

variance has never been mentioned in previous works.

• Poor viewer engagement on mobile devices. The viewing

time ratio on mobile devices is much lower than that

on personal computers. Moreover, we find that, for mo-

bile devices, average transmission data rate is negatively

correlated with viewer engagement. One possible rea-

son is that the rate adaptation of the mobile devices is

too aggressive, resulting in high retransmission and low

throughput, which leads to poor viewer engagement.

To further analyze the significance of each factor in de-

termining viewer engagement, we leverage Bayesian theory

to compute the posterior probability of viewer engagement

conditioned on a certain viewing condition. We find that, for

a particular factor, its influence on viewer engagement is sig-

nificant within a certain range. For example, when the re-

buffer time is 30 ∼ 50 s, its influence on viewer engagement

is most significant; when the rebuffer time is fewer than 30 s

or greater than 50 s, its influence on viewer engagement can

be ignored. Therefore, the network operator who wants to in-

crease viewer engagement can focus on decreasing rebuffer

time while it is in the range 30 ∼ 50 s, but investing the re-

sources elsewhere (e.g. decreasing the startup delay) if the
rebuffer time is fewer than 30 s.

1 Our deep packet inspection-based method can be applied to the unen-

crypted HTTP packets used by most of China’s video websites, but not to en-

crypted HTTPS and HTTP/2 packets used by video websites such as YouTube.

Existing methods that extract information from the client- or server-side

logs are able to work on HTTPS and HTTP/2 packets after decryption [4,5].

Methods that do not rely on application-layer information can also deal with

HTTPS and HTTP/2 packets [6].
To predict viewer engagement, we first build a general

model for the entire dataset and major viewer groups. Then,

we personalize the system, training the model only on a sin-

gle viewer’s data, achieving better prediction accuracy. How-

ever, personalized prediction models demand the viewers’

historical data for training, which is unavailable for a new

viewer. Therefore, we build customized models for boot-

strapping the training process for a new viewer, based on his-

torical data from viewers who share similar attributes with

the new viewer.

Our major contributions are as follows.

• We build a third-party experimental platform to collect

a dataset with all four engagement-related factors: ser-

vice quality metrics, network quality metrics, video con-

tent and viewer demography. We also carry out a survey

to solicit viewers’ subjective opinions on their usual view-

ing habits. (Section 3)

• We analyze the influence of different factors on viewer

engagement through correlation and information gain

analysis. We further analyze engagement patterns for dif-

ferent viewer groups and content types. (Section 4)

• We analyze the significance of different factors in deter-

mining viewer engagement. (Section 5)

• We propose personalized models for predicting indi-

vidual viewer’s engagement, and bootstrap the train-

ing process of new viewers with customized models.

(Section 6)

2. Related work

Large-scale measurement studies have been carried out

for various video services, including online VoD service [7,8],

live VoD service [9], the YouTube traffic [10–12] and mobile

video service [13]. Different from these measurement studies

which present general viewer behaviors, we focus on an in-

depth understanding of the influence of different factors on

viewer engagement.

Recently, data-driven analysis on viewer engagement has

drawn much attention. In [4], the authors study the in-

fluence of video service quality metrics on viewer engage-

ment for different video types, and quantify such influence

by linear regression. However, the linear regression cannot

capture the non-linear and non-monotonic relationship be-

tween viewer engagement and other factors. To address this

problem, a decision-tree based prediction model is devel-

oped in [5,14], but it can only predict viewer engagement

in a coarse-grained level. In [6], the authors study the influ-

ence of cellular network conditions on viewer engagement,

and build fine-grained prediction model based on regression

tree algorithm. In [15], the authors verify the causal rela-

tionship between video service quality metrics and viewer

engagement, but it does not work on predicting viewer

engagement. All of the previous works collect data from

either content providers’ websites or cellular network

operators.

Compared with existing data-driven analysis on viewer

engagement, our work is different in three ways. First, our

dataset includes both service quality metrics and network

quality metrics, as well as information on video content

and viewer demography. Second, we have a more in-depth
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Fig. 1. A typical video session.

2 Note that the PHY data rate is not video encoding bitrate. We cannot

identify video bitrates from the HTTP packet header. In the following of the
analysis on the significance of different factors in shaping

viewer engagement. Third, we propose to establish person-

alized models instead of general models for better predicting

viewer engagement. Nevertheless, we extract video-related

information from the packet header, which can only deal

with unencrypted HTTP packets, but not encrypted HTTPS

and HTTP/2 packets. Existing works that collect and analyze

data from the client- or server-side logs do not have this

problem as the packets are decrypted by the browser [4,5];

the methods that do not use application-layer information

also averts this difficulty [6].

3. Preliminaries and dataset

In this section, we first introduce the background of video

service and viewer engagement. Then, we describe the data

collection process. Finally, we present general statistics of our

dataset.

3.1. Background

Fig. 1 shows a typical video session. After the viewer initi-

ates a video request, a certain amount of data has to be down-

loaded in the buffer before the video starts playing (startup

state). During playing, the video player fetches the data in the

buffer to play to the viewer; and meanwhile, more data are

downloaded from the server (playing state). If the rate of data

consumption exceeds the rate of downloading (e.g., due to

poor network capacity), the buffer will be exhausted. In this

case, the video player has to pause to fill its buffer to a certain

level before start playing again (rebuffer state). The viewer

may choose to quit before the video completes, or watch to

the end of the video.

In this paper, we quantify viewer engagement by view-

ing time ratio, that is, the actual time that a viewer watches

a video clip divided by the total video length [5]. The

more time a viewer spends watching a video, the more en-

gaged he is. When studying potential factors that may af-

fect viewer engagement, we consider service quality met-

rics, network quality metrics, video content, and viewer

demography.

Service quality metrics

• Startup delay. As shown in Fig. 1, startup delay is

the time between the viewer requests the video

and the video actually begins playing, advertise-

ment time included.

• Rebuffer time. As shown in Fig. 1, when the buffer is

depleted, the player pauses to rebuffer. We use the

total rebuffer time during a video session to quan-

tify the rebuffer events. We also consider rebuffer

time ratio, that is, the total rebuffer time divided by

video length.
Network quality metrics

• PHY data rate. IEEE 802.11 standard designated a

series of available physical-layer data rate for the

Wi-Fi network2. For example, 802.11b supports {1,

2, 5.5, 11} Mbit/s and 802.11g supports {6, 9, 12, 18,

24, 36, 48, 54} Mbit/s. We use the mean and the

variance to quantify the PHY data rate.

– Average data rate. Average data rate, measured

in megabit per second (Mb/s), is the time aver-

age of the PHY data rate during a video session.

– Data rate variance. We use data rate variance

to represent how stable the data rate is during

the video session. Low data rate variance in-

dicates relatively stable wireless environment,

while high data rate variance indicates disturb-

ing wireless environment. Let r1, r2, … , rn de-

note the data rate samples, and μr denote the

average data rate. We adopt the following three

metrics to quantify data rate variance.

∗ Standard deviation V1 =
√∑

i (ri − μr)/n

∗ Absolute data change V2 = ∑
i |ri − ri−1|

∗ p-norm (p = 3) V3 = (
∑

i |ri − μr|p)1/p

• Signal strength. The signal strength is measured by

the antenna in dBm.

Video content

• Video length, the total time duration of the video.

• Video popularity. We use the number of (previous)

views of video to represent its popularity.

• Device types, classified as personal computers (PC)

and mobile devices.

Viewer demography

• Gender. Female or male.

• Grade (of learning). In our dataset, the grade of

viewers include 4th year undergraduate (UG4), 1st

year postgraduate (PG1) and 2nd year postgradu-

ate (PG2).

3.2. Experimental platform and dataset

The dataset in [4,5] is collected from the video player in-

strumentation, which includes only service quality metrics

but no network quality metrics. The dataset in [6] is col-

lected from the network operator, which includes only net-

work quality metrics but no service quality metrics. With the

help of our experimental platform, we are able to collect both
contexts, we will use data rate to refer to PHY data rate without confusion.
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Table 1

Indicators in HTTP packet header.

Event Indicator

Initiate request http contains “click”

Start playing http contains “/vc?”

Video length http contains “/player/addPlayerDurationReport?”

Actual watching time “http contains “/tslog?”

Pause http contains “e=pause”

Resume http contains “e=play”

Fig. 2. Video length.

Fig. 3. Video length.

3 We have verified that the transmission of the copied packets will not

congest the network and has little influence on the transmission of regular

packets.
4 The calculation of the rebuffer time is also affected by users’ fast-

forward or backward operation. This situation is too complicated and we
network quality metrics (from the routers) and the service

quality metrics (derived from the HTTP packets). Moreover,

we indicate the basic viewer demography information from

the location of the routers, which is never considered in ex-

isting works.

We deployed 50 routers in the offices and student dormi-

tories across the university campus, providing free Wi-Fi ac-

cess to the users. All the users who access the routers are no-

tified of the experiment and are asked to sign an e-agreement

for data collection. For data processing, we only parse the

unencrypted HTTP packet header to get service quality met-

rics and network quality metrics, without intruding the user

privacy. The data collection process lasted for three months

from April to June in 2014. The final dataset consists of 11996

unique video sessions and 469 unique viewers. Our dataset is

collected independently from the content providers and the

network operators. Though it is smaller in scale compared

with previous works, it contains more detailed information

on each video session, allowing us to gain more in-depth in-

sight on the influence of each factor on viewer engagement.

The data collection platform consists of two major parts:

the client routers and the storage server. We use the off-the-

shelf MERCURY MW4530R 750 Mbps Dual Band Wi-Fi Wireless

Gigabit Router for the client routers. The original operating

system is overwritten by OpenWrt [16], an operating system

based on Linux kernel. TCPDUMP is used [17] to capture all

the uplink and downlink packets between the users and the

router. Meanwhile, the routers monitor the wireless network

parameters by iw [18], a CLI (command-line interface) con-

figuration utility provided by OpenWrt for wireless devices.

The storage space of a router is only 16 MB, too small to keep

all the packets, which are usually more than 10 GB per day for

a router. In addition, it is burdensome to collect data from all

routers distributively. Therefore, we leverage a distant server

with 10 TB storage space. Each router copies and sends the
collected data packets and the log files of wireless parame-

ters to the server3, through Network File System (NFS) proto-

col [19], a distributed file system for file access between dif-

ferent computers. At the same time, we can remotely manage

all the routers with the help of the server.

To parse the captured packets, we first use the open-

source packet analyzer software Wireshark to identify differ-

ent events during the viewing session. The indicators in the

packet header as used in the Wireshark filters are listed in

Table 1.

Viewing time ratio. To get the viewing time ratio,

we have to know the total video length and the part of

the video that the user has actually watched. The video

length information is included in the packet that contains

“/player/addPlayerDurationReport?”, with the field named

“totalsec=” as shown in Fig. 2. Through intensive experi-

ments, we have found that the packet with “/tslog?” will pe-

riodically report the actual video watching time by “pt=”, as

shown in Fig. 3. Note that “pt” denotes the duration of the

video but not the total time spent, for example, the user may

spend a total of 15 s, but only watches 10 s of the video due

to rebuffer time, and the video length is 20 s. In this case, “pt”

= 10, and the viewing time ratio is 10/20 = 0.5. We use the

“pt” of the last “tslog?” packet to represent the actual video

watching time.

Rebuffer time. The rebuffer time is the total time spent

minus the actual video watching time and the pausing time4.
leave it to be solved in our future work.



Y. Chen et al. / Computer Networks 91 (2015) 101–116 105

Fig. 4. Video website distribution.

5 We infer the gender and the grade information of the video session from

the location of the router. For instance, if the router is deployed in a PG4

female dorm, we assume that the video sessions are watched by PG4 female

viewers. If the router is deployed in an office with mixed viewer groups, we

label the viewer demography information as unknown. Though this method

may introduce some noise into the dataset, this is by far the only way to get

the viewer demography information without intruding the privacy.
The total time spent is given by:

Ttotal = t/tslog?

end
− t/vc? (1)

in which t/vc? is the time stamp of the packet that indicates

the start of the video (Table 1); t
/tslog?

end
is the time stamp of the

last “/tslog?” packet. The actual video watching time is

the “pt” of the last “/tslog?” packet. We found that every

time the video is paused, we receive a packet containing “e =
pause”, and when the video is resumed, we received a packet

containing “e = play”. Therefore, the total pause time is:

Tpause =
∑

i

(te=play
i

− te=pause
i

) (2)

in which t
e=pause
i

and t
e=play
i

is the time stamp of the ith pause

and resume events respectively. The rebuffer time can be cal-

culated as Trebu f fer = Ttotal − Tactual − Tpause.

Startup delay. The startup delay can be easily derived as

Tstartup = t/vc? − tclick, in which t/vc? is the time stamp of the

packet that indicates the start of the video, and tclick is the

time stamp of the packet that indicates the user request for

the video.

We use TSTAT [20], a traffic statistics and analysis tool to

process the packets by seeking for indicators in Table 1 and

extracting corresponding information. The available version

of TSTAT can only analyze the statistics of YouTube traffic but

not other video websites. Therefore, we adapt TSTAT to parse

HTTP packets from other 11 video websites. We reconstruct

the video URL to crawl the video popularity information from

the original video website.

The PHY data rate and signal strength are sampled every

1 s by iw in the router. Sampling the data rate with higher

frequency will interrupt the normal operation of the routers

since each router only has one CPU. One problem with cross-

layer analysis is that the time granularity of physical layer

metrics (e.g., PHY data rate, signal strength) and applica-

tion layer metrics (e.g., rebuffer time, startup delay) are in-

trinsically different. The physical layer metrics have much

finer time granularity (e.g., tens of μs) than the application

layer metrics (e.g., tens of s). The sampling process resolves

this problem by providing physical layer metrics at a coarser

time granularity. More ideally, in the future work, we hope

to monitor the physical layer metrics continuously and then

aggregate them to match the time granularity of application

level metrics.

3.3. Subjective survey

To have a better understanding of the viewers’ usual view-

ing behavior, we carry out an anonymous survey among res-

idents of the student dormitories in which we have deployed

our routers. We have collected a total number of 165 ques-

tionnaires, which help us interpret some of the observations

from the video dataset. Interestingly, there are some contra-

dictions between the subjective survey and the video dataset.

The questions in the subjective survey include the following

parts.

• Basic information: e.g., gender and grade.

• General viewing behavior: e.g., the number of days to ac-

cess video websites each week, average duration of each

access.
• Engagement evaluation: e.g., average viewing time ratio,

startup delay tolerance and rebuffering time tolerance for

ordinary and interesting videos respectively.

• Self-evaluation: to rank one’s own patience levels as “5

(very impatient)”, “4 (impatient)”,“3 (moderate)”,“2 (pa-

tient)”, and “1 (very patient)”.

3.4. Dataset statistics

Now we present some general statistics of the video

dataset. Of all the video sessions, 5102 are watched by male

viewers, 1539 by female viewers, and the rest are unknown.

Of all the video sessions, 1952 are watched by undergraduate

4th year (UG4) viewers, 5691 by postgraduate 1st year (PG1)

viewers, 649 by postgraduate 2nd year (PG2) viewers, and

the rest are unknown5.

The video sessions come from almost all major video

websites which provide VOD service in China. Fig. 4 shows

the proportion of the video sessions from each website. We

can see that the majority of the videos come from YOUKU,

the most popular video website in China. Access to YOUKU

from the PC and the mobile devices consists more than half

of the total video access in our dataset. The traffic rank of our

dataset generally conforms with that of Alexa ranks [21].

4. Correlation and information gain analysis

In this section, we leverage correlation and information

gain analysis to quantify the impact of different factors on

viewer engagement. We first analyze the entire dataset; then,

we separate video sessions based on different viewer groups;

finally, we look at different video types and device types.

4.1. Overview

Fig. 5 (a) shows the CDF of viewer engagement across

the entire dataset. In general, the viewer engagement is low,
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Fig. 5. CDF of viewer engagement, rebuffer time, startup delay and rebuffer time ratio.
which means that there is great room for improvement. We

can see that more than 50% of the video sessions are shorter

than half of the entire video; more than 20% of the video ses-

sions are even shorter than 10% of the entire video; only top

20% of the video sessions are longer than 80% of the entire

video, having satisfactory viewer engagement.

We further show the CDF of three service quality metrics:

rebuffer time, startup delay and rebuffer time ratio. Fig. 5(b)

shows that the distribution of rebuffer time has a long tail.

While 90% of the video sessions have a rebuffer time of fewer

than 50 s, the rest of the video sessions experience long re-

buffer time ranging from 100 s to 2000 s. However, the re-

buffer time ratio is relatively stable as shown in Fig. 5(d),

i.e., longer videos have longer rebuffer time. Over 80% of the

video sessions have a rebuffer time ratio of less than 3%.

Fig. 5(c) shows that most of the startup delay is not long since

it is only affected by initial network conditions6. More than

45% of the video sessions have a startup delay of fewer than

30 s.

4.1.1. Correlation analysis

We consider three types of correlation analysis to eval-

uate whether the relationship between viewer engagement

and other factors is linear and monotonic or not.
6 Since our computation of the startup delay includes the advertisement

time, it is longer than that in existing works such as [5].
• Linearity is characterized by Pearson linear correlation co-

efficient.

• Monotonicity is characterized by Spearman’s rank corre-

lation coefficient, where −1/1 means the viewer engage-

ment can be represented as a monotonically decreas-

ing/increasing function of a certain factor; 0 means that

the viewer engagement and a certain factor are indepen-

dent. One merit of the Spearman correlation coefficient

is that, it does not require prior knowledge of the rela-

tionship (e.g., linear, logistic) between the viewer engage-

ment and other factors (referred to as nonparametric).

• Rank Similarity is characterized by Kendall rank corre-

lation coefficient, where −1/1 means that the ranks of

viewer engagement perfectly disaccord/accord with the

ranks of a certain factor; 0 means that the viewer engage-

ment and a certain factor are independent. Kendall corre-

lation is also nonparametric.

4.1.2. Information gain

Information gain helps to uncover non-monotonic rela-

tionships that cannot be revealed by correlation analysis. In-

formation gain quantifies how the knowledge of a certain

factor reduces the uncertainty of the viewer engagement.

Let Y denote the viewer engagement, and X denote a cer-

tain factor. The (normalized) information gain for Y, given

X, is [I(Y) − I(Y |X)]/I(Y), in which I(·) is the entropy of the

metric. The entropy represents how much information is
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Table 2

Correlation coefficient & information gain.

Pearson Spearman Kendall Information gain

Startup delay all 0.001 −0.145 −0.095 1.8%

skimmed −0.01 −0.1 −0.06 1.5%

Rebuffer time all 0.016 0.099 0.070 0.34%

skimmed 0.000 0.014 0.01 0.35%

Rebuffer time ratio all 0.013 0.20 0.14 –

skimmed 0.01 0.11 0.08 –

Average data rate all 0.011 0.006 0.004 0.45%

skimmed −0.008 −0.005 −0.003 0.42%

Data rate variance V1 all 0.088 0.112 0.076 12.9%

skimmed 0.07 0.08 0.05 11.8%

Data rate variance V2 all 0.107 0.212 0.144 18.57%

skimmed 0.06 0.11 0.07 16.94%

Data rate variance V3 all 0.205 0.235 0.158 14.00%

skimmed 0.12 0.13 0.09 12.22%

Signal strength all 0.098 0.097 0.064 0.47%

skimmed 0.06 0.05 0.03 0.23%

Video length all −0.153 −0.428 −0.285 7.73%

skimmed −0.30 −0.31 −0.20 4.90%

Video popularity all −0.116 −0.086 −0.056 0.42%

skimmed −0.07 −0.02 −0.01 0.20%

Table 3

Subjective survey results: male vs female.

Days per week to visit video websites

1 ∼ 2 3 ∼ 4 5 ∼ 6 ≈ 7

Male 12% 13% 8% 67%

Female 8% 33% 9% 50%

Time spent for each visit (min)

<10 10 ∼ 30 30 ∼ 60 >60

Male 17% 23% 28% 33%

Female 17% 15% 35% 33%

Average viewing time ratio (%)

<20 20 ∼ 60 60 ∼ 80 >80

Male 20% 18% 13% 49%

Female 13% 13% 11% 65%

Rebuffer time tolerance for ordinary videos (sec)

<30 30 ∼ 60 >60

Male 53% 38% 9%

Female 31% 53% 17%

Rebuffer time tolerance for interesting videos (sec)

<30 30 ∼ 60 >60

Male 34% 38% 28%

Female 23% 45% 32%

Startup delay tolerance (sec)

<5 5 ∼ 10 10 ∼ 30 >30

Male 28% 27% 31% 15%

Female 10% 21% 52% 18%

Self evaluation

Very impatient Impatient Moderate Patient

Male 8% 36% 53% 3%

Female 3% 52% 39% 6%
known of a random variable. It can be calculated as I(X) =
− ∑

i p(xi) ln p(xi), in which p(xi) is the probability that the

value of the random variable X is xi. High information gain

means that a certain factor has a significant impact on the

viewer engagement.

4.1.3. Analysis results

Table 2 shows the results of correlation and information

gain analysis both on the entire dataset and the skimmed

dataset. For the skimmed dataset, we remove the viewers

whose viewing time ratio is less than 5% [5]. The absolute

values of correlation coefficient are extremely small, show-

ing that no single factor has obvious linear or monotonic re-

lationship with viewer engagement. The skimmed dataset

strengthens the correlation for video length, and weakens

the correlation for other factors. We also tried to skim the

early quitters with other viewing time ratio thresholds, but

on the whole, there is no significant change. The highest ab-

solute value is the Spearman correlation coefficient between

video length and viewer engagement. As video length in-

creases, viewer engagement will decrease, because on the

one hand, viewers get impatient as the video drags on; on

the other hand, viewers are more likely to experience quality

degradation during a long video session. Information gain is

also low for all factors. It is interesting that, although average

data rate has a low information gain, all the data rate vari-

ances have relatively high information gains and correlation

coefficients. This implies that the raw data rate at the phys-

ical layer may not be an accurate indicator of the network

throughput.

4.2. Gender difference

The subjective survey comparison of male and female

viewers is summarized in Table 37. In general, male and fe-

male viewers do not have much difference in general viewing
7 Since the number of viewers who chose “Patient” and “Very patient” are

quite small, we combine the two results as “Patient”.
behavior, such as the time spent on each video website visit.

But male and female viewers do have different patient lev-

els, which affect their tolerance for rebuffer time and startup

delay.

Most of the viewers claim that they will watch a major-

ity part of the video. This contradicts the result in Fig. 5(a),

which shows that more than half of the video sessions

have a viewing time ratio of less than 50%. The reason for

this discrepancy between viewers’ subjective perception and
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Fig. 6. CDF of viewer engagement for male and female viewers.
objective behavior may be that, most of the people will

browse several videos before they dedicate to one long video

session, but they may do so subconsciously without paying

much attention.

Viewers’ reported tolerance for startup delay and rebuffer

time conforms the distribution of startup delay and rebuffer

time in Fig. 5(a) and (b). It seems that the current video ser-

vice quality can well satisfy viewers’ demands. However, in

fact, this may be the results of viewers’ choice: viewers quit

the video sessions that exceed their rebuffer time or startup

delay tolerance, resulting in the rebuffer time and startup de-

lay distribution in Fig. 5(a) and (b).

Fig. 6 shows the viewing time ratio of male and female

viewers based on the dataset. Contradictory to the subjective

survey, female viewers actually have a higher viewing time

ratio than male viewers. Correlation analysis shows one sig-

nificant change for female viewers: the Spearman correlation

coefficient between video popularity and engagement be-

comes −0.20, compared with −0.086 in Table 2. This means

that videos with high popularity actually have lower viewing

time ratio. The possible reason is that, upon visiting the video

website, most of the viewers will first “skim” several popular

videos recommended by the website, then dedicate to one

video that interests them. This may lead to many video ses-

sions with small viewing time ratio for the popular videos.

Female viewers may be more involved in such video brows-

ing activities.

4.3. Grade difference

The subjective survey comparison of PG1 and PG2 view-

ers8 shows two major differences9. First, PG2 viewers are

more tolerant of rebuffer time and startup delay than PG1

viewers, even though more PG2 viewers claim to be impa-

tient than PG1 viewers. Second, PG2 viewers claim to have
8 We do not compare the results of UG4 viewers since our subjective sur-

vey covered only a small number of UG4 viewers.
9 Due to page limit, we do not show the detailed table here.
a longer viewing time ratio than PG1 viewers. However, ac-

cording to our dataset, the PG2 viewers actually have a lower

viewing time ratio than the PG1 viewers as shown in Fig. 7.

Such interesting contradictions between subjective percep-

tion and real engagement also exist for male and female

viewers. Further investigations may be needed to seek for the

psychological reason and verify whether the current viewer

engagement metrics indeed reflect real subjective viewer

experience.

Fig. 7 shows that as the year of study increases, viewer

engagement decreases, probably due to more work pressure.

Correlation analysis shows that, like female viewers, video

popularity has a more significant influence on PG2 viewers

(with Spearman correlation coefficient as −0.25) but not PG1

and UG4 viewers.

4.4. Video length

As video length has a relatively high influence on viewer

engagement according to Table 2, in this section, we com-

pute correlation coefficients for videos with different lengths.

We classify videos as “Short” (<10 min), “Mediate” (≥10 but

<30 min ), and “Long” videos (≥30 min). Fig. 8(a) shows a

significant decrease in viewer engagement when the video

length increases. The correlation analysis shows that:

• Rebuffer time becomes increasingly influential for long

videos. The Spearman and Kendall coefficients become

0.34 and 0.25 for absolute rebuffer time; 0.36 and 0.27

for rebuffer time ratio. Surprisingly, the coefficients are

positive, which means that the longer the rebuffer time

is, the higher the viewer engagement. One possible rea-

son is that the streaming video with a higher bit rate has

longer rebuffer time [5], and the viewer engagement is

high due to better video quality.

• Data rate variances become increasingly influential, es-

pecially for mediate and long videos. For mediate videos,

the Spearman and Kendall coefficients for V2 are 0.46 and

0.33. For long video, the Spearman and Kendall coeffi-

cients for V are as high as 0.54 and 0.38.
2
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Fig. 9. Different video websites.
4.5. Video popularity

We classify videos as “Less popular” (< 105), “Popular”

(≥ 105 but < 106) and “Very popular” (≥ 106). It is shown

in Fig. 8(b) that the most popular videos have the lowest

viewer engagement. This partly explains the negative corre-

lation between video popularity and viewer engagement. But

the discrepancy in viewer engagement for videos with differ-

ent popularity is quite small. Therefore, video popularity may

only affect certain viewer groups, such as female viewers and

PG2 viewers.

4.6. Device types

Fig. 8(c) shows that viewer engagement on mobile devices

is much lower than that on PC, indicating that viewing expe-

rience on mobile devices needs to be improved. The corre-

lation analysis shows that, for mobile devices, the influence

of average data rate becomes more significant, but the cor-

relation coefficients are negative (the Pearson and Spearman

coefficients both become −0.28). This is surprising as we ex-

pect that high average data rate will lead to high throughput,
and therefore high viewer engagement. One possible expla-

nation is that, for the mobile devices, the channel estimation

(for choosing appropriate data rate) is adversely influenced

by the fast-changing channel condition due to high mobility.

In this case, high (raw) data rate may instead result in low

throughput, which leads to lower viewer engagement.

4.7. Video website

Fig. 9 shows the comparison of viewing experience in dif-

ferent video websites. We can see that the difference in QoE,

rebuffer time and startup delay is significant. However, the

relationship between QoE and QoS metrics are complicated.

For example, “PPS” website has high QoE, low rebuffer time,

but its startup delay is high; “iQiYi” website also has high

QoE, but its rebuffer time and startup delay are both high. The

correlation results for most websites are similar to Table 2.

However, for “Ku6” and “iQiYi”, the Spearman correlation

coefficient between QoE and video length are as significant

as −0.75 and −0.63, respectively; for “CNTV”, the Pearson

and Spearman correlation coefficients between QoE and data

variance V are as high as 0.67 and 0.69, respectively. The
3



Y. Chen et al. / Computer Networks 91 (2015) 101–116 111

Table 4

Confusion table.

Predicted class

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 369 10 5 7 16 5 9 5 8 15

C2 12 227 4 4 9 6 7 7 3 13

C3 13 6 146 2 9 5 0 10 8 11

C4 15 4 4 133 5 5 6 6 8 6

C5 9 3 3 3 132 4 2 5 3 8

True class C6 8 4 5 4 2 112 2 10 6 7

C7 7 4 5 5 12 6 110 8 5 10

C8 13 1 6 5 8 6 6 169 9 13

C9 8 8 3 4 12 1 5 14 261 20

C10 21 14 5 10 15 11 13 19 17 497

10 This simplified assumption cannot capture the interdependency among

different factors. In the future, we will adopt more complicated models such

as Bayesian belief networks to address this problem.
11 Startup delay, rebuffer time, average data rate and data rate variance are

continuous; video length and video popularity are discrete.
difference between various video websites may due to their

customized services. Fig. 9(a) indicates that websites with

poor QoE have great room for improvement compared with

websites with satisfactory QoE.

5. Significance of influence of different factors on viewer

engagement

In this section, we first build a Bayesian classification

model, in which we use posterior probability to represent the

dependency of viewer engagement on a certain factor. Then,

we analyze whether a certain factor is significant in deter-

mining the class of viewer engagement.

5.1. Bayesian classification model

Let Y denote the viewer engagement, X = (x1, x2, . . . , xn)
denote the vector of potential factors that may influence

viewer engagement, referred to as viewing condition. P(Y)

is the prior probability of Y. For example, P(Y = 0.1) is the

probability that any viewer’s engagement is 0.1. P(X) is the

prior probability of X. For example, P(xstartup = 10 s, xrebuffer =
20 s, … , xpopularity = 106) is the probability that a video ses-

sion has a startup delay of 10 s, a rebuffer time of 20 s, … ,

and a popularity of 106. P(X|Y) is the posterior probability of

X conditioned on Y. That is, it is the probability that a video

session belongs to viewing condition X, given that we know

the viewer engagement of this video session is Y. The ma-

jor goal of Bayesian classifier is to find P(Y|X), the posterior

probability that the viewer engagement is Y, given that the

viewing condition is X. According to the Bayes’ theorem, we

have:

P(Y |X) = P(X|Y)P(Y)

P(X)
. (3)

We divide viewer engagement into 10 classes: C1, C2, … , C10

denote [0, 10%), [10, 20%), . . . , [90, 100%], respectively. Given

viewing condition X, the posterior probabilities for each class

P(Ci|X) are calculated. We predict that X belongs to Ci if and

only if the posterior probability P(Ci|X) is the highest among

all possible classes, that is, P(Ci|X) > P(Cj|X), ∀j ∈ [1, 10], j �= i.

In (3), P(X) is the same for all classes, so we only have to

derive P(X|Ci) and P(Ci) for each class. If the class prior proba-

bilities are unknown, the common practice is to assume that

P(C ) = P(C ) = · · · = P(C ) [22]. In fact, we find that this
1 2 10
yields the best prediction accuracy for our dataset. To dif-

ferentiate the influence of individual factors on viewer en-

gagement, we make the simplified assumption that different

factors are independent10:

P(X|Ci) = P(x1|Ci) × P(x2|Ci) × · · · P(xn|Ci),∀Ci. (4)

Table 4 shows the confusion table of the prediction re-

sults. The prediction accuracy is 76.1%.

5.2. Significance of factors in determining viewer engagement

In this section, we ask such a question: is factor xj signifi-

cant in determining the class of viewer engagement? Accord-

ing to (4), the contribution of factor xj to P(Ci|X) is P(Ci|xj).

If P(Ci|xj) is very dissimilar for different classes Ci, i ∈ [1,

10], then xj will be important in determining which class the

viewer engagement belongs to. On the contrary, if P(Ci|xj) is

almost the same for different classes Ci, i ∈ [1, 10], then xj can-

not differentiate which class the viewer engagement belongs

to.

To characterize the significance of factor xj in determining

the viewer engagement class, we define the following signif-

icance indicator SDj:

SDj =

N−1∑
m=1

N∑
n=m+1

|P(Cm|x j) − P(Cn|x j)|
N(N − 1)/2 × max

k
P(Ck|x j)

. (5)

in which N = 10 is the number of all classes, and N(N − 1)/2

is the number of sums in the numerator. Fig. 10 shows the

significance indicator of different factors11.

• The peak in Fig. 10 indicates that a factor has a significant

influence on viewer engagement. Some factors may have

significant influence at a single point, such as rebuffer

time and data rate variance, as shown in Fig. 10(b) and (c).

Other factors may have significant influence at multiple

ranges. For example, startup delay affects viewer engage-

ment at 90 ∼ 110 s and 145 ∼ 160 s as shown in Fig. 10(a).
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Fig. 10. Significance of factors in determining viewer engagement.

12 We have done pilot experiments to try other algorithms, and find that

CART and NN work the best for our dataset.
13 Compared with existing works [5,6], the RMSE in Fig. 11 is relatively

high. This is because our dataset has a much smaller scale, and the data

for training the model is quite limited. However, in this paper, we focus on

building personalized model to improve prediction accuracy for viewer en-

gagement.
• The most significant factor in determining viewer engage-

ment is video length (with the highest significance indi-

cator), especially for short videos, as shown in Fig. 10(d).

The least significant factor in determining viewer engage-

ment is data rate variance V3, as shown in Fig. 10(c),

though it has relatively high correlation coefficients.

• The significance of a certain factor is different at different

ranges. For example, as shown in Fig. 10(b) the rebuffer

time is highly influential at around 40 s. But when the re-

buffer time exceeds 100 s, it has little influence on deter-

mining the viewer engagement (threshold effect). Similar

trend can be found in other factors.

6. Viewer engagement prediction

In the previous section, we classify viewer engagement

at a coarse-grained level. In this section, we build more

fine-grained models to predict viewer engagement based

on various factors. The prediction models can help network

operators and video service providers to monitor viewer en-

gagement and make corresponding adjustment to improve

viewer engagement.
6.1. General prediction model

To model the non-linear and non-monotonic relationship

between viewer engagement and other factors, we select two

candidate models: Classification and Regression Tree (CART)

and neural network (NN)12. In CART, we use 10-fold cross-

validation method: the data are partitioned into 10 groups;

each time, 9 groups are used for training, and 1 group is used

for validation. In NN, we use 70% of the data for training,

15% for validation, and 15% for testing. We train the NN for

100 times and average the results. Fig. 11 shows the perfor-

mance of the two models for all viewers and different viewer

groups13. Skimming the viewers will improve the prediction

results by as high as 16% for CART, and 26% for NN. In compar-

ison, NN has a poorer performance, probably due to its “black

box” nature [23], which makes it difficult to interpret the
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Fig. 12. RMSE of personalized prediction model.
relationship between inputs and outputs. Therefore, we

choose CART as the basis for building personalized viewer

engagement prediction model.

6.2. Personalized prediction model

Viewer engagement is closely related to personal dispo-

sition and perception. Therefore, the best way to predict a

viewer’s engagement is to build a personalized model based

on his/her own historical data. We choose the top 25 viewers

with the most video sessions, and build personalized predic-

tion models with each viewer’s individual data14. We sort the

RSME and present the results in Fig. 12. The average RMSE is

0.39, lower than that of the general prediction model (0.45).

The personalized model works especially well for some view-

ers (the lowest RMSE is 0.28). Although some viewers still
14 For personalized models, we use 3-fold cross validation due to data size

limitation.
have high RMSE (the maximum RMSE is 0.49) mainly due to

limited training data, we believe that with enough data, the

personalized model will significantly outperform the general

model.

6.3. Customized prediction model

While the personalized prediction model is the most ideal

choice, it suffers from insufficient training data when a new

viewer comes (cold start problem). Therefore, we attempt to

form a customized prediction model based on a group of

viewers who share similar attributes, e.g., female PG1 stu-

dent. If successful, this model can be used as an initial model

for a new user, bootstrapping the training process.

We group the viewers according to their gender (“male”

or “female”) and grade (“PG1”, or “UG4”). Each time, we re-

move a viewer from his/her group, and train a customized

prediction model on the rest of the viewers. Then we use this

model to predict the engagement of the previously removed
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viewer, and calculate the RMSE. We select 100 viewers from

each group.

Fig. 13 shows the CDF of the RMSE of the customized

prediction model. The customized model works surprisingly

well for some viewers, with RMSE as low as 0.2. However, for

many other viewers, the RMSE is relatively high. We recom-

mend that the customized model be used as the initial model

for a new viewer, and be replaced by personalized model as

soon as enough data are accumulated for the viewer.

7. Discussion

Viewer engagement vs viewer experience: Viewer ex-

perience is subjective, depending not only on video quality,

but also on individual viewer’s characteristics and viewing

environment. Viewer engagement, while providing an acces-

sible way to quantify viewer satisfaction (the more engaged

a viewer is, the better the viewer experience is), can only

partially reflect viewer experience. The relationship between

viewer engagement metrics (e.g., viewing time ratio) and real

viewer experience needs to be verified. In addition, we may
further explore metrics that can better represent viewer ex-

perience, e.g., metrics that involve viewer interactivity with

the video system (such as pause, fast forward and mouse

click).

Dynamic/online prediction model: Current prediction

models are built offline, based on full information of the

video session. However, real-time viewer engagement con-

trol requires decision-making based on partial information.

For example, during the video session, instead of average

data rate and total rebuffer time of the entire session, we

only know the average data rate and total rebuffer time up

till the present moment. The interaction between real-time

control and final viewer engagement is uncertain. Another

problem is that we don’t know whether the influence of a

certain factor is temporary or long-lasting. For example, al-

though startup delay may initially affect viewer engagement,

its influence may attenuate once the video starts playing.

Actionable insights: Video service providers and net-

work operators can leverage the analysis results for improv-

ing viewer engagement with limited resource in the most ef-

fective way. For example, when the rebuffer time is within
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the range [30, 50 s], the video service provider knows that

the viewer engagement is largely influenced by rebuffer time,

and may prioritize certain measures regarding rebuffer time.

We show the pruned CART tree on the entire dataset in

Fig. 14. The network operator or the video service provider

can leverage this tree to improve viewer engagement. For

example, data rate variance is on the root note, showing its

great influence on viewer engagement. The path from the

root to the leaf node shows one possible way to reach a target

viewer engagement level. For example, if it is achieved that

the data rate variance is less than 5.97, the startup delay is

less than 64 s, and the signal strength is larger than −38 db,

the viewer engagement is estimated to be 0.53.

8. Conclusion

With the ever-increasing video traffic over the Wi-Fi net-

works, a good understanding of viewer engagement is essen-

tial for video service providers and network operators. In this

paper, we build an experimental platform to collect video in-

formation on service quality metrics, network quality met-

rics, video content and viewer demography. We analyze the

influence of each factor on viewer engagement, first through

the entire dataset, then for different viewer groups and video

types. Then, we analyze the significance of different factors in

determining viewer engagement. Finally, we propose to build

personalized models to predict viewer engagement for indi-

vidual viewers, which have a better performance than gen-

eral prediction models.
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